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Quantum circuit for measuring an operator’s generalized expectation values
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We propose a general quantum circuit based on the SWAP test for measuring the quantity 〈ψ1|A|ψ2〉 of an
arbitrary operator A with respect to two quantum states |ψ1,2〉. This quantity is frequently encountered in many
fields of physics, and we dub it the generalized expectation as a two-state generalization of the conventional
expectation. We apply the circuit, in the field of non-Hermitian physics, to the measurement of generalized
expectations with respect to left and right eigenstates of a given non-Hermitian Hamiltonian. To efficiently
prepare the left and right eigenstates as the input to the general circuit, we also develop a quantum circuit
via effectively rotating the Hamiltonian pair (H, −H†) in the complex plane. As applications, we demonstrate
the validity of these circuits in the prototypical Su-Schrieffer-Heeger model with nonreciprocal hopping by
measuring the Bloch and non-Bloch spin textures and the corresponding winding numbers under periodic and
open boundary conditions (PBCs and OBCs), respectively. The numerical simulation shows that non-Hermitian
spin textures building up these winding numbers can be well captured with high fidelity, and the distinct
topological phase transitions between PBCs and OBCs are clearly characterized. We may expect that other
non-Hermitian topological invariants composed of non-Hermitian spin textures, such as non-Hermitian Chern
numbers, and even significant generalized expectations in other branches of physics would also be measured by
our general circuit, providing a different perspective to study novel properties in non-Hermitian as well as other
physics realized in qubit systems.

DOI: 10.1103/PhysRevA.107.052205

I. INTRODUCTION

Since the theoretical prediction and experimental obser-
vation of unique features in non-Hermitian systems [1,2],
such as the parity-time-reversal symmetry breaking [3–8], the
breakdown of conventional bulk-boundary correspondence
[9–26], and the exceptional points (EPs) [2,27,28], the non-
Hermitian physics has been attracting increasing attention.
Many non-Hermitian phenomena have been explored in vari-
ous quantum platforms, including quantum optics [11,29,30],
quantum spin systems [31–33], ultracold atoms [7,8,34–40],
and so on. However, none of these studies has discussed the
direct measurement of the non-Hermitian generalization of
the expectation value, 〈ψL| A |ψR〉, with A being an arbitrary
operator and |ψL,R〉 being a pair of left and right eigen-
states, dubbed dual eigenstates, of a given non-Hermitian
Hamiltonian, which is deeply involved in many definitions
of non-Hermitian quantities as the straightforward generaliza-
tion of the Hermitian counterparts [41]. Developing a method
of measuring quantities of this form is urgent and may be
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a prerequisite for studying in a universal manner the exotic
non-Hermitian phenomena in experiments.

One of the most interesting quantities involving
〈ψL| A |ψR〉 is the non-Hermitian topological invariant
[1], such as the non-Hermitian winding number [19].
For example, the Su-Schrieffer-Heeger (SSH) model [42]
with nonreciprocal hopping is a prototypical non-Hermitian
topological model; the difference between it and its Hermitian
counterpart is reflected by the winding number defined with
the dual eigenstates [41]. Existing works try to establish
relations between this non-Hermitian winding number and
the experimentally measurable expectation values to figure it
out indirectly. It was shown that the winding number can
be calculated by the dynamic winding numbers, defined
by the integral of the long-time average of measurable
expectation values [43]. On the other hand, the authors of
Ref. [33] reparametrize the non-Hermitian Hamiltonian and
use the measurable expectation values to fit the parameters;
the winding number is reconstructed by the parameters.
The limitation of these works is the lack of generality for
measuring the quantity 〈ψL| A |ψR〉, and the relations they
found may just be available in special cases.

Furthermore, a quantity such as 〈ψL| A |ψR〉 is not only
restricted within the non-Hermitian physics if the dual
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system A: |ψ1〉

system B: |ψ2〉

ancilla: |0〉

|Ψ0〉

H

|Ψ1〉 |Ψ2〉
O

O′

σx,y

Input Operation Readout

FIG. 1. The general quantum circuit for measuring the gener-
alized expectation 〈ψ1|O|ψ2〉 scaled by 〈ψ1|O′|ψ2〉. Two quantum
states |ψ1,2〉 are assumed to be prepared by other methods as in-
put in systems A and B, respectively, each of which consists of n
qubits. The ancilla qubit is initialized to |0〉. The successive opera-
tions include a Hadamard gate (denoted by H) on the ancilla and a
controlled-SWAP (Fredkin) gate with the ancilla as the control qubit.
O and O′ denote the experimentally accessible Hermitian operators.
σx,y are two operators of Pauli matrices. The details of the readout
process are given in Appendix B.

eigenstates are relaxed to two arbitrary quantum states |ψ1,2〉,
i.e., 〈ψ1|A|ψ2〉, which we dub the generalized expectation of
A in the following as a two-state generalization of the con-
ventional expectation. Quantities in the form of a generalized
expectation are ubiquitous in quantum physics, endowed with
distinct meanings in different fields of physics [44], such
as the overlap integral of two states, matrix elements of an
operator, scattering amplitudes, and the Green’s function or
Feynman propagator in quantum field theory. Since direct
measurement of them is outside of the conventional formal-
ism, e.g., the projective (von Neumann) measurement [45],
some indirect methods have been proposed, such as the SWAP

test [46], weak measurement [47], and quantum circuits for
simulating the correlation function [48–50]. However, these
proposals are still only valid for specific situations; that is,
|ψ1,2〉 cannot be arbitrary. A general scheme for measuring
generalized expectations remains to be settled even in broader
fields of quantum physics.

To deal with the measurement of 〈ψ1| A |ψ2〉, we propose
a general circuit based on the SWAP test [46] in Fig. 1 to
directly capture the real and imaginary parts of the gener-
alized expectation. Meanwhile, to apply the general circuit
to 〈ψL| A |ψR〉 in non-Hermitian systems, a quantum circuit
(Fig. 2) for efficiently preparing the dual eigenstates of a given
non-Hermitian Hamiltonian as the input of the general circuit
is also developed with the aid of the dilation method [31].
By numerically simulating these circuits in the nonreciprocal
SSH model, we successfully obtain the Bloch and non-Bloch
spin textures and the corresponding winding numbers under
periodic and open boundary conditions (PBCs and OBCs),
respectively, which demonstrates the validity of our circuits.

The paper is organized as follows. The general quantum
circuit for measuring generalized expectations is proposed in
Sec. II. Specially for non-Hermitian systems, the quantum
circuit for preparing the dual eigenstates of a non-Hermitian
Hamiltonian is developed in Sec. III. In Sec. IV, we apply
these circuits to the nonreciprocal SSH model and numer-
ically simulate the measurement of Bloch and non-Bloch
spin textures and the winding numbers. Section V provides a
conclusion.

|ψR(0)〉

ancilla: |1〉

|ψL(0)〉

ancilla: |1〉

Y(θ)

Y(θ)

X(π/2)

X(π/2)

X(−π/2)

X(−π/2)

|ψR(T )〉

|ψL(T )〉

P0

P0

αH ⇒ HR(t)

−α∗H† ⇒ HL(t)

FIG. 2. The quantum circuit of preparing a pair of dual eigen-
states of a given non-Hermitian Hamiltonian H , as the input of the
general circuit in Fig. 1. The target right and left eigenstates of
H can be reached by long-time evolutions under αH and −α∗H †,
respectively. The selection of the complex multiplier α depends
on the specific case. HR,L (t ) are dilated Hermitian Hamiltonians
in the dilation method, determining αH and −α∗H †, respectively.
P0 = |0〉〈0| is a projection operator on state |0〉 in the ancillas for
postselection. Other notations are explained in the main text.

II. A GENERAL MEASUREMENT CIRCUIT FOR
GENERALIZED EXPECTATIONS

Our aim is to measure the quantity, 〈ψ1|A|ψ2〉, of an arbi-
trary operator A with respect to two quantum states |ψ1〉 and
|ψ2〉, dubbed a generalized expectation of A, which reduces to
the conventional expectation when the two states are identical,
i.e., |ψ1〉 = |ψ2〉. Because any operator can be decomposed
into Hermitian operators, A = ( A+A†

2 ) + i( A−A†

2i ), we just need
to propose a quantum circuit to measure the generalized ex-
pectation of a Hermitian operator, i.e., 〈ψ1|O|ψ2〉, where O
represents an experimentally accessible, Hermitian operator.

Figure 1 shows the quantum circuit for measuring
〈ψ1|O|ψ2〉, which is the main result of this paper. Supposing
that |ψ1,2〉 are obtained, this circuit consists of systems A and
B, each of which is represented by n qubits, and an ancilla
qubit. Firstly, the two states |ψ1,2〉 are put into systems A
and B, respectively, and the ancilla qubit is initialized to |0〉,
yielding a product state

|�0〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ |0〉 (1)

as an initial state.
Secondly, by applying a Hadamard gate to the ancilla, and

then a controlled-SWAP (Fredkin) gate with the ancilla being
the control qubit, we obtain successively

|�1〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ 1√
2

(|0〉 + |1〉), (2)

|�2〉 = 1√
2

(|ψ1〉 ⊗ |ψ2〉 ⊗ |0〉 + |ψ2〉 ⊗ |ψ1〉 ⊗ |1〉). (3)

Finally, the operator O and an ancillary Hermitian operator
O′ are introduced to systems A and B, respectively. Because of
the Hermiticity of O and O′, we obtain the following relations
(see Appendix A for the detailed derivation):

〈�2|O ⊗ O′ ⊗ σx|�2〉
〈�2|O′ ⊗ O′ ⊗ σx|�2〉 = Re

( 〈ψ1|O|ψ2〉
〈ψ1|O′|ψ2〉

)
,

〈�2|O ⊗ O′ ⊗ σy|�2〉
〈�2|O′ ⊗ O′ ⊗ σx|�2〉 = Im

( 〈ψ1|O|ψ2〉
〈ψ1|O′|ψ2〉

)
,

(4)
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where σx,y are two operators of Pauli matrices. Assuming
that O and O′ are experimentally accessible, from Eq. (4) the
generalized expectation 〈ψ1|O|ψ2〉 scaled by 〈ψ1|O′|ψ2〉 �= 0
can be figured out by measuring the traditional expectations
[left-hand side of Eq. (4)] in experiment. Based on current
experiment scales [51], this general measurement quantum
circuit in Fig. 1 can be applied to the qubit systems with states
and operators being composed of up to ∼50 qubits of each.
See Appendix B for details of the measurement.

For convenience, O′ can be set as an identity operator, and
the scaling factor 〈ψ1|O′|ψ2〉 reduces to 〈ψ1|ψ2〉, which is
usually not equal to 0. Sometimes, if the two states are orthog-
onal, i.e., 〈ψ1|ψ2〉 = 0, O′ should be properly selected such
that 〈ψ1|O′|ψ2〉 �= 0, and the generalized expectation with
respect to these two orthogonal states can also be measured
only up to a constant.

III. PREPARATION FOR DUAL EIGENSTATES OF A
NON-HERMITIAN HAMILTONIAN

For different purposes, we are interested in various quanti-
ties with the form of a generalized expectation. In the context
of non-Hermitian physics, the generalized expectation of a
Hermitian operator O with respect to a pair of dual eigenstates
|ψR,L〉 is defined as

〈O〉NH ≡ 〈ψL|O|ψR〉
〈ψL|ψR〉 , (5)

which usually emerges to characterize important non-
Hermitian quantities. Here, |ψR〉 is one right eigenstate of
a given non-Hermitian Hamiltonian H with the eigenenergy
E , and 〈ψL| is the corresponding left eigenvector of H , i.e.,
H |ψR〉 = E |ψR〉 and H†|ψL〉 = E∗|ψL〉; |ψR,L〉 form a pair
of dual eigenstates of H . To measure 〈O〉NH, according to
Eq. (4), we just need to prepare |ψ1,2〉 = |ψL,R〉 as the input
states of the general circuit in Fig. 1, and O′ is set as the
identity operator.

Contrary to the adiabatic-evolution method of generating
eigenstates of a given Hermitian Hamiltonian, the amplifying
and decaying feature, imprinted in complex eigenenergies, of
non-Hermitian Hamiltonians offers a more convenient prin-
ciple to prepare eigenstates [33,52]: If some eigenenergies of
a non-Hermitian Hamiltonian H have nonvanishing imaginary
parts, the long-time nonunitary evolution will lead an arbitrary
initial state that is a superposition of these eigenstates to the
state composed of the eigenstates with the largest imaginary
part of the eigenenergies. Therefore, with this principle, the
dual eigenstates |ψR〉 and |ψL〉 should be obtained by respec-
tive evolutions under H and −H†, of which the eigenvalues, E
and −E∗, can have the largest imaginary parts simultaneously.
In the same spirit, when the eigenenergies of the target dual
eigenstates are purely real, we are able to use the Hamiltonian
pair (αH,−α∗H†) with a complex multiplier α effectively
rotating the original Hamiltonians in the complex plane to
have good control over the evolution.

To experimentally implement a quantum evolution of
a non-Hermitian system, several methods are proposed
[31,32,53–55]. Here, we use the dilation method developed by

Wu and co-workers [31,32] with the demanded (αH,−α∗H†)
being the target effective non-Hermitian Hamiltonian pair (see
Appendix C for details of the dilation method). Figure 2
sketches the quantum circuit for preparing a pair of dual
eigenstates of a given non-Hermitian Hamiltonian H . Two
initial states |ψR,L(t = 0)〉 are input to the circuits with both
ancillas being set to |1〉. After successively applying Y(θ )
and X(π/2), which are qubit rotations about the y and x
axes by angles θ = 2 arctan η0 (where η0 is a parameter of
the dilation method, depending on specific Hamiltonians; see
Appendix C for details) and π/2, to the ancillas, the qubits
evolve under the dilated Hermitian Hamiltonian HR,L(t ), de-
rived by αH and −α∗H†, respectively. With X(−π/2) being
applied to each ancilla at the end of the evolution, the final
states |ψR,L(t = T → ∞)〉 → |ψR,L〉, where T represents the
evolution time, are just the demanded pair of dual eigenstates
when the ancillas are measured to be |0〉. In principle, any
nondegenerate eigenstates can be prepared by this method.

IV. APPLICATIONS TO NON-HERMITIAN WINDING
NUMBERS

In this section, we take the pedagogical SSH model with
nonreciprocal hopping [9,16,19] as an example and apply our
proposed circuits of Figs. 1 and 2 to the measurement of
non-Hermitian spin textures and winding numbers, including
Bloch spin textures and winding numbers under PBCs and
non-Bloch spin textures and winding numbers under OBCs,
which are much different from their Hermitian counterparts.

A. Bloch winding numbers

The Hamiltonian of the nonreciprocal SSH model under
PBCs in k space reads

H (k) =
[

0 t1 − δ + t2e−ik

t1 + δ + t2eik 0

]
, (6)

where t1 ± δ are the nonreciprocal intracell hopping ampli-
tudes and t2 is the reciprocal intercell hopping amplitude;
all the parameters are real. In terms of Pauli matri-
ces, H (k) = d(k) · σ, where σ = (σx, σy, σz ) is a vector
of Pauli matrices and d(k) = [dx(k), dy(k), dz(k)] = (t1 +
t2 cos k, t2 sin k − iδ, 0) can be regarded as an effective com-
plex magnetic field.

The two eigenenergies of H (k) read E±(k) = ±d (k) =
±

√
d2

x (k) + d2
y (k) + d2

z (k), and the corresponding right and
left eigenstates are |ψR,L

± (k)〉. With the pair of dual eigenstates
labeled by +, the Bloch spin texture in this non-Hermitian
model can be defined as

n(k) ≡ 〈σ(k)〉NH = 〈ψL
+(k)|σ|ψR

+(k)〉
〈ψL+(k)|ψR+(k)〉 , (7)

which can also be expressed in terms of another pair of dual
eigenstates |ψR,L

− (k)〉. This formula follows the structure of
the generalized expectation, so we can measure it using our
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proposed measurement circuit of Fig. 1 with the replacement
of O by σ and O′ by the identity matrix in Eq. (4), as long as
the dual eigenstates |ψR,L

+ (k)〉 as the input are well prepared,
and 〈ψL

+(k)|ψR
+(k)〉 �= 0, which excludes the EPs; the cases

for EPs and points nearby are discussed at the end of this
section.

For the non-Hermitian model (6), the pair of dual
eigenstates |ψR,L

+ (k)〉 at each k can be obtained follow-
ing the recipe in Sec. III by evolving an initial state
|ψR,L(t = 0)〉 = |0〉 under H (k) and −H†(k) (α = 1), re-
spectively, if Im{E+(k)} > Im{E−(k)}, and otherwise, under
−H (k) and H†(k) (α = −1), respectively, if Im{E+(k)} <

Im{E−(k)}; when Im{E+(k)} is close to 0, the measurement
accuracy of the spin texture n(k) can be improved by adjusting
α to ensure Im{αE+(k)} > Im{αE−(k)}. With the prepared
dual eigenstates, the general circuit of Fig. 1 is applied; the
details of the readout process are given in Appendix B. Thus,
according to Eq. (4), the non-Hermitian spin textures can be
obtained.

With the measured spin texture n(k), the non-Hermitian
Bloch winding number, defined as [19]

wB = 1

2π

∫ π

−π

∂kφ(k) dk, (8)

can be recast by the complex angle φ(k) ≡
tan−1[dy(k)/dx(k)] = tan−1[ny(k)/nx(k)]. For the Hermitian
case (δ = 0), this winding number classifies a topological
phase with wB = 1 and a topologically trivial phase
with wB = 0 [56]. However, the non-Hermitian case
(δ �= 0) has three topologically distinct phases [19]:
(1) wB = 1, for |t1| + |δ| < |t2|; (2) wB = 1/2, for
||t1| − |δ|| < |t2| < |t1| + |δ|, which has no counterpart
in Hermitian systems; and (3) wB = 0, for ||t1| − |δ|| > |t2|.

To demonstrate the validity of our scheme and the accuracy
of the preparation for dual eigenstates, we numerically sim-
ulate our quantum circuits and calculate the Bloch winding
numbers. The results are shown in Fig. 3. When the evolution
time takes the order of T = 10/t2, the dual eigenstates |ψR,L

+ 〉
are well captured by the final states |ψR,L(t = T )〉 with high
accuracies in terms of population [Fig. 3(a)] and with high
fidelities [Fig. 3(b)]. The spin textures nx,y(k) calculated using
the final states coincide very well with the analytical results
[Fig. 3(c)], and thus the Bloch winding numbers wB approach
the expected values when the sampling number N becomes
larger and larger [Fig. 3(d)]. The topological phase transitions
are also reflected near the points t1/t2 = 0.5 and 1.5.

Here, we directly perform the nonunitary evolutions in our
numerical calculations without using the dilation method, be-
cause the dilated Hamiltonians HR,L[k(t )] need be fine-tuned
case by case for thousands of sampling points, but the validity
of the dilation method is demonstrated for some instances
in Appendix C. Because the measurement up to now does
not involve EPs except the transition points, we can safely
remove O′ in Eq. (4) due to 〈ψL

n |ψR
n 〉 �= 0. At or near EPs, the

orthogonality of dual eigenstates may fail the measurement
due to the vanishing of the denominator in Eq. (5). For these
scenarios, one way is to find a simple operator O′ such that
〈ψL

n |O′|ψR
n 〉 �= 0 and the measured spin texture is the same

up to a scaling factor; the other way is to set O and O′ as σy

(a)

(b)

(c)

(d)

I

II

III

FIG. 3. (a) and (b) Evolution of the population and the fidelity
at k = π/2, both of which converge to the demanded pair of dual
eigenstates (dashed lines). The left (t1/t2 = 0.2), middle (t1/t2 = 1),
and right (t1/t2 = 1.8) panels correspond to the circled points I, II,
and III in (d), respectively. (c) The spin textures generated by the
analytical calculation (lines) and the numerical circuit simulation
(symbols). The blue and orange colors denote nx (k) and ny(k), re-
spectively; the solid (dashed) lines and the crosses (circles) denote
the real (imaginary) parts of nx (k), and the dash-dotted (dotted) lines
and the pluses (squares) denote the real (imaginary) parts of ny(k).
(d) The Bloch winding numbers with different sampling numbers N .
The data in (c) and (d) are taken at the evolution time T = 10/t2. The
parameter δ/t2 = 0.5 for all figures.

and σx, respectively, to directly measure the angle φ(k) deter-
mined by the ratio ny(k)/nx(k) that bypasses the orthogonal
condition.

B. Non-Bloch winding numbers

The existence of topological edge states localized at the
ends of the non-Hermitian SSH chain under OBCs cannot
be correctly predicted by the Bloch winding number calcu-
lated under PBCs, which is the phenomenon of breakdown of
the bulk-boundary correspondence in non-Hermitian systems
[9,12,13,16]. This is due to the non-Hermitian skin effect
[17] that has no Hermitian counterpart. Yao and Wang [16]
proposed a non-Bloch winding number defined in the general-
ized Brillouin zone (GBZ) under OBCs, successfully restoring
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the correspondence. Using our proposed circuit, we can also
measure this important non-Hermitian quantity.

The generalized Brillouin zone is defined by a complex
variable β with a modulus |β| ≡ r �= 1 in general. After re-
placing eik in Eq. (6) by β, the non-Bloch version of the
Hamiltonian reads

H (β ) =
[

0 t1 − δ + β−1t2
t1 + δ + βt2 0

]
. (9)

For this nonreciprocal SSH model, we can make the
parametrization β ≡ reik with r =

√
| t1+δ

t1−δ
| and k being

a real parameter that is similar to the Bloch wave
number. Thus β can take values in a nonunit cir-
cle in the complex plane. Like the Bloch Hamilto-
nian, the non-Bloch Hamiltonian (9) can also be written
as H (β ) = d(β ) · σ, where d(β ) = [dx(β ), dy(β ), dz(β )] =
(t1 + β+β−1

2 t2,
β−β−1

2i t2 − iδ, 0). The non-Bloch winding num-
ber has the same form as the Bloch one, yielding

wN = 1

2π

∫
Cβ

∂βφ(β ) dβ = 1

2π

∫ π

−π

∂kφ[β(k)] dk, (10)

where φ(β ) ≡ tan−1[dy(β )/dx(β )] = tan−1[ny(β )/nx(β )] is
determined by the non-Bloch spin texture n(β ) that is of the
same form as Eq. (7) with only the replacement of k by β. In
view of this non-Bloch winding number, this nonreciprocal
SSH model has two topologically distinct phases: wN = 1
for |t2

1 − δ2| < t2
2 , which supports topological edge states, and

otherwise, wN = 0, where there is no edge state.
Similar circuits are used as in the previous Bloch part

for preparing dual eigenstates |ψR,L
+ (β )〉 and measuring the

spin textures n(β ), and then, non-Bloch winding numbers can
be recast likewise. The simulation results with high accu-
racy compared with the analytical ones are shown in Fig. 4
using the same system parameters as those in Fig. 3. The
main difference comes from the reality of the spectrum at
certain parameters (e.g., t1/t2 = 1.6), and a proper multiplier
α should be introduced to make the preparation of dual eigen-
states more efficient, which can be seen by comparing the
middle and right panels of Figs. 4(a) and 4(b). In Fig. 4(d),
one can see the topological phase transition near t1/t2 =
1.2, different from the characterization of Bloch winding
numbers.

V. CONCLUSION

We propose a quantum circuit (Fig. 1) for measuring an
expectationlike quantity, 〈ψ1|O|ψ2〉, of a Hermitian operator
O with respect to two given quantum states |ψ1〉 and |ψ2〉, and
thus the general quantity, 〈ψ1|A|ψ2〉, dubbed the generalized
expectation, of an arbitrary operator A. With the aid of the
operators σx and σy acting on the ancilla of the circuit, both
real and imaginary parts of the generalized expectation can
be obtained via the experimentally accessible conventional
expectations, i.e., the left-hand side of Eq. (4), which are the
main results of this paper.

(a)

(b)

(c)

(d)

II

I

FIG. 4. (a) and (b) Evolution of the population and the fidelity
at k = π/2. The left panel (t1/t2 = 0.4) corresponds to the circled
point I in (d), and the middle and right panels (t1/t2 = 1.6) both
correspond to the circled point II in (d). Since the model has a
purely real spectrum when t1/t2 = 1.6, we demonstrate the validity
of preparation method in Sec. III with α = 1 and eiπ/16 in the middle
and right panels, respectively. (c) The spin textures and (d) the non-
Bloch winding numbers; the lines and symbols in (c) have the same
meaning as in Fig. 3(c). Other parameters are also the same as those
in Fig. 3.

Then, we apply the general circuit to the measurement of
generalized expectations in non-Hermitian systems, 〈O〉NH,
where dual eigenstates of non-Hermitian Hamiltonians are
usually used; therefore we also propose an efficient circuit
(Fig. 2), in light of the dilation method [31,32], to prepare
the dual eigenstates by effectively rotating the Hamiltonian in
the complex plane. As an application, we take the nonrecip-
rocal SSH model as an example and numerically simulate the
measurement using the proposed circuits, obtaining the Bloch
and non-Bloch spin textures and the corresponding winding
numbers under PBCs and OBCs, respectively. The results are
as good with high fidelity as expected by the theories (Figs. 3
and 4).

In principle, other non-Hermitian topological invariants
composed of non-Hermitian spin textures, e.g., non-Hermitian
Chern numbers [57,58] and Wilson loops [59], can also be
measured following our schemes. In the broader settings of
physics, the specific meaning of the generalized expectation,
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〈ψ1|A|ψ2〉, such as the overlap integral, correlation function,
scattering amplitude, etc., endows our circuits with more po-
tential applications.
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APPENDIX A: DERIVATION OF EQUATION (4)

In this Appendix, we give the details of derivation of
Eq. (4) in the main text.

Substituting |�2〉 of Eq. (3) in the main text into the fol-
lowing quantities, we have

〈�2|O ⊗ O′ ⊗ σx|�2〉
= 1

2 (〈ψ1|O|ψ2〉 〈ψ2|O′|ψ1〉 + 〈ψ2|O|ψ1〉 〈ψ1|O′|ψ2〉)

= Re(〈ψ1|O|ψ2〉 〈ψ2|O′|ψ1〉), (A1)

〈�2|O ⊗ O′ ⊗ σy|�2〉

= 1

2i

(〈ψ1|O|ψ2〉 〈ψ2|O′|ψ1〉 − 〈ψ2|O|ψ1〉 〈ψ1|O′|ψ2〉
)

= Im(〈ψ1|O|ψ2〉 〈ψ2|O′|ψ1〉). (A2)

When O = O′, it is found that

〈�2|O′ ⊗ O′ ⊗ σx|�2〉 = |〈ψ1|O′|ψ2〉|2 � 0, (A3)

〈�2|O′ ⊗ O′ ⊗ σy|�2〉 = 0. (A4)

We can choose O′ such that |〈ψ1|O′|ψ2〉|2 �= 0, and then
Eq. (4) is obtained as follows:

〈�2|O ⊗ O′ ⊗ σx|�2〉
〈�2|O′ ⊗ O′ ⊗ σx|�2〉 = Re[〈ψ1|O|ψ2〉〈ψ2|O′|ψ1〉]

|〈ψ1|O′|ψ2〉|2 = Re

( 〈ψ1|O|ψ2〉
〈ψ1|O′|ψ2〉

)
,

〈�2|O ⊗ O′ ⊗ σy|�2〉
〈�2|O′ ⊗ O′ ⊗ σx|�2〉 = Im[〈ψ1|O|ψ2〉〈ψ2|O′|ψ1〉]

|〈ψ1|O′|ψ2〉|2 = Im

( 〈ψ1|O|ψ2〉
〈ψ1|O′|ψ2〉

)
.

(A5)

APPENDIX B: DETAILS OF MEASUREMENT

In this Appendix, we demonstrate how to measure
〈�2|O ⊗ O′ ⊗ σx,y|�2〉, which is the target observable of the
general circuit of Fig. 1 in the main text.

Define the projection operators P0 = |0〉〈0| and P1 = |1〉〈1|,
where |0〉 and |1〉 are the two eigenstates of Pauli operator σz.
The expectation of σz can be written as

〈σz〉 ≡ 〈ψ |σz|ψ〉 = 〈ψ |P0 − P1|ψ〉
= | 〈0|ψ〉 |2 − | 〈1|ψ〉 |2 ≈ (N0 − N1)/N, (B1)

where we use Ns (s = 0, 1) to represent the number of times
the eigenstate |s〉 is detected when measuring the state |ψ〉,
and N = N0 + N1 is the total number of measurement times.
This equation means that the expectation of σz can be mea-
sured by counting N0 and N1.

An arbitrary Hermitian operator acting on a single qubit
can be written as d · σ + d0σ0, where d = (dx, dy, dz ) is a real-
valued vector with the norm defined by d , σ = (σx, σy, σz )
is the vector of Pauli operators, and σ0 represents the iden-
tity operator. With the help of a counterclockwise rotation
U(θ ) = e−i θ

2 û·σ of a qubit by an angle θ = arccos(d̂ · ẑ) ∈
[0, π ] about the axis û ≡ d̂ × ẑ/ sin θ , the Hermitian operator
can be rewritten as d · σ + d0σ0 = U†(dσz + d0σ0)U. With-
out loss of generality, an experimentally accessible Hermitian
operator acting on n qubits can be written in a compact form
as

O =
n⊗

i=1

(d · σ + d0σ0)i =
n⊗

i=1

[U†(dσz + d0σ0)U]i, (B2)

where the subscript i labels the operators acting on the ith
qubit, and the expectation of O with respect to an n-qubit state

|�〉 can be measured as

〈�|O|�〉 =
〈
� ′

∣∣∣∣∣
n⊗

i=1

(dσz + d0σ0)i

∣∣∣∣∣� ′
〉

=
n∏

i=1

(d〈σz〉′ + d0)i

≈
n∏

i=1

(
d

N ′
0 − N ′

1

N ′ + d0

)
i

, (B3)

where |� ′〉 = ⊗n
i=1 Ui|�〉 and the prime symbol denotes the

quantities with respect to |� ′〉.
For the readout state |�2〉 of Eq. (3) in the main text, which

consists of n qubits in each of systems A and B, and one
ancilla qubit labeled by a, applying Eq. (B3) yields

〈�2|O ⊗ O′ ⊗ σx,y|�2〉

≈
n∏

i=1

(
d

N ′
0 − N ′

1

N ′ + d0

)
i,A

(
d

N ′
0 − N ′

1

N ′ + d0

)
i,B

×
(

d
N ′

0 − N ′
1

N ′ + d0

)
a

, (B4)

where |� ′
2〉 = ⊗n

i=1 Ui,A
⊗n

i=1 Ui,B ⊗ Ua|�2〉. Here, n can
take up to ∼50, because the scale of the current quantum
platform can reach to about 100 qubits [51]. Because of the
direct-product form, the measurement for each qubit can be
performed in parallel.

In the case of the nonreciprocal SSH model as an applica-
tion in the main text, for the numerators on the left-hand side
of Eq. (4), we have n = 1, O = σ, and O′ = σ0, and Eq. (B4)
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reduces to 〈
�2

∣∣σ ⊗ σ0 ⊗ σx,y

∣∣�2
〉

≈
(

N ′
0 − N ′

1

N ′

)
i,A

(
N ′

0 − N ′
1

N ′

)
a

, (B5)

where |� ′
2〉 = UA ⊗ Ua|�2〉 with UA,a depending on the

implementing operators, i.e., UA,a(θ ) = Y(−π/2) for σx,
X(π/2) for σy, and I (no rotation) for σz.

For the denominators on the left-hand side of Eq. (4), we
have n = 1 and O = O′ = σ0, and Eq. (B5) reduces to

〈�2

∣∣σ0 ⊗ σ0 ⊗ σx,y

∣∣�2〉 ≈
(

N ′
0 − N ′

1

N ′

)
a

, (B6)

where |� ′
2〉 = Ua|�2〉 with Ua taking the same form as for the

numerators.
In a word, after obtaining the final state |�2〉, we need to

first rotate it to |� ′
2〉 in the (2n + 1)-qubit space according

to the expected measurement operators; then, we count the
number of times that |0〉 and |1〉 are detected for each qubit;
and finally, we can obtain the target generalized expectation
through Eq. (4) in the main text.

APPENDIX C: DILATION METHOD

In this Appendix, we briefly outline the idea of the dilation
method developed by Wu et al. [31] through two instances
of the nonreciprocal SSH model under PBCs and OBCs. This
method can be implemented in several quantum systems, such
as nitrogen vacancy (NV) centers [31,32] and superconduct-
ing qubit systems [60].

To find a state |ψ (t )〉 of a time-dependent non-Hermitian
Hamiltonian H (t ), i.e.,

i
d

dt
|ψ (t )〉 = H (t ) |ψ (t )〉 , (C1)

we can integrate it into a dilated state |�(t )〉 of a composite
system by introducing an ancilla qubit as follows:

|�(t )〉 = |ψ (t )〉 ⊗ |−〉 + ebtη(t ) |ψ (t )〉 ⊗ |+〉 , (C2)

where η(t ) is an appropriate linear operator, b is a coeffi-
cient to offset the amplitude of |ψ (t )〉 [32], and |−〉 = (|0〉 −
i |1〉)/

√
2 and |+〉 = (−i |0〉 + |1〉)/

√
2 form an orthonormal

basis of the ancilla qubit. If we can attain the dilated state
|�(t )〉 in experiment, the state for which we aim, |ψ (t )〉, can
be easily measured by postselecting the ancilla state |−〉.

The dilated state |�(t )〉 can be evolved by a Hermitian
time-dependent Hamiltonian H(t ) in the composite system,
i.e.,

i
d

dt
|�(t )〉 = H(t ) |�(t )〉 . (C3)

To make H(t ) accessible in experiment (in the case of NV
centers, for example), we can choose

H(t ) = (t ) ⊗ σ0 + �(t ) ⊗ σz, (C4)

FIG. 5. Comparison of the dilated method governed by H(t ) and
the nonunitary dynamics governed by H (t ). The upper and lower
panels correspond to the circled point III in Fig. 3(d) and the circled
point II in Fig. 4(d) of the main text with parameters {η0, b} =
{0.8, 0.23} and {0.7, 0.35}, respectively. The left (middle) panels
show the components of the dilated Hamiltonians HR(t ) [HL (t )].
The legends in the middle panels also apply to the corresponding
left panels. The right panels compare the dilation method (triangles)
with the effective non-Hermitian one (lines) through the evolution of
the population |〈0|ψR,L (t )〉|2.

where

(t ) =
{

H ′(t ) +
[

i
d

dt
η(t ) + η(t )H ′(t )

]
η(t )

}
M−1(t ),

�(t ) = i

[
H ′(t )η(t ) − η(t )H ′(t ) − i

d

dt
η(t )

]
M−1(t ), (C5)

with
H ′(t ) = H (t ) − ibI, η(t ) =

√
M(t ) − I,

M(t ) = T e−i
∫ t

0 H ′†(t )dt M(0)T̄ ei
∫ t

0 H ′(t )dt . (C6)

We choose M(0) = η(0)2 + I , where I is the identity operator.
The setting of η(0) = η0I ensures det[M(t ) − I] > 0 during
the whole evolution. Using H ′(t ) = H (t ) − ibI to generate
H(t ) can reduce the experimental difficulty [32], where H (t )
is just our target non-Hermitian Hamiltonian.

To demonstrate the validity of the dilation method in our
examples in the main text, we generate the dilated Hamilto-
nian with t1/t2 = 1.8 (1.6) under PBCs (OBCs), δ/t2 = 1/2,
and k = π/2 as the test bed. Choosing η0 = 0.8 and b =
0.23 under PBCs (η0 = 0.7, b = 0.35, and α = eiπ/16 under
OBCs), each component of HR,L(t ), defined as (t )/t2 =∑

i i(t )σi, �(t )/t2 = ∑
i �i(t )σi, is plotted in the left and

middle panels of Fig. 5. To show the validity of the dilation
method, the right panels of Fig. 5 compare the population
evolutions |〈0|ψR,L(t )〉|2 generated by the dilation method of
HR,L(t ) (triangles) and by the effective non-Hermitian method
of H (t ) (lines), respectively, which shows that the dilation
method is reliable.
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S. Fan, Science 371, 1240 (2021).

[31] Y. Wu, W. Liu, J. Geng, X. Song, X. Ye, C.-K. Duan, X. Rong,
and J. Du, Science 364, 878 (2019).

[32] W. Liu, Y. Wu, C.-K. Duan, X. Rong, and J. Du, Phys. Rev. Lett.
126, 170506 (2021).

[33] W. Zhang, X. Ouyang, X. Huang, X. Wang, H. Zhang, Y. Yu, X.
Chang, Y. Liu, D.-L. Deng, and L.-M. Duan, Phys. Rev. Lett.
127, 090501 (2021).

[34] D.-W. Zhang, Y.-Q. Zhu, Y. X. Zhao, H. Yan, and S.-L. Zhu,
Adv. Phys. 67, 253 (2018).

[35] W. Gou, T. Chen, D. Xie, T. Xiao, T.-S. Deng, B. Gadway, W.
Yi, and B. Yan, Phys. Rev. Lett. 124, 070402 (2020).

[36] L.-Z. Tang, L.-F. Zhang, G.-Q. Zhang, and D.-W. Zhang, Phys.
Rev. A 101, 063612 (2020).

[37] D.-W. Zhang, L.-Z. Tang, L.-J. Lang, H. Yan, and S.-L. Zhu,
Sci. China Phys. Mech. Astron. 63, 267062 (2020).

[38] L.-Z. Tang, G.-Q. Zhang, L.-F. Zhang, and D.-W. Zhang, Phys.
Rev. A 103, 033325 (2021).

[39] L.-F. Zhang, L.-Z. Tang, Z.-H. Huang, G.-Q. Zhang, W. Huang,
and D.-W. Zhang, Phys. Rev. A 103, 012419 (2021).

[40] L.-Z. Tang, S.-N. Liu, G.-Q. Zhang, and D.-W. Zhang, Phys.
Rev. A 105, 063327 (2022).

[41] N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge
University Press, Cambridge, 2011).

[42] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42,
1698 (1979).

[43] B. Zhu, Y. Ke, H. Zhong, and C. Lee, Phys. Rev. Res. 2, 023043
(2020).

[44] J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics,
2nd ed. (Cambridge University Press, Cambridge, 2017).

[45] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information: 10th Anniversary Edition (Cambridge
University Press, Cambridge, 2010).

[46] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, Phys. Rev.
Lett. 87, 167902 (2001).

[47] J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W.
Boyd, Rev. Mod. Phys. 86, 307 (2014).

[48] G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, Phys.
Rev. A 64, 022319 (2001).

[49] J. S. Pedernales, R. Di Candia, I. L. Egusquiza, J. Casanova,
and E. Solano, Phys. Rev. Lett. 113, 020505 (2014).

[50] A. Francis, J. K. Freericks, and A. F. Kemper, Phys. Rev. B 101,
014411 (2020).

[51] Google Quantum AI, Nature (London) 614, 676 (2023).
[52] H. Wang, L.-J. Lang, and Y. D. Chong, Phys. Rev. A 98, 012119

(2018).
[53] D.-J. Zhang, Q.-h. Wang, and J. Gong, Phys. Rev. A 100,

062121 (2019).
[54] J. Wen, C. Zheng, X. Kong, S. Wei, T. Xin, and G. Long, Phys.

Rev. A 99, 062122 (2019).
[55] G.-L. Zhang, D. Liu, and M.-H. Yung, Sci. Rep. 11, 13795

(2021).
[56] S.-Q. Shen, Topological Insulators: Dirac Equation in Con-

densed Matters, Springer Series in Solid-State Sciences Vol.
174 (Springer, Berlin, 2012).

[57] T. Fukui, Y. Hatsugai, and H. Suzuki, J. Phys. Soc. Jpn. 74, 1674
(2005).

[58] D.-L. Deng, S.-T. Wang, and L.-M. Duan, Phys. Rev. A 90,
041601(R) (2014).

[59] T. Li, L. Duca, M. Reitter, F. Grusdt, E. Demler, M. Endres, M.
Schleier-Smith, I. Bloch, and U. Schneider, Science 352, 1094
(2016).

[60] S. Dogra, A. A. Melnikov, and G. S. Paraoanu, Commun. Phys.
4, 26 (2021).

Correction: The previously published Figs. 3(a) and 4(a) were
processed improperly during the final production cycle and
have been corrected.

052205-8

https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1038/nphys2927
https://doi.org/10.1103/PhysRevA.89.062102
https://doi.org/10.1038/s41467-019-08596-1
https://doi.org/10.1038/s41567-021-01491-x
https://doi.org/10.1103/PhysRevLett.116.133903
https://doi.org/10.1103/PhysRevLett.118.040401
https://doi.org/10.1038/nphys4204
https://doi.org/10.1088/2399-6528/aab64a
https://doi.org/10.1103/PhysRevB.97.121401
https://doi.org/10.1103/PhysRevLett.121.026808
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.121.136802
https://doi.org/10.1103/PhysRevX.8.031079
https://doi.org/10.1103/PhysRevA.97.052115
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevB.99.081103
https://doi.org/10.1103/PhysRevB.99.201103
https://doi.org/10.1103/PhysRevLett.125.126402
https://doi.org/10.1103/PhysRevLett.124.056802
https://doi.org/10.1103/PhysRevLett.125.226402
https://doi.org/10.1093/ptep/ptaa140
https://doi.org/10.1088/1751-8113/45/44/444016
https://doi.org/10.1126/science.aar7709
https://doi.org/10.1126/science.aaz8727
https://doi.org/10.1126/science.abf6568
https://doi.org/10.1126/science.aaw8205
https://doi.org/10.1103/PhysRevLett.126.170506
https://doi.org/10.1103/PhysRevLett.127.090501
https://doi.org/10.1080/00018732.2019.1594094
https://doi.org/10.1103/PhysRevLett.124.070402
https://doi.org/10.1103/PhysRevA.101.063612
https://doi.org/10.1007/s11433-020-1521-9
https://doi.org/10.1103/PhysRevA.103.033325
https://doi.org/10.1103/PhysRevA.103.012419
https://doi.org/10.1103/PhysRevA.105.063327
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevResearch.2.023043
https://doi.org/10.1103/PhysRevLett.87.167902
https://doi.org/10.1103/RevModPhys.86.307
https://doi.org/10.1103/PhysRevA.64.022319
https://doi.org/10.1103/PhysRevLett.113.020505
https://doi.org/10.1103/PhysRevB.101.014411
https://doi.org/10.1038/s41586-022-05434-1
https://doi.org/10.1103/PhysRevA.98.012119
https://doi.org/10.1103/PhysRevA.100.062121
https://doi.org/10.1103/PhysRevA.99.062122
https://doi.org/10.1038/s41598-021-93192-x
https://doi.org/10.1143/JPSJ.74.1674
https://doi.org/10.1103/PhysRevA.90.041601
https://doi.org/10.1126/science.aad5812
https://doi.org/10.1038/s42005-021-00534-2

