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The analysis of a continuous measurement record z(t ) poses a fundamental challenge in quantum measurement
theory. Different approaches were used in the past as records can, e.g., exhibit predominantly Gaussian noise,
telegraph noise, or clicks at random times. The last case may appear as photon clicks in an optical spin-noise
measurement at very low probe laser power. Here we show that such random-time quantum measurements can,
similarly to the first two cases, be analyzed in terms of higher-order temporal correlations of the detector output
z(t ) and be related to the Liouvillian of the measured quantum system. Our analysis in terms of up to fourth-
order spectra (quantum polyspectra) shows that this type of spectra reveals the same valuable information as
previously studied higher-order spectra in the case of the usual continuous quantum measurements. Surprisingly,
broadband system dynamics is revealed even for deliberately low average measurement rates. Many applications
are envisioned in high-resolution spectroscopy, single-photon microscopy, circuit quantum electrodynamics,
quantum sensing, and quantum measurements, in general.
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I. INTRODUCTION

Continuous quantum measurements comprise a large class
of experiments that include experiments of nanoelectron-
ics [1], optical spin-noise spectroscopy [2], circuit quantum
electrodynamics [3], quantum sensing [4], and many other
fields of physics. A clear understanding and modeling of
such experiments and their measurement record is a prereq-
uisite for uncovering information about a measured quantum
system. A theoretical treatment of measurement records is
challenging as they can present themselves in fundamen-
tally different ways including (i) mainly Gaussian noise, (ii)
switching behavior (telegraph noise), or (iii) occurrences of
peaks at random times. Case (i) is well known from spin-noise
spectroscopy where the shot noise of the probe laser domi-
nates the system-related signal [5–7]. Spin-noise experiments
were modeled by semiclassical Langevin theories [8], path-
integral approaches [9], and also via the stochastic master
equation [10]. Case (ii) is often observed in nanoelectronics
where, e.g., charge fluctuations lead to switching behavior
between different levels of the detector signal [11–13]. The
full counting statistics of switching events is the most promi-
nent theory for evaluating such measurement traces [14–16].
Case (iii) may occur in experiments where single photons
are detected by a photomultiplier or an avalanche photodiode.
Such a situation naturally occurs in spin-noise experiments at
very low probe-light levels. The random appearance of clicks
obeys (similar to radioactive decay) a Poisson distribution. Ef-
fectively, a probe photon interacts at random, almost discrete
times with the quantum system. The interaction with the sys-
tem can affect the polarization state of the photon and lead to
entanglement with the system. Consequently, the probe pho-
ton polarization contains some information on the system that
may be revealed in a measurement of the probe photon. Such
(indirect) random-time measurements of a quantum system

constitute an important class of experiments where a general
theory has been lacking so far. We will show that higher-order
correlations of the system dynamics can be recovered from
the detector output even if the average sampling rate is much
below the typical frequencies set by the system dynamics.

Our theory is based on the stochastic master equa-
tion (SME) for modeling the detector output z(t ) [17–25] and
on higher-order spectra of z(t ) [10,26]. In comparison with the
usual second-order spectra, the so-called quantum polyspectra
allow for a more elaborate characterization of quantum sys-
tems. We recently used quantum polyspectra to unify cases
(i) and (ii) in a single theory [27]. As a result, we were
able to extract valuable parameters of a measured quantum
system by comparing experimental and theoretical quantum
polyspectra. We show here that case (iii) can also be treated
within the quantum polyspectra approach by including the de-
tector physics into the master equation. This establishes a very
general framework for modeling and evaluating random-time
quantum measurements. Our theory goes beyond earlier ap-
proaches of treating randomly measured quantum dynamics.
Gross et al. derived a new effective SME for the random-time
regime, but did not attempt to develop a theory for the detector
output z(t ) and its polyspectra [28]. Ruskov et al. treated
only a two-level quantum system and calculated the second-
order spectrum of z(t ) establishing the equivalence with case
(i), which corresponds to a continuously measured system
[29]. Similarly, Li et al. simulated a frequency-dependent
higher-order cumulant of a randomly sampled two-level sys-
tem, but neither gave analytic expressions for the spectra nor
established a connection with the corresponding continuous
measurement [30].

In the following, we shortly review the quantum polyspec-
tra approach to continuous quantum measurements. We then
explicitly include the interaction of the measured system
with a randomly arriving probe system and the subsequent
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detection of the probe. Next, we calculate second-order
spectra for a random-in-time measured single electron spin
precessing in a magnetic field [case (iii)]. At increasing
average sampling rates, we find a transition to the quan-
tum Zeno regime. Eventually, we calculate second-, third-,
and fourth-order spectra of a nontrivial coupled spin sys-
tem demonstrating the appearance of additional and common
features compared to spectra of the usual continuous measure-
ment regime [case (i)].

II. QUANTUM POLYSPECTRA

The raw experimental detector output z(t ) is the central
quantity in the quantum polyspectra approach to continuous
quantum measurements. The approach relates correlations in
the measured detector output to theoretical predictions about
these correlations from a quantum theory [10,27]. Comparing
theoretical and experimental quantum polyspectra gives the
exciting opportunity to access parameters of the measured
system. The measured detector output z(t ) is intrinsically
noisy and must be evaluated with suitable statistical methods.
Brillinger’s polyspectra S(n)

z from classical signal processing

2πδ(ω1 + · · · + ωn)S(n)
z (ω1, . . . , ωn−1)

= Cn(z(ω1), . . . , z(ωn)), (1)

are an uncompromising approach to characterizing a stochas-
tic stationary process z(t ) [31]. They generalize the usual
second-order power spectrum of z(t ) to higher orders. They
are defined via nth-order cumulants Cn of the Fourier trans-
form, z(ω) = ∫

z(t )eiωt dt , of the detector output. Cumulants
of increasing order can be expressed in terms of prod-
ucts of moments starting with C2(x, y) = 〈xy〉 − 〈x〉〈y〉 and
C3(x, y, z) = 〈(x − 〈x〉)(y − 〈y〉)(z − 〈z〉)〉 becoming more in-
tricate for n � 4 [10,32]. The second-order spectrum is
identical to the power spectrum S(2)

z ∝ 〈z(ω)z∗(ω)〉 + · · · ,
where 〈· · · 〉 relates to an average over infinitely many pos-
sible outcomes of z(t ) and its Fourier transforms z(ω). In
case of a real-world experiment, S(2)

z needs to be estimated
from a finite amount of data (see [27], Appendix B). S(2)

z
exhibits, e.g., peaks at the precession frequencies of an elec-
tron spin when z relates to its orientation perpendicular to
the magnetic field. The bispectrum S(3)

z (ω1, ω2) is related to
〈z(ω1)z(ω2)z∗(ω1 + ω2)〉 and exhibits a nonvanishing imagi-
nary part for broken time-inversion symmetry. The bispectra
of continuous quantum measurements were previously used
in the context of quantum transport experiments in nanoelec-
tronics [1,27] and for the analysis of non-Gaussian dephasing
environments in circuit quantum electrodynamics (cQED)
[33]. The cut S(4)

z (ω1, ω2,−ω1) through the fourth-order spec-
trum (trispectrum) is related to 〈z(ω1)z∗(ω1)z(ω2)z∗(ω2)〉 −
〈z(ω2)z∗(ω2)〉〈z(ω1)z∗(ω1)〉 and can be interpreted as an in-
tensity correlation between two frequency contributions to
z(t ) [exact definition via Eq. (1)].

It is important to note that the second-order spectrum S(2)

of a continuous quantum measurement reveals only parts of
the information on a measured quantum system. It is known,
that the spectrum S(2) of telegraph noise of the in and out
tunneling of an electron to a quantum dot contains only infor-
mation on the sum of the two tunneling rates. A simultaneous
evaluation of S(2) and S(3) is necessary to obtain both tunneling

rates separately [27]. Similarly, the fourth-order spectrum S(4)

of a coupled spin-spin system was shown to depend very
sensitively on the symmetry of the spin coupling while S(2)

does not [10]. The quantum polyspectra of order n = 3 and
n = 4 are therefore an indispensable tool for a thorough in-
vestigation of quantum systems. The practical evaluation of
experimental polyspectra from a finite amount of data using
unbiased cumulant estimators and the fast Fourier transfor-
mation is described in Ref. [27]. The polyspectra of fifth or
higher order do not appear in the literature. The reason is
probably a large numerical effort for their calculation and
a strongly increasing noise of the measured cumulants for
higher orders [34]. Their determination may often yield no
meaningful results.

The quantum mechanical expression for S(n)
z for general

quantum systems up to order n = 4 were only recently derived
[10,26]. They directly connect the measurable polyspectra
of z(t ) with properties of the quantum system. This paved
the way for establishing an alternative evaluation scheme for
transport experiments spanning the full regime between Gaus-
sian and telegraph behavior of the detector output [27]. The
derivation of quantum polyspectra is based on the so-called
SME for the system density matrix ρ(t ) and the detector out-
put z(t ). The SME covers the quantum dynamics of the system
including external damping and measurement back-action.
The framework of the SME also gives an expression for the
time-dependent detector output. A continuous monitoring for
a measurement operator A yields a detector output [10,35]

z(t ) = β2Tr[ρ(t )(A + A†)/2] + β�(t )/2, (2)

where �(t ) = dW (t )/dt is white Gaussian noise with
〈�(t )�(t ′)〉 = δ(t − t ′) and the differential dW relates to
a stochastic Wiener process. The information on A there-
fore always comes with Gaussian background noise. The
relative background noise reduces for an increasing measure-
ment strength β. The system propagates during measurement
stochastically via (Ito calculus)

dρ = i

h̄
[ρ, H] dt +

∑
j

γ jD[d j](ρ) dt

+β2D[A](ρ) dt + βS[A](ρ) dW, (3)

where the Hamiltonian H governs the coherent evolution of
the system matrix ρ(t ). The djs are jump operators that enter
the SME via superoperators

D[d](ρ) = dρd† − (d†dρ + ρd†d )/2, (4)

that describe the damping of the system by the environment
D[d j](ρ) and by the measurement process itself β2D[A](ρ).

The last term in the SME describes via dW a stochastic
measurement back-action, where

S[A](ρ) = Aρ + ρA† − Tr[(A + A†)ρ]ρ (5)

is nonlinear in ρ. The SME was derived in various forms
and varying generality and was rediscovered several times in
literature [18–25]. An especially intuitive way of deriving the
SME was given by Gross et al. [28] and similarly by Atal et al.
[36,37]. They introduced a continuous sequence of two-level
quantum systems (qubits) that each weakly interact for a short
period with the system. They are initially prepared in an equal
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superposition of both states labeled −1 and 1. A projective
measurement into the basis states after interaction leads to
measurement results −1 or 1. Depending on the state of the
quantum system the interaction may lead to a slight tendency
towards the −1 or the 1 result thus revealing some information
on the system. Averaging several measurements in a finite
time interval leads to Gaussian noise in the measurement
record and some finite offset caused by the measured system.
These contributions are reflected in the expression for z(t ) by
the noise term β�(t )/2 and the offset term β2Tr[ρ(t )(A +
A†)/2], respectively. In the case of a spin-noise measurement,
the first term was interpreted as laser shot noise and the second
term as a Faraday-rotation signal of the laser polarization that
follows the dynamics of the observed spin [10]. Moreover,
the SME was shown to correctly describe the quantum sys-
tem dynamics also in the case of an increasing measurement
strength β. Strong measurements cause the system to quickly
collapse into an eigenstate of the measurement operator A
which can strongly suppress coherent dynamics and lead to
telegraph noise in z(t ). This so-called quantum Zeno effect
was discovered by Misra and later recovered within a SME
treatment [10,24,38]. It therefore did not come as a surprise
that it was possible to unify the weak and strong measurement
regimes of quantum transport into one theory starting from a
suitable SME [27].

In 2018, three groups independently found quantum me-
chanical expressions for multitime moments of z(t ) directly
from the SME [10,35,39]. The expressions are given in terms
of the system Liouvillian L[β]

L[β]ρ = i

h̄
[ρ, H] +

∑
j

γ jD[d j](ρ) + β2D[A](ρ) (6)

that covers via L[β]ρ dt all right-hand side (RHS) terms
of Eq. (3) that are linear in ρ [with the exception of the
stochastic back-action term βS[A](ρ) dW which is non-linear
in ρ]. Compact expressions are found after further defining
the system propagator G(τ ) = eLτ
(τ ) with the Heaviside
step function 
(τ ), the steady state ρ0 = G(∞)ρ(t ), and the
measurement super operator Ax = (Ax + xA†)/2 [10]. The
general multitime moments follow then from the SME with-
out any approximation as

〈z(tn) · · · z(t1)〉 = β2nTr[AG(tn − tn−1)A · · ·G(t2 − t1)Aρ0],

(7)

where time order tn > tn−1 > . . . > t1 is assumed. Quan-
tum mechanical expressions for multitime moments in the
form of Eq. (7) were given in the literature previously for
several special cases. As early as 1977, Srinivas found a
corresponding expression in the context of photon counting
probabilities [40,41]. Bednorz et al. derived a moment-
generating functional within a path-integral theory assuming a
weak measurement limit and evaluated the functional to arrive
at Eq. (7) [Ref. [42], Eq. (17)]. Wang and Clerk found the
same functional as Bednorz via a Keldysh approach and used
it to calculate “Keldysh-ordered” moments, cumulants, and
spectra of quantum noise up to third order [Ref. [43], Eq. (3)].
Bednorz and Wang, however, treated the measurement back-
action only in the lowest order of β, while the derivations that
use the SME find Eq. (7) without that restriction.

In statistics, cumulants instead of moments are often used
for characterizing stochastic processes as cumulants allow for
a simple subtraction of the additive background noise for all
orders [10]. We recently derived expressions for quantum me-
chanical multitime cumulants of z(t ) up to fourth order where
the introduction of a modified propagator G ′(τ ) = G(τ ) −
G(∞)
(τ ) and a modified measurement superoperator A′x =
Ax − Tr(Aρ0)x greatly simplified the notation [10,26]. The
quantum polyspectra followed after Fourier transformation

S(2)
z (ω) = β4(Tr[A′G ′(ω)A′ρ0]+Tr[A′G ′(−ω)A′ρ0])+β2/4,

(8)
S(3)

z (ω1, ω2, ω3 = −ω1 − ω2)

= β6
∑

{k,l,m}∈prm.{1,2,3}
Tr[A′G ′(ωm)A′G ′(ωm + ωl )A′ρ0]. (9)

The sum regards all six permutations (prm.) of the indices
of the ω js [44]. The formula for the power spectrum S(2)

z is
equivalent to Landau’s result [45] in the absence of damp-
ing [10]. The fourth-order spectrum S(4)

z (see the Appendix)
exhibits three contributions to the sum. We emphasize that
our expressions for the quantum polyspectra S(3)

z and S(4)
z

have not been known in the literature prior to 2018 and
2020, respectively [10,26]. They are valid for any system
that can be described by a Liouvillian L in the very general
Lindblad form [46] and a measurement procedure described
by an operator A that yields information on the observable
(A + A†)/2. The spectra exhibit line broadening due to both
environmental and measurement-induced damping, includ-
ing the Zeno regime of strong measurement. The spectra
are free from delta-function contributions because the time-
dependent G ′(τ ) decays exponentially to zero for increasing
τ guaranteeing for a finite G ′(ω). Quantum polyspectra are
straightforwardly evaluated in terms of the eigenvalues and
eigenvectors of L, see Refs. [10,26]. We consider the general
expressions for S(3)

z and S(4)
z a major advancement in the

theory of continuous quantum measurements.

III. RANDOM-TIME MEASUREMENTS

In this section, we develop a theory of random-time
quantum measurements based on the SME and quantum
polyspectra up to fourth order. In addition, we would like to
mention that the field of (classical) signal processing knows
two similar situations where information on a classical system
is gained (or known) only at discrete random times. (i) The
so-called random-time sampling was developed to determine
the power spectrum and the bispectrum (second- and third-
order polyspectra) of a stationary stochastic process x(t ) via
samples x(t j ) taken at random times t j [47–50]. We are not
aware of any theory on fourth-order spectra. The power spec-
trum and bispectrum of x(t ) can be recovered even for average
sampling rates below the bandwidth associated with the pro-
cess x(t ). Random-time sampling may not be confused with
undersampling where x(t ) is sampled at times t j = t0 + jT ,
i.e., at a constant rate 1/T . The spectra determined from
undersampling are known to suffer from replicas of spectral
lines with respect to the true spectrum of x(t ) and exhibit a
small bandwidth limited by 1/T . Random-time sampling ex-
hibits no replicas and conserves the full bandwidth of x(t ). In
contrast to random-time quantum measurements the value of
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FIG. 1. Schematics of random-time measurements. The linearly
polarized probe photons (double arrows) arrive at random times in
the interaction region, a, where they interact and entangle with the
quantum system and may weakly change their orientation (blurred
double arrow). After traversing the polarizing beamsplitter a photon
with either horizontal or vertical polarization enters the detector
region, b. In the detector the photon causes an event resulting in a
positive or negative peak in the measurement trace.

x(t j ) is known exactly, while in the quantum case (see below)
the dynamic state of the system will only indirectly have an
influence on the appearance of click events in a photodetector.
(ii) Such a behavior is more similar to a so-called Cox process
where a classical system determines the probability of a click
event [51]. The degree of analogies between classical random-
time sampling and random-time quantum measurements is an
open question and beyond the scope of the paper.

Figure 1 displays a possible realization of random-time
measurements of a quantum system. Probe photons with 45◦
polarization (red double arrows) interact at random times in
interaction region a (see Fig. 1) for a short time span with
the quantum system. The interaction may slightly change the
photon’s polarization. Subsequently, the photon traverses a
polarizing beam splitter with one exit for 0◦ polarized light
(x direction) and another for 90◦ polarized light (y direction).
A single photon will therefore give rise to a click in one
of the detectors with near 50% probability. A positive or
negative peak will appear in the measurement record z(t ).
The exact detection probability will depend on the state of
the probed quantum system. Consequently, z(t ) will contain
some information on the quantum system. The back-action on
the system by the probe photon will vary depending on the
stochastic outcome of the measurement since the system and
photon were after their interaction in an entangled state. Our
theory of random-time sampling follows from the stochas-
tic master equation approach by including the dynamics of
the system to be measured, the Poisson distributed stream
of probe photons, the interaction of a single probe photon
with the system, and the readout of the photomultipliers. The
measurement operator A will therefore relate to a continuous
measurement of a photon in the photomultipliers and not to a
property of the quantum system as in the usual SME treatment
of, e.g., a spin-noise experiment [10]. Information on the
system will nevertheless be obtained as the probe photons
interact at random times with the quantum system. Once L[β]
and A are found for our random-time measurement system,

the quantum polyspectra of z(t ) follow from the established
general equations (8), (9), and (A1).

A. Model Liouvillian

The overall Hamiltonian H consists of the quantum system
(s) and its interaction with the probe photon

H = Hs + Hint, (10)

where Hs may be any system Hamiltonian and Hint = h̄gszaz

describes a linear interaction of the system and a probe pho-
ton. The factor g corresponds to the interaction strength, sz

relates to some property of the system, and az relates to the
photon angular momentum in z direction in the interaction
region a. If sz describes, e.g., an electron spin orientation, the
term Hint models a Faraday rotation of a linearly polarized
probe photon in dependence on the spin orientation sz. A
subsequent measurement of the probe photon will thus contain
some information on sz. The three states for the light mode
in our model are |a+〉 and |a−〉 for the circularly polarized
photons and the vacuum state |aV〉 if no photon is present.
The operator az thus reads in that basis

az = 1s ⊗
[

1

2
|a+〉〈a+| − 1

2
|a−〉〈a−|

]
⊗ 1b

= 1s ⊗
⎛
⎝1/2 0 0

0 −1/2 0
0 0 0

⎞
⎠ ⊗ 1b, (11)

where we recognize the Pauli spin operator for the z direction.
The unit operators 1s and 1b belong to the Hilbert spaces that
describe the quantum system (s) and the detector region b,
respectively.

The stream of polarized photons entering the interaction
area a is modeled within the SME analogously to the in-
coherent in-tunneling of electrons onto a quantum dot [27].
The quantum state of a 45◦ polarized photon is given by
|a45〉 = 1√

2
(|a+〉 + i|a−〉). The jump operator

da = 1s ⊗ |a45〉〈aV| ⊗ 1b, (12)

creates a 45◦ polarized photon in the interaction area. Probe
photons appearing at an average rate γp give rise to a term
γpD[da](ρ) at the RHS of the SME.

The interaction region is then emptied at a rate γout via
again an incoherent tunneling process into the detector region
b (see Fig. 1). For γout � γp the appearance of photons in
the interaction region is Poisson distributed. The incoherent
tunneling must conserve the polarization state of the photon.
This is accomplished by

dab = (1s ⊗ |aV〉〈a+| ⊗ |b+〉〈bV|)
+ (1s ⊗ |aV〉〈a−| ⊗ |b−〉〈bV|), (13)

and γoutD[dab](ρ) on the RHS of the SME. We emphasize
that dab does not change if instead of the circularly polarized
basis states the linear or any other basis states are used. The
polarizing beam splitter will split the beam of photons in 0◦ (x
direction) and 90◦ (y direction) polarized photons described
by |b0〉 = 1√

2
(|b+〉 + |b−〉) and |b90〉 = 1√

2
(|b+〉 − |b−〉), re-

spectively. The detection of the two polarization states and the
no-photon state is modeled by projective measurements via
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the operators |b0〉〈b0|, |b90〉〈b90|, and |bV〉〈bV| which relate to
output values 1/2, −1/2, and 0, respectively. The measure-
ment operator A thus reads

A = 1s ⊗ 1a ⊗ [|b0〉〈b0| − |b90〉〈b90|]/2, (14)

which will result in a positive or negative peak in the measure-
ment trace z(t ) depending on which polarization is detected.

The disappearance of the photon from the detector region
is obtained by jump operators that model the transitions from
the photon states to the vacuum state

dbe,0/90 = 1s ⊗ 1a ⊗ |bV〉〈b0/90|. (15)

The sum of super operators γdet[D[dbe,0](ρ) + D[dbe,90](ρ)]
appears on the RHS of the SME for photons that leave the
detector at rate γdet. Again, different choices of the basis states
leave the sum unchanged.

The overall Liouvillian is given by

L[β](ρ) = i

h̄
[ρ, H] + γpD[da](ρ) + γoutD[dab](ρ)

+ γdet[D[dbe,0](ρ) + D[dbe,90](ρ)] + β2D[A](ρ).

(16)

The first term on the RHS describes the coherent system
dynamics and interaction with the probe photon. All other
terms model random-time measurements via the continuous
detection of stochastically arriving probe photons. The detec-
tor output is given by z(t ) = β2Tr[(Aρ + ρA†)/2] + β�(t )/2
and the SME

dρ = L[β](ρ) dt + βS[A](ρ) dW (17)

describes the dynamics of the combined system.

B. Discussion of model

1. Stochastic interaction time

The disappearance of probe photons from the interaction
region is modeled via incoherent tunneling at the rate γout.
This implies that the times of interaction vary between the
probe events exhibiting an exponential distribution. We argue
that a distribution of interaction times in contrast to a fixed
interaction time naturally appears in many quantum systems.
In the case of a semiconductor spin-noise experiment, the
probe photon enters the semiconductor sample whose surfaces
act as semi-transparent mirrors. Consequently, the probe pho-
ton finds itself in a lossy optical cavity and will leave the
cavity statistically leading to an exponential distribution of
interaction times.

The modeling of an (at least approximately) constant in-
teraction time within a Liouvillian approach appears to be
quite challenging. One might think of a probe wave packet
that traverses a broad interaction region with a constant speed.
The Hilbert space of the interaction region needed to be com-
plemented by a large number of position states that describe
the appearance of the probe photon at different sites of the
interaction region. A similar problem was discussed by Peres.
He showed that a quantum clock required a large number of
states to be used for accurate timing of certain events (see
Sec. V in [52]). Our model requires only one site for the probe
photon in the interaction region and is therefore much simpler.

FIG. 2. Random-time measurement of the z direction of a single
precessing spin via the Faraday effect by a stream of single photons.
(a) Detector output shows single click events (thin line) at low sam-
pling rates while the system exhibits an almost coherently precessing
spin (bold line). (b) The spin precession shows stronger perturbations
at elevated average sampling rates. (c) Corresponding power spectra
of the detector output for low and elevated average sampling rates.

It nevertheless describes the physics of a semiconductor spin-
noise experiment correctly (regarding our argument above).

We should mention that Gross et al. treated the interaction
of a quantum system (see Sec. VII in [28]) and its random-
time probe by a fixed interaction time without a reference
to a specific quantum mechanical model that would realize
such a constant interaction time. They gave expressions for the
corresponding measurement operators (Kraus operators) and
derived an effective stochastic master equation for the average
behavior of the quantum system. They, however, neither gave
an expression for the detector output [our z(t )] nor attempted
to find expressions for its polyspectra.

2. Measurement process

Similarly to the stochastic interaction time also the dwell
time of the probe photon in the detector region is stochastic.
This leads to a realistic detector behavior with a finite response
time and varying peak area (see Fig. 2). A completely alter-
native treatment of random-time measurements via Poisson
processes in the SME (a dN instead of dW appears in the
equations) [17] would correspond to an unrealistic instant

052203-5



MARKUS SIFFT AND DANIEL HÄGELE PHYSICAL REVIEW A 107, 052203 (2023)

response of the detector, peaks of constant area, and no Gaus-
sian background noise.

Moreover, the question may arise, why the measurement
was modeled via a projective operator |b0〉〈b0| [Eq. (14)]
and not via an annihilation operator c = |bV〉〈b0| which at
the same time would empty the detector region after detec-
tion. The problem occurs that z(t ) would relate to Tr[(c +
c†)ρ(t )/2] [see Eq. (2)], which, unlike Tr[|b0〉〈b0|ρ(t )], is not
proportional to the probability of finding the probe photon in
the 0◦ polarized state.

C. Spin dynamics under single-photon probing

Next, we calculate as an illustrative example the detector
output and second-order spectrum of a random-time measure-
ment on a single electron spin. The spin is precessing in an
external magnetic field B parallel to the x direction with the
system Hamiltonian given by

Hs = h̄ωLsx, (18)

where ωL is the Larmor frequency.
The z direction of the electron spin is probed via the Fara-

day effect by a stream of single photons 45◦ polarized in the
xy plane (Fig. 1). After interacting with the system (s) via
h̄gszaz [see Eq. (10)], the photon polarization axis is slightly
rotated in the xy plane depending on the z-spin orientation.
A measurement of the photon’s polarization rotation thus
gives access to the electron spin operator sz. The photon is
measured in the 0◦ (x direction) and 90◦ (y direction) polar-
ization directions. The detector output z(t ) will exhibit either
a strong positive or a strong negative peak. Without interaction
their probability of appearance is 50% each. The probabilities
slightly change if the system alters the photon’s polariza-
tion state in the interaction region. The measurement result,
therefore, contains some (but not full) information about the
electron’s z-spin orientation at the time of interaction.

Figure 2(a) shows the detector output z(t ) found from nu-
merical integration of Eq. (17). A sampling rate γp = 0.5 GHz
was chosen which corresponds to a probe laser power of
0.12 nW at a wavelength of 800 nm. The tunnel rate γout =
100 GHz and the detector-rate γdet = 100 GHz correspond
to a detector with roughly 10 ps temporal resolution as can
be realized in experiments with avalanche photodiodes. The
interaction strength g = 100 GHz is relatively high and can
be obtained via a tight laser focus within a resonant optical
microcavity [53]. The measurement strength β2 = 104 GHz
ensures a collapse of the photon wave function well within
the time the photon spends in the detector region. The mea-
surement trace z(t ) exhibits clear peaks, both positive and
negative, related to photon detection events on an otherwise
Gaussian background noise β�(t )/2 [see Eq. (2)]. The Gaus-
sian background disappears only in the unrealistic limit of
the ultra-strong measurement of the photon. Any detector
circuit for an avalanche photodiode or photomultiplier ex-
hibits background noise. The appearance of background noise
is therefore a desired feature of a realistic detector model.
The peaks vary in height and width closely resembling actual
current traces of photomultiplier tubes [54]. The expectation
value Tr[szρ(t )] of the spin z component displays a coherent
precession dynamics that is only weakly disturbed at the times

FIG. 3. Power spectra of the detector output for increasing aver-
age sampling rates γp of a precessing electron spin show a clear Zeno
transition with suppression of precession dynamics for highest rates.

of a photon detection event [Fig. 2(a)]. At an increased av-
erage rate γp = 5.0 GHz of the incoming probe system, the
precession dynamics is clearly distorted [Fig. 2(b)]. Since in
quantum mechanics Tr[szρ(t )] cannot be directly observed in
an experiment, information on the system’s dynamics must be
deduced from the measurement trace z(t ).

Measurement traces which exhibit click events are known
from photon counting experiments where usually some elec-
tronics searches for peaks in z(t ) using suitable threshold
criteria. Counting rates or counting statistics follow then from
the time intervals between peaks. In contrast, we will con-
sider here spectra and polyspectra of the raw z(t ) without the
need for artificial threshold criteria (numerics of experimental
polyspectra, see Appendix B of Ref. [27]). This approach
therefore works without any problems even in cases where
Gaussian background noise becomes problematic for identi-
fying single peaks in z(t ). Here, we obtain the analytic power
spectrum S(2)

z (ω) from evaluating Eq. (8) which depends only
on the Liouvillian L[β], the measurement operator A, and on
the measurement strength β [27].

Figure 2(c) shows the spectrum for average sampling rate
γp = 0.5 GHz. Three contributions can be distinguished: (i)
a constant white noise background due to Gaussian detector
noise β�(t )/2 clearly visible at ω/2π ≈ 100 GHz; (ii) a broad
Lorentzian peak centered at 0 Hz with a cutoff frequency
at around 16 GHz which corresponds to the finite lifetime
of the probe system in the detector region; (iii) a narrow
Lorentzian peak at the Larmor frequency ωL originating from
the system dynamics. For a higher probe rate γp = 5.0 GHz,
the Larmor peak exhibits a clear broadening and small shift
to lower frequencies as expected for a precessing spin sub-
ject to increased measurement-induced damping. Figure 3
shows the power spectra for increasing measurement rates γp

where the background is subtracted using power spectra for
the case of no probe-interaction with the system, Hint = 0.
At high rates the spectrum broadens and shifts to zero fre-
quencies as the frequent measurements suppress all coherent
dynamics. This behavior is known as the quantum Zeno ef-
fect [38]. Previously, Korotkov studied the Zeno transition
using a continuous measurement approach. He found the same
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FIG. 4. Power spectrum S(2)
z (ω), bispectrum S(3)

z (ω1, ω2), and trispectrum S(4)
z (ω1, ω2) of the z component of one spin in a coupled spin

system for continuous quantum measurements in comparison with random-time measurements. An average background of −3.88 × 104 GHz−2

and −6.60 × 108 GHz−3 was subtracted in the random-time bi- and trispectrum, respectively. The spectra closely resemble each other except
for the background and an additional stripe structure. The color bar is scaled via the arsinh function.

spectral features as in our case of random sampling [24].
Zeno physics can, in principle, also lead to the suppression
of the coupling to the environment and consequently to the
suppression of decoherence. Such behavior was discussed by
Gordon et al. [55,56] investigating a stochastic modulation of
the system and an environment with finite correlation time. In
contrast, the Lindblad-type Liouvillian of our theory implies a
treatment of the environment-induced decoherence in Markov
approximation where decoherence cannot be suppressed by
frequent measurements [57].

Our numerics for γp down to 0.05 GHz suggests that the
width of the spectrum scales for lower rates linearly with γp

allowing for the detection of a fully coherent oscillation in
the limit γp → 0. This is in agreement with Ruskov’s early
theory for a two-level system [29]. Similarly, we found for
general systems a sharpening of spectral features also in the
third-order polyspectra (not shown). Nevertheless, an increase
in interaction strength g leads to a stronger disturbance of the
system at any single probing event (see discrete distortion
in z(t ) [Fig. 2(a)]). This changes the height of the spectral
features even for γp → 0 revealing quantum back-action.

D. Polyspectra of a two-spin system

Next, we calculate second-, third-, and fourth-order quan-
tum polyspectra (power spectrum, bispectrum, and trispec-
trum) of the random-time measurement of a coupled spin-spin
system in a tilted magnetic field [10]. Higher-order polyspec-
tra were previously shown to yield important information that
is not contained in the usual second-order spectra [27]. We
compare the spectra with traditional spectra for continuous
sampling and find the same structure with a number of ad-
ditional stripes in the case of third- and fourth-order spectra.

This establishes the central result of our paper: the possibility
to characterize a quantum system by random-time quantum
measurements without any loss of information in comparison
to the well-established continuous quantum measurements.

The quantum system is defined by

Hs = h̄ω
(1)
L

[
sin(ϕ)s(1)

x + cos(ϕ)s(1)
z

]
+h̄ω

(2)
L

[
sin(ϕ)s(2)

x + cos(ϕ)s(2)
z

]
+h̄gc

[
s(1)

x s(2)
x + s(1)

y s(2)
y + s(1)

z s(2)
z

]
, (19)

with the precession frequencies ω
(1)
L /2π = 1.5 GHz,

ω
(2)
L /2π = 0.0 GHz, and an isotropic spin-spin interaction

with the coupling strength gc/2π = 1.5 GHz. The tilt
angle of the magnetic field is chosen to be ϕ = π/6.
The z component of the first spin is coupled to the
probe photons via Hint = h̄gs(1)

z az, where g = 50 GHz.
The probe photon enters the interaction region at rate
γp = 5 GHz and transfers to the detector region at rate
γout = 100 GHz. The measurement operator A for the
polarization bridge is similar to Eq. (14) with a measurement
strength β2 = 104 GHz. The photon leaves the detector
at the rate γdet = 100 GHz. An additional spin relaxation
term γs

2 D[ds](ρ) with ds = |s(1)
z,↓〉〈s(1)

z,↑| ⊗ 1s(2) ⊗ 1a ⊗ 1b

is introduced which drives the first spin towards the −z
direction at a slow rate γs = 0.05 GHz. Consequently,
the z-spin orientation is negative in equilibrium implying
Tr(s(1)

z ρ0) < 0 and 〈z(t )〉 < 0. The spectrum S(2)
z (ω) of the

random-time measurement trace in Fig. 4 shows several
peaks corresponding to quantum beats between different
energy eigenstates of the system. As for the single-spin
example, a broad Lorentzian background (the spectrum of
single clicks) is visible in the case of random-time sampling.
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The corresponding spectrum for continuous measurements
(calculated via Hint = 0, A = s(1)

z , β2 = 0.5 GHz) shows only
its typical flat white-noise background [10].

Additional spectral contributions appear also in the higher-
order spectra. The third-order spectrum, Eq. (9), exhibits a
large negative background (subtracted in Fig. 4) and several
sharp peaks corresponding to the ones seen in the bispectrum
S(3) of the usual continuous measurement. In addition, the
straight lines that extend to higher frequencies are visible in
the random-time case. Benhenni and Rachdi showed in their
classical treatment of bispectra from random-time sampling
that the asymptotic behavior of the additional strip structure
to S(3) allows for a separation from the desired peak structure
[50]. After a first attempt we believe that the separation of
such contributions is also possible in the quantum case. As
observed in numerical studies, the mean value of z(t ) corre-
lates with the appearance of the stripe structure. A third-order
spectrum without background and stripes was found in our
example only for 〈z(t )〉 = 0 when γs = 0. In that regime the
average number of positive and negative clicks in the mea-
surement trace is the same.

Similarly to the third-order spectrum, the fourth-order
spectrum S(4)(ω1, ω2,−ω1) exhibits peaked contributions that
correspond to the usual fourth-order spectrum. In addition,
striped contributions appear that extend to higher frequencies
on an overall large offset due to the Poisson noise contribution
(subtracted in Fig. 4). Thus, the fourth-order spectra in the
random-time measurement regime contain the same informa-
tion as in the continuous regime [10]. Our approach allows
also for modeling detectors with a finite response time and
finite detection efficiency (determined via γout and γdet). We
find qualitatively the same peak structure in all polyspectra for
different detector parameters, albeit with varying strengths of
the background offset and the stripe features.

IV. DISCUSSION

We introduce a very general framework for treating
random-time quantum measurements. This enables a thor-
ough characterization of quantum systems, even at low
average sampling rates, by comparing the theoretical and
measured higher-order spectra [27]. Any photon-counting
experiment fulfilling steady-state conditions can be treated

within that framework. We correctly describe quantum back-
action and treat environmental damping within Markov
approximation like with any Lindblad master equation. Many
real-world features of experiments like the finite temporal res-
olution of detectors, background noise, or photon loss (γdet �
β2) can be modeled within that framework.

Therefore, the solution to several open problems in mea-
surement theory becomes apparent. This includes the problem
of determining the on- and off-switching rates of fluorophores
in microscopy at low photon rates. The problem appears when
the typical transients of telegraph noise vanish in the photon
noise and switching events can no longer be identified [58].
Since our work shows that random-time sampling conserves
all information even at low photon rates, we will be able to
characterize the switching dynamics also in the (previously in-
accessible) low sampling rate regime. Moreover, random-time
sampling offers a solution to the problem of evaluating spin-
noise spectra at very low probe laser intensities where only
single-photon events can be detected. Random sampling is
therefore an attractive alternative to amplification schemes for
the probe laser via heterodyning that was previously used to
circumvent the problem [59–61]. Furthermore, random-time
measurements are a viable and more versatile alternative to
the recently introduced high-resolution spectroscopy via se-
quential weak measurements which exhibit unwanted spectral
replicas [62]. Another promising application lies in to-
day’s experiments of circuit quantum electrodynamics which
offer a great control of probe events with desired timing and
interaction strength [63,64]. Specifically, the investigation of
non-Gaussian environmental noise in cQED may benefit from
measuring the polyspectra of a detector qubit via random-time
measurements allowing for ultraweak back-action [33].

Applications are in reach as real-time spectrometers for
S(2) with GHz bandwidths are available from several ven-
dors. Even, higher-order spectrometers for S(3) and S(4) were
realized by Balk et al. and Starosielec et al., respectively
[65,66]. Our framework can therefore be applied without any
impediments.
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APPENDIX: FOURTH-ORDER QUANTUM POLYSPECTRUM

The fourth-order polyspectrum of the detector output z(t ) of the continuously monitored quantum system in the steady state
follows from the SME without any approximations as (second- and third-order spectra, see main text) [44]

S(4)
z (ω1, ω2, ω3, ω4 = −ω1 − ω2 − ω3) = β8

∑
{k,l,m,n}∈prm.{1,2,3,4}

[Tr[A′G ′(ωn)A′G ′(ωm + ωn)A′G ′(ωl + ωm + ωn)A′ρ0]

− 1

2π

∫
Tr[A′G ′(ωn)G ′(ωm + ωn − ω)A′ρ0]Tr[A′G ′(ω)G ′(ωl + ωm + ωn)A′ρ0]dω

− 1

2π

∫
Tr[A′G ′(ωn)G ′(ωl + ωm + ωn)G ′(ωm + ωn − ω)A′ρ0]Tr[A′G ′(ω)A′ρ0]dω].

(A1)
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The derivation of the polyspectra via multitime cumulants
and an efficient method for their numerical evaluation are

given in Refs. [10,26]. Numerics is based on the QUTIP and
ARRAYFIRE software libraries [67,68]
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