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Quantum mechanically, a driving process is expected to be reversible in the quasistatic limit, also known
as the adiabatic theorem. This statement stands in opposition to classical mechanics, where a mix of regular
and chaotic dynamics implies irreversibility. A paradigm for demonstrating the signatures of chaos in quantum
irreversibility is a sweep process whose objective is to transfer condensed bosons from a source orbital. We show
that such a protocol is dominated by an interplay of adiabatic-shuttling and chaos-assisted depletion processes.
The latter is implied by interaction terms that spoil the Bogoliubov integrability of the Hamiltonian. As the sweep
rate is lowered, a crossover to a regime that is dominated by quantum fluctuations is encountered, featuring a
breakdown of quantum-to-classical correspondence. The major aspects of this picture are not captured by the
common two-orbital approximation, which implies failure of the familiar many-body Landau-Zener paradigm.
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I. INTRODUCTION

In classical mechanics, contrary to a prevailing miscon-
ception, the quasistatic limit is in general not adiabatic. This
observation implies that protocols become irreversible, even
if their control parameters are varied very very slowly. Adia-
baticity and reversibility in the quasistatic limit are guaranteed
only if the phase space of the system does not undergo
structural changes. Accordingly, one distinguishes between
the integrable-dynamics version of adiabaticity [1], where
action integrals serve as adiabatic invariants, and the chaotic-
dynamics version of adiabaticity [2–8], where the phase-space
volume is the adiabatic invariant. Generic systems feature
mixed phase space that contains both quasiregular and chaotic
dynamics. Such systems do not obey the standard adiabatic
theorems. The simplest demonstration for such irreversibility
is the separatrix crossing scenario that has been discussed
extensively in the mathematical literature [9–19]. But generic
systems have more than a single degree of freedom, and
therefore chaos becomes a central theme in the analysis
[20–24].

In this paper we would like to explore how the above
picture is reflected or modified in the quantum framework. The
most suitable arena for such studies concerns the dynamics of
condensed bosons. In order to avoid an abstract discussion,
let us consider a specific generic scenario. Let us assume
that initially the bosons are condensed in a source orbital.
A sweep protocol is designed to transfer them to a different
orbital. Naively, one is inclined to speculate that this would
be merely a many-body version of the Landau-Zener (LZ)
adiabatic passage problem. The classical limit, also known
as the nonlinear LZ problem, has been studied extensively
[25,26]. It features a diabatic ejection stage (Fig. 1, left panel)
that is related to a swallow-tail structure in its bifurcation
diagram. The full quantum version has been addressed as
well [27]. Irreversibility has not been discussed there, but it
is expected due to the separatrix crossing, per the conditions
of the Kruskal-Neishtadt-Henrard theorem [9–19].

We claim that in general the many-body LZ problem can-
not serve as a paradigm for depletion. Typically the dynamics
involves more than two orbitals, meaning that we are dealing
with more than one degree of freedom. Consequently the role
of chaos cannot be ignored [22–24]. Using different phrasing,
we say that the inapplicability of the LZ paradigm is related
to the failure of the two-orbital approximation (TOA). Once
additional orbitals are taken into account, the integrability of
the Hamiltonian is spoiled. Consequently, the depletion stage
involves competing mechanisms which we call adiabatic shut-
tling and chaos-assisted depletion (Fig. 1, middle and right
panels).

Our interest is to address the irreversibility theme, and to
contrast quantum against semiclassical dynamics. In our se-
mantics the term “semiclassical” replaces the term “classical”
whenever the quantum state is represented in phase space by
a cloud of points, that are propagated using classical equa-
tions of motion. This is also known as the “truncated Wigner
approximation,” and goes much beyond the single-trajectory
dynamics of mean-field theory. Nevertheless, semiclassical
approximation, in this restricted sense, is not capable of tak-
ing into account either tunneling [28–31] or interference of
separated trajectories.

In quantum mechanics, contrary to the semiclassical pic-
ture, the quasistatic limit of a closed finite system is always
adiabatic, and therefore reversible. This is because the en-
ergies are quantized, and therefore the system follows the
(gapped) ground state for slow enough driving. However, this
quantum adiabaticity has no experimental significance once
we deal with a mesoscopic system. In the example that we
discuss in this paper, the condensate is a flow state of a
superfluid ring. As the control parameter is varied, the flow
state becomes metastable. But the tunnel coupling to the new
ground state is exponentially small in the number of particles
[28], and therefore can be ignored. Hence the system fails to
follow the ground state. This is in fact the essence of super-
fluidity. The question remains: What is the fate of the flow
state as the control parameter is further varied? What is the
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FIG. 1. Schematics of phase-space evolution. Each panel provides a sequence of phase-space snapshots. In the left and middle panels the
curves are H = const contours of a one-degree-freedom system. The evolving cloud is red. Initially the cloud is located in the minimum of
the energy landscape. The left panel displays an adiabatic shuttling process. As a control parameter is varied a second local minimum appears
due to a saddle-node bifurcation (third snapshot), and the cloud becomes metastable (fifth snapshot). In a quantum perspective the evolution is
diabatic, meaning that quantum tunneling does not have the time to take place. The process ends with diabatic ejection (last snapshot). If the
sweep is reversed (not shown), the cloud can split into the two minima of the fifth snapshot (assuming that both basins are expanding). The
middle panel displays a relay-shuttling process. It consists of pitchfork bifurcation, swap of separatrices, and inverse pitchfork bifurcation.
The right panel displays the effect of a chaos-assisted depletion mechanism that competes with the pitchfork bifurcation of the relay-shuttling
process. Strictly speaking we display in this panel a Poincaré section of a two-degree-of-freedom system. Due to spoiled integrability, there
is a chaotic strip along which spreading is allowed. The outer part of the cloud starts to spread away before the central fixed point becomes
unstable.

mechanism of depletion? Do we have the same irreversibility
as in the semiclassical analysis?

The question that we pose is not merely related to the foun-
dations of physics (irreversibility, quantum vs classical). It is
also of practical importance for the design of protocols whose
objective is to manipulate many-body states of cold atoms,
also known as atomtronics [32]. Specifically, we consider
bosons that are described by the Bose-Hubbard Hamiltonian
(BHH). This model is of major interest both theoretically
and experimentally [33–36]. There is a particular interest
in lattice-ring circuits that can serve as a superconducting
quantum interference device (SQUID) or as a useful qubit
device [37–40]. The hope is to achieve coherent operation
for BHH configurations that involve a few orbitals. This is
the natural extension of studies that concern two orbitals, also
known as the bosonic Josephson junction. The most promising
configuration is naturally the three-site trimer [41–59]. For the
analysis of such circuits one has to confront the handling of an
underlying mixed phase space [57,58,60].

We are inspired by hysteresis experiments, as done for
double-well geometry [61], and by protocols that have been
realized experimentally for bosons in a ring (or SQUID)

geometry [32,62–65]. The related theoretical studies adopt
the TOA, and highlight the appearance of swallow-tail bi-
furcations [66–70]. But the failure of the TOA is anticipated
by observing that the Bogoliubov pairing interaction requires
three orbitals, and by the further observation that there are
additional terms in the Hamiltonian that spoil the integrability
of the Bogoliubov approximation. Consequently, our interest
below is to push the discussion of irreversibility into the realm
of high-dimensional dynamics, addressing the fingerprints of
chaos and mixed phase space in the quantum-mechanical
reality.

The classical analysis of the forward sweep process follows
our previous publication [24]. In the present paper we further
illuminate that the integrable mechanism that is implied by the
Bogoliubov approximation is a variant of adiabatic shuttling
that we call relay shuttling (Fig. 1). In the quasistatic limit
this mechanism is overwhelmed by chaos-assisted depletion.
We explore the quantum scenario, and append an inverse
sweep of the control parameter, in order to study the irre-
versibility due to the interplay of the various mechanisms
involved. Our major observation is the discovery of a regime
of quantum irreversibility, that has not been anticipated by the
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semiclassical analysis of [24]. This regime features universal
quantum fluctuation (UQF), and an unexpected breakdown of
quantum-to-classical correspondence (QCC).

Outline

We present the Bose-Hubbard Hamiltonian that describes
a superfluid ring, and display some results of simulations
that probe irreversibility. The protocol for a proposed exper-
iment with an atomtronic circuit is highlighted: a superfluid
ring whose rotation velocity is gradually increased and then
decreased back to zero. We illuminate our findings by per-
forming step-by step analysis: We clarify the failure of the
TOA; we provide predictions that are based on the Bogoliubov
approximation; and then, going beyond that, we discuss the
implications of chaos. This is followed by a discussion, where
we highlight the manifestation of UQF and the breakdown of
QCC.

II. THE MODEL

Consider N bosons in an L-site ring, described by the
BHH with hopping frequency K and on-site interaction U .
The sweep control parameter is the Sagnac phase �, which
is proportional to the rotation velocity � of the device. This
phase can be regarded as the Aharonov-Bohm flux that is
associated with a Coriolis field in the rotating frame. The
Hamiltonian is

H =
L−1∑
j=0

[
ε ja

†
j a j + U

2
(a†

j a
†
j a ja j )

− K

2

(
ei �

L a†
j+1a j + e−i �

L a†
j a j+1

)]
(1)

where ε j = −ε cos(2π j/L) is included, as in [69]. It signifies
an external gravitation potential that may arise due to an
optional tilt of the ring. Some optional representations of the
Hamiltonian are presented in Appendixes A and B. Unless
stated otherwise we assume ε = 0. The notation u = NU/K
stands for the dimensionless interaction strength, and in the
numerical simulations we use units of time such that K = 1.

The momentum orbitals are labeled by the wave number
k = (2π/L) × integer, where the integer is the winding num-
ber. In this basis the Hamiltonian takes the form

H =
L−1∑
k=0

Ekb†
kbk − ε

2

∑
k,±

b†
k±1bk + U

2L

′∑
k1,k2,k3,k4

b†
k1

b†
k2

bk3 bk4

(2)

where the prime in the k summation implies that conservation
of total momentum is required. The presence of the control
parameter � is implicit via

Ek = −K cos

(
k − �

L

)
. (3)

A. Preparation

We start with a nonrotating ring (� = 0). Initially the
bosons are condensed in the zero-momentum orbital (k0 = 0).
Keeping only the three lowest orbitals, labeled as (k0, k+, k−),

FIG. 2. Signatures of quantum chaos. We consider a trimer with
N = 30 particles. The upper panel is an image of the matrix |Iν,μ|2,
color coded in log scale. The model parameters are K = 1 and u =
2.3 and � = 1.6π . From this matrix we extract the chaoticity mea-
sure sν for each energy level. The lower panel shows the energy levels
Eν (�) as a function of � ∈ [0, 2.5π ]. The levels are color coded by
s. The black line indicates the energy of the k = 0 condensate, if it is
not depleted. The vertical lines are the thresholds �mts = 1π (black),
�stb = 1.26π (blue), �dyn = 1.5π (red), and �swp = 1.62π (green).
Later we we shall see that in a sweep process a depletion process
takes place during the time that � crosses these thresholds.

it is convenient to describe their subsequent occupation using
the depletion coordinate n, and the imbalance coordinate M,
that are defined as follows:

n =
∑
k �=0

nk = n+ + n−, (4)

M = n+ − n−. (5)

B. Quantum chaos

One can regard the BHH as the Hamiltonian of cou-
pled nonlinear oscillators. Standard analysis reveals that the
underlying classical phase space is a mix of chaotic and
quasiregular regions. This may have signatures both in the
many-body eigenstates that are labeled using a running index
ν, and in the statistics of the associated eigenenergies Eν . Re-
spectively, one can characterize the spectrum using “quantum
chaos” measures s and r (see Appendix C). Such a type of
characterization has been illustrated, e.g., in Fig. 1 of [71] for
a trimer chain. A more refined version of s, and discussion of
its L dependence, has been provided in [72].

In the present context the r indicator is not useful, be-
cause we have mixed phase space, and the chaotic region
of interest is rather small. In contrast, the s indicator is in-
formative. Figure 2 provides an illustration of the matrix
Iν,μ = 〈ν|(−∂H/∂�)|μ〉. The band profile of this matrix is
related to the correlator of the current operator I (t ). The
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quantum chaos indicator sν is extracted from this matrix for
each energy level. A second panel displays the variation of
the energy levels versus the control parameter �. The levels
are color coded by s. Vertical lines indicate the thresholds
�mts (black), �stb (blue), �dyn (red), and �swp (green). The
first threshold �mts is positioned where the k+ orbital crosses
the k0 orbital and becomes the lowest in energy. The other
thresholds will be defined in later sections; namely, at �stb the
Landau stability is lost, at �dyn dynamical stability is lost, and
at �swp we have a swap of separatrices that is related to the
relay-shuttling mechanism.

III. PROBING IRREVERSIBILITY USING
AN ATOMTRONIC CIRCUIT

A. The proposed experimental setup

Consider a ring with condensed bosons. The optical poten-
tial that holds the bosons is possibly painted as in [64]. The
ring has several weak links (as in SQUID geometry), or it can
be an L-site lattice ring (as assumed below). Initially the ring
is at rest, and the condensed bosons have zero momentum. In a
quench protocol the ring starts abruptly to rotate. Superfluidity
means that the rotation velocity � should be larger than a crit-
ical value �c in order to induce current. The appearance of a
nonzero current (depletion of the zero-momentum orbital) can
be verified using a standard time-of-flight measurement pro-
cedure. We would like to consider a sweep protocol, such that
the rotation velocity is increased gradually (quasistatically)
from zero to a finite value that is larger than �c. Then we
ask whether this sweep process is reversible. Accordingly, we
decrease gradually � back to zero. Our main message, from
the perspective of an experiment, is that the quasistatic proto-
col features quantum irreversibility. A secondary message is
that the value of �c is affected by the sweep rate, and provides
an indication for the underlying depletion mechanism.

B. Results of numerical simulations

We present some results of numerical simulation for an
L = 3 ring, also known as a trimer. This will motivate the
analysis in the subsequent sections. Initially all the particles
are condensed in k = 0, meaning that the initial value of the
depletion coordinate is n = 0. The protocol consists of three
stages: a forward sweep of � from � = 0 to 2.5π , an op-
tional waiting period, and a backward sweep to � = 0. Note
that once � exceeds �mts = π (to be indicated by the black
vertical line in the time axis of our figures) the condensate
becomes metastable. But its depletion happens only in a later
stage, as discussed below.

We display in Fig. 3 the variation of (E , n) as a function of
time using both quantum and semiclassical simulations. The
variation of n is color coded. In the semiclassical simulations
we propagate an ensemble of trajectories, starting with a cloud
that mimics the initial condensate. In the quantum simulations
we propagate the evolving many-body state �(t ), and calcu-
late the probabilities

pν (t ) = |〈Eν |�(t )〉|2. (6)

The energy levels Eν[�(t )] are plotted as a function of time:
gray color indicates levels whose weight is vanishingly small

FIG. 3. Simulations that test irreversibility. The control parame-
ter is swept from � = 0 to 2.5π and back to � = 0. The horizontal
axis is the scaled time (1/π )|�̇|t . The vertical lines are as in Fig. 2.
The two additional orange lines indicate where the sweep is reversed
(� = 2.5π ) and stopped (back at � = 0). Note that the quantum
simulations may include an additional waiting period at � = 2.5π .
The initial state is the ground-state condensate. The upper panels are
quantum simulation for N = 30 particles, with K = 1 and u = 2.3.
The energy levels Eν[�(t )] are plotted. Gray color indicates levels
whose weight pν is vanishingly small (for presentation purposes
this set is diluted by factor 10). The participation levels whose pν

is non-negligible are color coded by 〈n〉ν . The left panel is for
�̇ = 5π × 10−4, and the right panel is for �̇ = 3.33π × 10−7. The
second and third rows display semiclassical simulations for the same
system. We plot E and M for an ensemble of trajectories, starting
with a cloud that mimics the initial condensate. The value of the n
coordinate is color coded. The left panel is for a slow sweep �̇ =
5π × 10−4, while the right is for a very slow sweep �̇ = 5π × 10−5.
In this figure, and in all subsequent figures, the units are normalized
(n := n/N, M := M/N, E := E/N).

(less than 3.5%), and the other levels whose pν is non-
negligible are color coded by 〈n〉ν = 〈Eν |n|Eν〉.

One observes that for “slow” sweep the spreading in E
is worse, indicating that irreversibility is enhanced. For the
semiclassical simulation we show in Fig. 3 (third row) how
this spreading is expressed in M. The optional Fig. 9 of
Appendix D shows what the spreading looks like in occupa-
tion space, using (n, M ) coordinates.

In Fig. 4 we plot the depletion 〈n〉 versus time. In the
quasistatic regime the time of the depletion td is determined
by inspection of the sharp rise in 〈n〉. We indicate by dark gray
background color the range of �̇ where td becomes ill defined,
reflecting a lag with respect to the parametric variation of �.
In the quasistatic regime we observe that �(td ) is shifted as �̇
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FIG. 4. Depletion vs sweep rate. The upper panel displays the
depletion 〈n〉 vs time for a quantum simulation with sweep rate �̇ =
5π × 10−4 (blue) and with very slow rate �̇ = 3.33π × 10−7 (red).
The former is compared with simulation (black) that is generated by
the Bogoliubov-approximated Hamiltonian. The vertical lines and
the parameters are as in Fig. 3. From such plots we determine the
time td at which the depletion happens. The dependence of �(td )
on the sweep rate �̇ is displayed in the lower panel. The dark gray
background indicates the nonquasistatic regime where the depletion
time lags and becomes numerically ill defined. In the quasistatic
regime the observed dependence on �̇ indicates the crossover from
chaos-assisted depletion (light gray background) to adiabatic shut-
tling. Namely, the depletion shifts from �stb to �swp.

is increased. Later we interpret this shift as an indication for a
crossover from chaos-assisted depletion to adiabatic shuttling.

In order to quantify the adiabaticity in the quantum simu-
lations, we characterize the spreading in energy by estimating
the number of participating energy levels:

Nstates(t ) =
[∑

ν

|pν (t )|2
]−1

. (7)

An optional measure is Norbitals(t ) of Appendix E. Illustrations
for the temporal variation of both measures are provided in
Appendix F. It should be noted that Nstates(t ) is expected to be
monotonic increasing only for a strictly quasistatic process,
which is not the case here (because we have mixed phase
space and bifurcations along the way). Nevertheless, the final
spreading can be used as a measure for the irreversibility of
the sweep protocol. Its dependence on the rate �̇ is displayed
in Fig. 5.

We see that in the quasistatic regime slowness is bad for
adiabaticity. This is very pronounced in the semiclassical
simulation, and has modest reflection in the quantum evo-
lution. On the average, irreversibility is suppressed quantum

FIG. 5. Irreversibility vs sweep rate. Irreversibility is indicated
by the growth of the the number Nstates of energy levels that partici-
pate in the evolution. We show the dependence of Nstates (blue dots)
on the sweep rate �̇ before the reversed sweep (upper panel) and
at the end of the reversed sweep (lower panel), for miscellaneous
values of the waiting time. The erratic dependence on the waiting
is illustrated in Fig. 12 of Appendix F. The blue lines provides the
average value of Nstates, and the red lines provided the average value∑

νpν . The black lines are based on the semiclassical simulations.
The gray background is the same as in Fig. 4.

mechanically compared with the semiclassical expectation.
But more interestingly, the dependence of Nstates on �̇

becomes erratic, indicating a crossover to a regime of chaos-
assisted-depletion. This crossover is further reflected in the
timing of the depletion, as we already saw in Fig. 4.

IV. COMMON APPROXIMATIONS THAT
EXCLUDE “CHAOS”

A. Two orbital approximation

As we sweep the parameter �, orbitals k0 and k+ cross
each other. It is therefore natural to adopt TOA as in [69].
This naturally leads to an effective two-site (dimer) problem
as in [27], that can be regarded as a second-quantized version
of the well-known nonlinear LZ problem [25,26].

With TOA, the third term in Eq. (2) does not generate
transitions between orbitals. Therefore we need a tilt ε �=0 in
order to get nontrivial dynamics. Indeed this was the approach
in [69]. But clearly for a BHH ring we should have nontrivial
dynamics even without a tilt. So clearly TOA is an oversim-
plification. Nevertheless one may wonder whether with ε �=0
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FIG. 6. Quantum simulations for the dimer. We consider N = 10 particles whose dynamics is generated by the Hamiltonian Eq. (8). The
upper panels are for diabatic ejection scenario (left), relay shuttling (middle), and zoom of the latter (right). The units of time are such that
K = 1, and the tilt is ε = 0.2. The interaction parameters are given respectively by Eq. (9) with u = 3.45 and by Eq. (10) with u = 2.3, with
L = 3. The sweep is from E = 2 to −2 and back to E = 2, with rate Ė = 1/600. Energy levels Eν are plotted vs time. Levels whose pν is
vanishingly small are in gray. The other levels are color coded by 〈n〉ν . The energies of the minima, maxima, and separatrices are indicated
by black lines. Bifurcation points are indicated by vertical lines. Snapshots of the evolution are taken at times that are indicated by small
black arrows, and placed at the second row (diabatic ejection) and at the third row (relay shuttling). At each snapshot we plot the Husimi
representation Eq. (E3) (red is high intensity) of the quantum state, using (Sx, Sz ) phase-space coordinates. We overplot energy contours of the
Hamiltonian, and indicate in black the extremal points and the separatrices.

there is a regime such that TOA makes sense. We address this
secondary question in Appendix G.

B. Bogoliubov approximation

The Bogoliubov approximation keeps in Eq. (2) transi-
tions of pairs from the k0 condensate to the k± orbitals. The
textbook version further makes the substitution b0 �→ √

N ,
but we avoid below this oversimplification. Either way, it is
clear that the Bogoliubov approximation implies that in the
absence of tilt (ε = 0) the occupation imbalance (M) is a
constant of motion. Consequently, for the L = 3 trimer (or for
any ring if we keep the three lowest orbitals k0, k+, and k−)
the BHH becomes formally identical to a generalized dimer
Hamiltonian, that differs from the standard TOA dimer.

We present the derivation of the effective Hdimer in
Appendix A, and further discuss it below. The same Hdimer

can be exploited to simulated the TOA dynamics using an
appropriate set of effective parameters, and to simulate the
Bogoliubov dynamics using a different set of effective pa-
rameters. The dynamics that is generated in the two cases
is illustrated in Fig. 6. One observes that the TOA dynamics
(with tilt) features diabatic ejection. As opposed to that, the
Bogoliubov-approximated dynamics features what we call re-
lay shuttling. The snapshots of the evolution that are provided
in Fig. 6 correspond to the scenarios that have been illustrated
in Fig. 1.

Coming back to Fig. 4 we observe that the td of the Bogoli-
ubov (black) line agrees with that of the blue line, but not with

that of the red line. This implies that in the latter case (very
slow sweep) the depletion mechanism is not a relay-shuttling
process.

C. The generalized dimer problem

Both the TOA (with tilt) and the Bogoliubov approxima-
tion (with or without tilt) lead to an effective dimer problem.
See Appendixes A and G. The dimer Hamiltonian can be writ-
ten using generators of spin rotations. Namely, Sz is defined
as half the occupation difference in the site representation,
while Sx = (n0 − n1)/2 = (N/2) − n is half the occupation
difference in the momentum orbital representation. Thus, Sx is
merely a shifted version of the depletion coordinate. What we
call the generalized dimer Hamiltonian contains two distinct
interaction terms:

Hdimer = −ESx − εSz + U‖S2
z + U⊥S2

x . (8)

In Appendix B we show that the TOA reduces to this form
with

U‖ = 0, U⊥ = − 1

L
U [TOA]. (9)

In contrast, the Bogoliubov approximation features, due to the
pairing interaction,

U‖ = 2

L
U, U⊥ = 1

4L
U [Bogoliubov]. (10)
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FIG. 7. Irreversibility vs sweep rate for the dimer. For simula-
tions as in Fig. 6, we plot Nstates vs the sweep rate Ė at the end of
the forward sweep (purple), and at the end of the reversed sweep
(black). The left panel is for the diabatic ejection scenario, and the
right panel is for the relay shuttling scenario. Additionally we plot
(in green) the average level index at the end of the forward sweep.
The nonquasistatic region (gray) is determined by inspection of the
Norbitals plot of Appendix F.

The detuning parameter E reflects the excitation energy of
the condensate. For the TOA it is E = E+ − E0, while for
Bogoliubov it is

E (�) = 1

2
(E+ + E−) − E0 + NU

4L
. (11)

As � is increased, E decreases, and at �swp it swaps sign,
namely, E (�swp) = 0. The swap location is indicated by the
green vertical line in the time axis of our figures.

We further show in Appendix I that the bifurcation scenario
depends on the relative magnitudes of the U s. The parameters
U⊥ and U‖ have the same sign (the latter is zero for TOA).
Accordingly, phase-space contours on the Bloch spheres are
ellipses (or parabolas) in the (Sx, Sz ) coordinates. If we vary
the control parameter E (�), there are two different bifurcation
scenarios depending on which interaction is larger. The two
scenarios are compared in Figs. 6 and 7, and further discussed
below.

Consider the TOA, for which we have |U⊥| > |U‖|. For
large E the lowest energy is in the east pole, which supports
condensation in orbital zero. As E is decreased, a bifurcation
appears at the west hemisphere, with a separatrix that move
to the east. This leads eventually to a diabatic ejection of the
condensed cloud. We show in Appendix I that the pertinent
bifurcation happens at

Ec = [(|U‖ − U⊥|N )2/3 − ε2/3]3/2. (12)

Consider the Bogoliubov approximation, for which we
have |U⊥| < |U‖|. Here two bifurcations take place: The first
bifurcation appears at the west hemisphere, and is formally the
same as that of Eq. (12). The same expression for Ec applies.
However, this bifurcation has no significance, as implied by
Fig. 6. It is followed by a second bifurcation of the east pole
that for zero tilt is determined by the condition E (�) = Edyn,
where Edyn = NU⊥. For nonzero tilt we derive in Appendix I
the more general expression

Edyn =
[

1 −
(

ε

U‖N

)2
]1/2

NU ⊥. (13)

This bifurcation signifies the loss of dynamical stability of
the condensate (the elliptic fixed point becomes hyperbolic),

and therefore the above condition can be used to determine
�dyn. Due to the bifurcation a new minimum is born, and
a relay-shuttling process is initiated. Subsequently, at �swp,
there is a swap of separatrices, and consequently, hereafter,
the minimum that had bifurcated from the east belongs to
the basin of the west. The net effect is relay shuttling from
east to west that ends when E (�) = −Edyn. This scenario is
illustrated in Fig. 6.

V. THE MANIFESTATION OF CHAOS

Once we go beyond the Bogoliubov approximation, the
imbalance M is no longer a constant of motion. Using action
angle variables (n, M, and their conjugates) it is possible to
express the three-orbital Hamiltonian as the sum of integrable
Bogoliubov term H(0)(n, ϕ; M ) that conserves M and addi-
tional terms H(±) that spoil the integrability. See [24] and
Appendix B for explicit expressions. The H(±) terms allow
slow depletion of the cloud by drifting away from M = 0.

Figures 8(a)–8(c) clarify how phase space changes as �

is varied. It is the inspiration for the illustration in the right
panel of Fig. 1. Snapshots are taken after �mts, after �stb, and
after �dyn. It shows how the n = 0 fixed point changes from
metastable minimum to elliptic fixed point and then becomes
unstable. We also have an indication for the emerging shut-
tling island. The small island that we see in the right panel
of row (c) is in fact a section of a torus that resides above
the captured cloud. The latter can be located in a Poincaré
section at a slightly lower energy (not displayed). The chaotic
region allows an optional depletion process that we further
discuss in the next paragraph.

A necessary condition for chaos-assisted depletion is to
have a potential floor that goes down from n = M = 0 in the
M �=0 direction. This is the Landau criterion for instability of
the superflow. Namely, n = 0 becomes a saddle rather than a
local minimum in the energy landscape. The Landau instabil-
ity is encountered once we cross �stb, which is indicated by
the blue vertical line in the time axis of our figures. Bogoli-
ubov analysis [24] provides the explicit expression

�stb = 3 arccos
[

1
6 (

√
u2 + 9 − u)

]
(14)

where u = NU/K is the dimensionless interaction strength.
But we have to remember that only later, at �dyn, the n = 0
location becomes dynamically unstable, as shown in Fig. 8(c).
This means that for �stb < � < �dyn only the outer piece of
the cloud can drift away from M = 0 via the chaotic region.
The implied branching is clearly demonstrated in Fig. 3 and
optionally in Fig. 9 of Appendix D.

The splitting of the cloud, into an M = 0 shuttling branch
and M �= 0 chaotic spreading, is responsible for the crossover
to chaos-assisted depletion. The latter is a very slow process,
and therefore becomes noticeable only for very slow sweep
rate. It is clearly distinct from shuttling, because it starts
earlier, at �stb, unlike the shuttling that starts at �dyn.

In the reversed sweep we see once again this branching
effect. In fact it is more conspicuous on the way back: the
cloud stretches further in the M direction, which becomes
possible because the ceiling of the potential is going up, hence
not blocking further expansion. An optional way to illustrate
this branching is provided by Fig. 9 of Appendix D.
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FIG. 8. Mixed chaotic phase space. The energy landscape of
the BHH trimer for u = 2.3. (a)–(c) � = 1.1π, 1.4π, and 1.6π , re-
spectively. Respectively they feature energetic stability, dynamical
stability, and instability of the condensate. Each point in the left pan-
els represents an eigenstate that is positioned according to its Eν and
〈M〉ν , and color coded according to its 〈n〉ν . Looking at the classical
Hamiltonian H(n, ϕ; M, φ), for each M we find the floor (minimum)
and the ceiling (maximum) of the energy, and get the black solid lines
that bound the spectrum from below and from above. The n = M = 0
central fixed point is indicted by a pink dot. Its vicinity is zoomed in
the upper inset, and its energy is indicted by a dashed line. For this
energy a Poincaré section of phase space is displayed in the right
panel, where each section point of a trajectory is color coded by its
M, and displayed using its (n, ϕ) as polar coordinates. (c) � > �dyn,
for which the central point is an unstable saddle immersed in chaos.
Therefore it cannot support an eigenstate. This observation is better
delivered by the lower inset, where the same spectrum is plotted with
n serving as horizontal axis.

VI. MECHANISMS FOR IRREVERSIBILITY

In linear-response theory (Kubo formalism), irreversibility
is related to accumulated deviation from adiabaticity. It is
controlled by the ratio between the sweep rate and the natural
frequency of the driven system. This picture assumes that
the cloud follows an evolving adiabatic manifold in phase
space. In the quasistatic limit, linear-response theory implies
reversibility. But this picture breaks down if during the sweep
a violent event takes place. In the nonlinear LZ problem the
local minimum is diminished at a particular moment of the
sweep process due to an inverse saddle-node bifurcation (see
Fig. 1), and consequently the cloud is ejected and stretched
along the fading separatrix. This is what we call diabatic
ejection. On the way back the cloud can split between two
regions as implied by the Kruskal-Neishtadt-Henrard theorem
[9–19]. This type of dynamics is reflected in the quantum
dynamics (see Fig. 6 for demonstration).

In the problem under consideration, diabatic ejection is
an artifact of the TOA. Instead we find that the Bogoliubov
approximation predicts relay shuttling. A gentle type of ir-
reversibility can arise when the shuttling process starts or
ends (pitchfork bifurcations). See Fig. 10 of Appendix F for
demonstration. A quantitative comparison of the irreversibil-
ity that is associated with the two mechanisms is provided in
Fig. 7.

As we already discussed, for very slow sweep a different
depletion mechanism takes over, that goes beyond Bogoli-
ubov, namely, chaos-assisted depletion. This mechanism gives
rise to “free expansion” of the cloud in phase space (M is
not constant of motion). Furthermore, once the sweep is re-
versed the cloud undergoes a conspicuous branching process,
as discussed previously for Figs. 3 and 9. Thus, irreversibil-
ity is extremely enhanced in the semiclassical simulations.
Quantitatively this has a modest manifestation in the quantum-
mechanical case. On the other hand, we observe a regime of
quantum irreversibility that exhibits quantum chaos character-
istics and breakdown of QCC that we further discuss below.

VII. UNIVERSAL QUANTUM FLUCTUATIONS

Classical evolution of expectation values reflects ergodiza-
tion. Namely, fluctuations are completely smoothed away if
we wait long enough. As opposed to that, quantum fluctu-
ations persist and are not smoothed away. This means that
quantum mechanically the quasistatic limit does not exist.
At any moment the state of the system cannot be regarded
as stationary. In Fig. 12 of Appendix F we demonstrate
the dependence of Nstates on the waiting time T . The same
fluctuations are reflected if we plot Nstates versus �̇. We reem-
phasize that such fluctuations are absent in the semiclassical
simulations. (Therefore we set T = 0 in the semiclassical
simulations of Fig. 3.)

VIII. QCC AND ITS BREAKDOWN

We already pointed out that the semiclassical dynamics is
reflected in the quantum simulations (see Fig. 3). The term
“reflected” does not imply “correspondence.” We would like
to explain the observed breakdown of QCC for slow sweep.

For an extremely slow sweep (that cannot be realized in
practice), the quantum dynamics would follow the ground
state. This can be regarded as a quantum detour of the clas-
sical nonadiabatic arena that was looming ahead. For realistic
sweep rate the dynamics follows diabatically the metastable
minimum. But still the probability can leak to levels that
are crossed along the way. This early leakage becomes more
probable as the forbidden area shrinks (low energetic barrier),
and definitely once it is replaced by dynamical barriers of the
Kolmogorov-Arnold-Moser (KAM) type [29,30].

The lifetime τ of the condensate can be extracted from
the local density of states (LDOS) of the Hamiltonian (see
Appendix J). The interesting range, as explained above, is
�stb < � < �dyn. In this range the classical cloud has a piece
that is trapped on a dynamically stable island, and therefore
cannot decay. But quantum mechanically the cloud can tunnel
through the KAM barriers, and therefore has a finite lifetime
τ (�).
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We are now equipped to estimate the border between the
various �̇ regimes. The quantum adiabatic regime is deter-
mined by the standard condition |dH/dt | < κ2, where κ is
the tunnel coupling, that determines the level splitting. As
discussed earlier this condition is never satisfied in practice
due to the smallness of κ . Using α ≡ |dH/d�| ∼ K , we can
rewrite the adiabatic condition as follows:

τ (�) <
��

�̇
(15)

where �� = κ/α, is the parametric width of the avoided
crossing, and τ ∼ 1/κ is the time to make a Rabi transition.
We can extend this reasoning to Fermi’s “golden rule” regime
where κ becomes larger than the effective levels spacing �0.
The latter refers to the participating levels of the LDOS. There
we expect τ = 1/γ , with γ = 2πκ2/�0. The condition for
having an escape before �dyn is obtained from Eq. (15), and
implies a crossover at �̇ ≈ 10−4π , in rough agreement with
Fig. 4.

IX. DISCUSSION

Considering a closed classical Hamiltonian driven system,
such as a particle in a box with moving wall (also known
as the piston paradigm), the common claim in statistical me-
chanics textbooks is that quasistatic processes are adiabatic,
with vanishing dissipation, and hence reversible. This state-
ment is indeed established for integrable [1] and for fully
chaotic systems [2–8]. But generic systems are neither inte-
grable nor completely chaotic. Rather they have mixed phase
space. For such a system the quasistatic limit is not adiabatic
[20–24], and therefore we expect irreversibility. This irre-
versibility can be regarded as the higher-dimensional version
of separatrix crossing [9–19], where the so-called Kruskal-
Neishtadt-Henrard theorem is followed.

In the present paper we wanted not just to expand the analy-
sis of classical irreversibility, but also to explore the quantized
version. We asked whether the distinct mechanisms of clas-
sical irreversibility are reflected in the quantum-mechanical
arena, and how this reconciles with the observation that quan-
tum dynamics, unlike classical dynamics, is always reversible
in the strict quasistatic (adiabatic) limit. Our main observa-
tions are as follows.

(1) The TOA, and the associate LZ picture, do not provide
a proper framework for the analysis of the depletion process.
We need at least three orbitals in order to capture the essential
features of the dynamics. This means that we are dealing here
with a quantum chaos problem.

(2) The Bogoliubov approximation, unlike the naive TOA,
implies a gentle type of irreversibility that is related to relay
shuttling, and not to diabatic ejection.

(3) Beyond the Bogoliubov approximation we have a
chaos-assisted mechanism that competes with the relay-
shuttling process. This mechanism becomes dominant in the
deeper quasistatic regime.

(4) Accordingly, with regard to the sweep rate, one has to
distinguish between the nonquasistatic regime, relay-shuttling
regime, chaos-assisted regime, and quantum adiabatic regime.
For a many-body condenstate, the latter is not accessible in
practice.

(5) Quantum features dominate the quantum adiabatic
regime and the chaos-assisted regime. The most prominent
effect can be described as a version of universal quantum
fluctuations.

(6) In the same regime, breakdown of QCC is conspicu-
ous. It is related to leakage of probability along the diabatic
transitions. Such leakage does not exist in the semiclassical
simulations.

On the practical side one observes that the optimization
of a protocol is related to the crossovers between the various
regimes. Sweeping a control parameter “too fast” takes us
out of the quasistatic regime, while “too slow” is affected by
chaos. UQF possibly can be exploited for fine tuning, whose
purpose is to minimize chaos-related irreversibility. In anal-
ogy with the claim that diagonalization of the Hamiltonian
can provide “one shot” phase-space tomography [73], also
here we can say that relatively cheap quantum simulations can
provide information on the classical dynamics for a cloud of
trajectories.
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APPENDIX A: THE BHH FOR THE DIMER

The BHH Eq. (2) for an L = 2 dimer is

Hdimer =
∑
j=0,1

[
ε ja

†
j a j + U

2
a†

j a
†
j a ja j

]
(A1)

− K

2
(a†

1a0 + a†
0a1). (A2)

In momentum representation (the ground-state orbital labeled
as “0” and excited orbital labeled as “+”) it takes the form

Hdimer =
∑

k=0,+
Eknk − ε

2
(b†

0b+ + b†
+b0) + U

4
(N − 1)N

+ Uo

2
n+n0 + U‖

4
(b†

+b†
+b0b0 + H.c.) (A3)

with Ek = ∓(K/2) and U0 = U‖ = U . Making the substitu-
tion b j �→ √

n jeiϕ j , and n0 = N−n, and n+ = n, we get

Hdimer = E0 + En − ε
√

(N−n)n cos(ϕ)

+ Uo

2
(N−n)n + U‖

2
(N−n)n cos(2ϕ) (A4)

where E0 = NE0 + (U/4)(N−1)N is a constant that can be
dropped, and E = E+ − E0 = K is the detuning of the two
orbitals.

One can write the interaction term of Eq. (A3) using gen-
erators of spin rotations. We define Sx = (n+−n0)/2, while
n++n0 = N , and use the identity

S2
� ≡ S2

z − S2
y = 1

2 (b†
+b†

+b0b0 + H.c.). (A5)

Dropping a constant we get

Hdimer = −ESx − εSz − Uo

2
S2

x + U‖
2

S2
�. (A6)
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We substitute S2
� = S2

z − S2
y , and in order to get rid of S2

y

exploit that S2
x + S2

y + S2
z is a constant of motion. Thus

the final expression can be written as in Eq. (8), with
U⊥ = (U‖−Uo)/2.

APPENDIX B: BHH INTERACTION TERM FOR A RING

The momentum index k can be defined mod(L) such that
k := (2π/L)k is the quasimomentum in standard units. For
a trimer this index takes the values k = 0,±1 or shortly
k = 0,±. The prime in the k summation of Eq. (2) implies that
conservation of total momentum is required. The interaction
term can be arranged as follows:

1

2

′∑
k

b†
k1

b†
k2

bk3 bk4 = (N−1)N

2
+

∑
〈k,k′〉

nknk′ + Hpairing

+Hscattering. (B1)

The second term reflects the cost of fragmentation. The sum-
mation is over pairs (without double counting). The last term
includes scattering events that involve four different orbitals,
while the pairing events involve only three orbitals (two k
particles split into k ± q orbitals, and vice versa). In the spe-
cial case L = 3, the scattering events are absent. Dropping a
constant, we are left with

U

L

⎧⎨
⎩

∑
〈k,k′〉

nknk′ +
∑

k=0,±
(b†

k+1b†
k−1bkbk + H.c.)

⎫⎬
⎭. (B2)

The Bogoliubov approximation is obtained if we keep in the
second term only the k = 0 transitions. Then we get

U

L
[n0n+ + n0n− + n+n− + n0

√
n+n− × 2 cos(2ϕ)]. (B3)

Using n and M as coordinates this expression takes the form

U

L

[
(N−n)n + 1

4
(n2 − M2)

]

+ U

L
(N−n)

√
n2 − M2 cos(2ϕ). (B4)

Setting M = 0, the above terms are formally the same as
that of the dimer, provided we allow different coefficients
Uo = (3/(2L))U and U‖ = (2/L)U , and include the term
NU/(4L) in Eq. (11). On the other hand, if we keep in
Eq. (B3) only the n0 and the n+, we get the TOA where
Uo = (2/L)U and U‖ = 0.

For completeness we write the full Hamiltonian, without
tilt as H(0) + H(+) + H(−) + const. The integrable part can be
written as follows:

H(0) = − U

12
M2 + E⊥M + En + Uo

2
(N−n)n

+ U‖
2

(N−n)
√

n2−M2 cos(2ϕ) (B5)

where the detuning parameters are

E = 1

2
(E+ + E−) − E0 + NU

4L
, (B6)

E⊥ = 1

2
(E+ − E−). (B7)

The non-Bogoliubov terms in the L = 3 trimer Hamiltonian
arise from interaction that involves pairs that move in or out
of excited orbitals. In action angle coordinates the explicit
expression for them is

H(±) = U

3
√

2

√
(N−n)(n±M ) (n∓M ) cos (3φ∓ϕ). (B8)

The non-Bogoliubov terms spoil the integrability of the BHH,
and generate chaotic motion in phase space.

APPENDIX C: INDICATORS OF QUANTUM CHAOS

The simplest indicator for quantum chaos is level repul-
sion. In practice it is useful to define

rn = min(�ν,�ν+1)

max(�ν,�ν+1)
(C1)

where �ν = Eν+1 − Eν is the level spacing. The average of
rn within an energy window is expected to be 〈r〉 ≈ 0.536 for
Wigner-Dyson (chaotic) statistics, as opposed to 〈r〉 ≈ 0.386
for Poissonian (nonergodic) statistics. A possibly better in-
dicator is extracted from the matrix elements of the current
operator Iν,μ = 〈ν|(−∂H/∂�)|μ〉. The band profile of this
matrix is related by Fourier transform to the current-current
correlation function, and therefore its area sν = ∑

μ( �=ν) |Iν,μ|2
reflects the correlation time. A related measure, and discus-
sion of its L dependence, can be found in [72].

APPENDIX D: THE BRANCHING OF THE CLOUD

Figure 9 shows what the evolution of the cloud of Fig. 3
looks like in occupation space, using n, M coordinates. This
figure provides an optional view of the branching: one piece of

FIG. 9. Evolution of the cloud in occupation space. Optional
plots for the semiclassical simulations of Fig. 3. The left and the
right panels are for the forward and for the reversed sweep, with the
optimal sweep rate �̇ = 5π × 10−4 (upper panels), and the very slow
(nonoptimal) forward sweep with �̇ = 5π × 10−5 (lower panels).
The optimal sweep rate has been determined by the minimum of the
black curve in Fig. 5(b), meaning that it is slow, but not too slow,
such that relay shuttling is still dominant. The color code reflects the
time (the initial t = 0 cloud is blue, and the final cloud is red).
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FIG. 10. Depletion vs time for the dimer. The depletion 〈n〉, and Nstates and Norbitals, are plotted as a function of time for the diabatic ejection
scenario (purple) and for relay shuttling (black). Simulations parameters are as in Fig. 6. There is no relation between the two scenarios: they
are combined in one plot for presentation purposes. The only meaningful comparison concerns the question of whether the reversed sweep is
capable of restoring the initial state.

the cloud drifts away from M = 0 starting at �stb, and another
piece shuttles along M = 0 starting at �dyn. The branching is
visible only for very slow sweep. In the forward sweep the
drift stops after a short duration because the ceiling of the
potential is going down, hence blocking further expansion.
But in the reversed sweep the ceiling of the potential is going
up, and therefore the branching becomes conspicuous.

APPENDIX E: PARTICIPATING ORBITALS

The one-particle reduced probability matrix that is associ-
ated with a many-body state is ρk′,k = (1/N )〈b†

kbk′ 〉. We define

Norbitals = [Tr(ρ2)]−1. (E1)

This is a measure for fragmentation. For a many-body co-
herent state Norbitals = 1, meaning that all the particles are
condensed in a single orbital. Semiclassically, such state can
be pictured as a localized Gaussian-like distribution in phase
space. It is important to realize that at the end of a relay-
shuttling process we get Norbitals = 1 in the reduced dimer
representation, but Norbitals = 2 in the proper trimer represen-
tation, reflecting a twin Fock state (half of the particles in
each orbital). At the swap we have Norbitals = 3. Appendix F
provides plots of Norbitals(t ) and Nstates(t ) for the protocols that
are discussed in the main text.

For a dimer, the Norbitals = 1 coherent states are related as
follows to the Fock states |n〉:

|θ, ϕ〉 =
N∑

n=0

√(
N

n

) [
cos

θ

2

]N−n[
sin

θ

2

]n

einϕ |n〉. (E2)

The Husimi function uses this overcomplete basis in order
to represent the many-body quantum state on the (Sx, Sy, Sz )
Bloch sphere. Namely, it is defined as follows:

Q(θ, ϕ) = |〈θ, ϕ|ψ〉|2. (E3)

If n = (N/2) − Sz were the occupation coordinate in the po-
sition (site) basis, then θ = 0 would be located at the north
pole. But we have defined n = (N/2) − Sx as the occupation
coordinate in the momentum (orbital) basis. Therefore our
n = 0 is located at the east pole, which is redefined as the
origin for θ . Accordingly Sx = (N/2) cos(θ ). We plot images
of the Husimi function using (Sx, Sz ) coordinates.

APPENDIX F: DEPLETION AND SPREADING
AS A FUNCTION OF TIME

We present figures that provide examples for the temporal
variation of 〈n〉 and Nstates and Norbitals. Figure 10 is for the
dimer simulations, while Figs. 11 and 12 are for the trimer.
Figure 10 demonstrates that relay shuttling is rather reversible.
As opposed to that, in diabatic ejection we have splitting in the
reversed sweep, which is reflected in Nstates and Norbitals, and
also spoils 〈n〉. In Fig. 11 we include a black line that is gener-
ated by the Bogoliubov-approximated Hamiltonian H(0). This
approximation is formally equivalent to the relay-shuttling
scenario of Fig. 10. Note that its td agrees with the blue line,
but not with the red line (very slow sweep), reflecting that
different depletion scenarios are involved.

APPENDIX G: TOA VS Bogoliubov

As far as U is concerned, naive TOA for any ring (L > 2)
gives no hopping. Therefore TOA implies that H of the rings

FIG. 11. Depletion vs time for the trimer. The depletion 〈n〉, and Nstates and Norbitals, are plotted as a function of time for �̇ = 5π × 10−4

(blue) and for very slow rate �̇ = 3.33π × 10−7 (red). The black line is generated with the Bogoliubov-approximated Hamiltonian H(0) for
�̇ = 5π × 10−4. The other model parameters and the vertical lines are as in Fig. 3.
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FIG. 12. Irreversibility vs waiting time. This is an additional
panel for Fig. 5. It illustrates the erratic dependence of Nstates on the
waiting time for �̇ = 5π × 10−6. In the main-text figure a few values
of Nstates are sampled for each �̇.

takes the form of the dimer Hamiltonian Eq. (A3) without the
last term. We can compare it to the approximation that [69] is
using for a continuous ring of length 2πR ≡ La. To get this
limit the lattice constant a should be taken to zero, keeping La
constant. In this limit K = (ma2)−1 is related to the mass of
the particle. The gauge field is � = (πR2) × 2m�, where �

is the rotation frequency. The single-particle energies are

Ek = 1

2mR2
(k − m�R2)2, k = integer. (G1)

Hence, up to a constant, E is identified as the rotation fre-
quency:

E = E1 − E0 = 1

2mR2
− �. (G2)

One wonders whether the discussion of “Nucleation in
finite topological systems during continuous metastable quan-
tum phase transitions” [69] is flawed. In order to answer this
question we have to appreciate the physical significance of
the continuum limit L → ∞ that was considered there. It is
physically clear that “rotation” of a flat clean ring (that has
neither tilt nor lattice potential) is an empty notion: nothing
changes in the Hamiltonian. Furthermore, in this limit, chaos
is not an issue (the L → ∞ limit is integrable). The physics
that we discuss becomes relevant as L becomes finite, and
irreversibility is most pronounced for L = 3.

Still one may insist on adopting TOA for a finite L ring.
How would the results be in comparison with the correct
picture? Looking at Fig. 3 of [69] we see that the interest
there is in simple adiabatic shuttling along the upper level,
during which no bifurcation occurs. In this energy range there
is no major difference between the TOA and the Bogoliubov
versions, as we see from looking on the higher levels in Fig. 6.
But for the scenario that we consider, starting at n = 0, the
TOA completely fails. Demonstration of this colossal failure
is provided in Fig. 13.

APPENDIX H: SIMULATIONS WITH A TILTED RING

Figure 13 compares the dynamics that is generated by H
with the dynamics that is generated using TOA. In the TOA
Hamiltonian we keep just two momentum orbitals. Without
tilt the TOA Hamiltonian is identical with the U = 0 Hamil-
tonian, and therefore its failure is trivial (not displayed). We

FIG. 13. Simulations with a tilted ring. These are additional pan-
els for Fig. 3 of the main text. The parameters are the same as for
the left panels there (�̇ = 5π × 10−4), with added tilt ε = 0.1. The
upper panels are generated with the full Hamiltonian, while the lower
panels use TOA.

therefore add a tilt ε �=0 as in [69]. We see that the TOA
completely fails to reproduce the dynamics.

APPENDIX I: BIFURCATIONS

The (Sx, Sz ) contour lines of the Hamiltonian Eq. (8) are
ellipses that are chopped by the circle S2

x + S2
z = (N/2)2. If

the circle is ignored, the minimum is at

(Sx, Sz ) =
( E

2U⊥
,

ε

2U‖

)
. (I1)

In the relay-shuttling scenario, as E is varied, a bifurcation
takes place at the east pole once this minimum enters into the
circle. This happens at Eq. (13). In the adiabatic ejection sce-
nario the relevant bifurcation happens on the bounding circle:
before the bifurcation we have on the circle one minimum and
one maximum; after the bifurcation a secondary minimum
and an associated saddle point appear. In order to find the
bifurcation we define the function

h(θ ) = H

(
Sx:=N

2
cos(θ ), Sz:=N

2
sin(θ )

)
. (I2)

Then we write the equations h′(θ ) = 0 and h′′(θ ) = 0, for
the first and second derivatives, as required at the bifurcation
point. The combined equations sin θ h′′(θ ) − cos θ h′(θ ) = 0
and cos θ h′′(θ ) + sin θ h′(θ ) = 0 are solved to get Eq. (12).

APPENDIX J: QUANTUM STABILITY
OF THE CONDENSATE

For a frozen value of � we perform simulations whose
purpose is to monitor the stability of the quantum condensate.
The interest is in the regime �stb < � < �dyn. In this regime
the classical cloud has a piece that is trapped on a dynami-
cally stable island, and therefore cannot decay. But quantum
mechanically the cloud can tunnel through the KAM barriers,
and therefore has a finite lifetime τ . The survival probability
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P(t ) = |〈�(0)|�(t )〉|2 of the condensate has been found for
representative values of �. From that τ has been extracted.
In the range of interest, for our choice of parameters, τ ≈ 90.

The survival amplitude is related to the LDOS via a Fourier
transform, and therefore one can say that we employ here an
LDOS based determination of τ .
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