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Photon blockade in non-Hermitian optomechanical systems with nonreciprocal couplings
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We study the photon blockade at exceptional points for a non-Hermitian optomechanical system coupled
to the driven whispering-gallery-mode microresonator with two nanoparticles under the weak optomechanical
coupling approximation, where exceptional points emerge periodically by controlling the relative angle of the
nanoparticles. We find that conventional photon blockade occurs at exceptional points for the eigenenergy
resonance of the single-excitation subspace driven by a laser field and discuss the physical origin of conventional
photon blockade. Under the weak driving condition, we analyze the influences of the different parameters on
conventional photon blockade. We investigate conventional photon blockade at nonexceptional points, which
exists at two optimal detunings due to the eigenstates in the single-excitation subspace splitting from one
(coalescence) at exceptional points to two at nonexceptional points. Unconventional photon blockade can occur
at nonexceptional points, while it does not exist at exceptional points since the destructive quantum interference
cannot occur due to the two different quantum pathways to the two-photon state not being formed. The realization
of photon blockade in our proposal provides a viable and flexible way for the preparation of single-photon
sources in the non-Hermitian optomechanical system.
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I. INTRODUCTION

Photon blockade (PB) and tunneling are current research
topics and play an essential role in various fundamental stud-
ies and practical applications [1–24]. In these pioneering
studies, PB is generated in weakly nonlinear systems, al-
lowing for destructive quantum interference between distinct
driven-dissipative pathways [25–30], called unconventional
PB (UPB). Based on this fundamental principle, many quan-
tum systems are predicted to have the PB effect with
weak nonlinearities, such as the nonlinear photonic molecule
[31–33], an optical cavity with a quantum dot [34–37],
coupled single-mode cavities with second- or third-order non-
linearity [38–44], a coupled optomechanical system [45–48],
a gain cavity [49], exciting polaritons [50], a non-Markovian
system [51,52], and Gaussian squeezed states [53,54]. On the
other hand, PB arises from the anharmonicity in the eigenen-
ergy of the systems caused by strong nonlinearity [55–63],
called conventional PB (CPB). There are various systems
for producing CPB, such as cavity quantum electrodynam-
ics (QED) systems [64–78], circuit QED systems [79–82],
optomechanical systems [83–95], coupled cavities [96,97], a
two-level system coupled to the cavity [98–104], dynamical
blockade [105], a quantum dot in a photonic crystal system
[106], and a quantum dot coupled to a nanophotonic waveg-
uide [107].

Experimentally [108,109], the signature of PB and tun-
neling can be distinguished by measuring the second-order
correlation function g(2)(0) [110]. For the PB [or the photon
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antibunching g(2)(0) < 1] driven by an external coherent field,
the presence of a single photon in a system will hinder the
coupling of the subsequent photons because of the strong non-
linearities present in the quantum system, while for the photon
tunneling [or the photon bunching g(2)(0) > 1], the coupling
of the initial photons will favor the coupling of the subsequent
photons [110]. The potential applications of PB include the
realizations of interferometers [111], quantum nonreciprocity
[112,113], and single-photon transistors [114].

The nonlinear interaction between optical and mechan-
ical modes arising from the radiation pressure force in
cavity optomechanical (COM) systems exhibits many inter-
esting nonlinear effects such as photon (phonon) blockade
[83,115,116], nonreciprocity [117–128], optomechanical-
induced transparency [129–131], and nonlinearity [132–134].
Cavity optomechanics has received significant attention in
both fundamental experiments [135,136] and sensing applica-
tions [137,138]. Currently, experimental techniques of cavity
optomechanics are still in the single-photon weak-coupling
regime [139]. However, to date, only a few realizations such
as cold-atomic clouds in the optomechanical cavity [140,141]
have met the requirements.

In parallel, properties and applications of non-Hermitian
systems [142–144], in particular, exceptional point (EP) sys-
tems, have attracted intense interest in recent years [145–153].
In such systems, two or more eigenstates coalesce at EPs,
leading to a variety of unconventional effects observed in
experiments, such as loss-induced coherence [154,155], PB
induced by dissipation and chirality [156,157], unidirectional
lasing [158], unidirectional invisibility [159], robust wireless
power transfer [160], and exotic topological states [161,162].
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The EP effects in COM systems have also been probed
both theoretically and experimentally [163–166], such as
the low-power phonon laser [164,165], high-order EPs in
COM systems [166], and nonreciprocal COM devices [163],
highlighting new opportunities for enhancing or steering co-
herent light-matter interactions using the new tool of EPs.
Recently, by coupling a whispering-gallery-mode (WGM)
microresonator with two external nanoparticles, the periodic
emergence of EPs was observed experimentally for tuning the
relative positions of the particles [167]. The counterintuitive
EP effects, such as modal chirality [167,168] and highly sen-
sitive sensing [169,170], have been revealed in these exquisite
devices.

The influences of exceptional points [157] and PT [17] on
the photon blockade have been discussed in the non-Hermitian
coupled cavity systems with Kerr nonlinearity. However, we
find that the connections between the PB and EPs have not
been studied in the non-Hermitian optomechanical system. To
be specific, the key to addressing the problem is to explore
whether and how EPs affect PB.

In this paper we investigate the PB effects at EPs in a
non-Hermitian optomechanical system coupled to the driven
WGM microresonator with two nanoparticles, where the cou-
pling between clockwise (CW) and counterclockwise (CCW)
traveling waves is nonreciprocal. By tuning the relative po-
sition of two nanoparticles, the system can be steered to an
EP or away from it, where the photon statistical properties are
well controlled such that CPB at EPs is realized. Moreover,
we discuss the origin of CPB at EPs.

Our scheme has the following features. (i) Conventional
PB occurs at EPs for the eigenenergy resonance of the single-
excitation subspace driven by a laser field. (ii) Conventional
PB can be found at non-EPs for two optimal detunings. (iii)
Unconventional PB at EPs does not occur due to the two
different quantum interference pathways not being formed,
but it can exist at non-EPs.

The remainder of the paper is organized as follows. In
Sec. II the theoretical model and Hamiltonian are described
for the WGM microresonator coupled with the mechanical
mode. In Sec. III the photon statistical properties and EPs of
the system are discussed. The physical origin of CPB at EPs
is revealed. In Sec. IV we give the analytical solution of the
second-order correlation function and study the influences of
the different parameters on CPB. Moreover, CPB at non-EPs
is discussed. In Sec. V we investigate UPB at EPs and non-
EPs. Finally, the main results are summarized in Sec. VI.

II. MODEL AND HAMILTONIAN

As depicted in Fig. 1, we consider a WGM resonator
consisting of two optical modes, where the coupling between
two modes is nonreciprocal, which can be achieved by two
nanoparticles [171]. This resonator driven by a laser with the
frequency ωl also supports a phonon mode at the mechanical
frequency ωm. Two silica nanotips as Rayleigh scatterers are
placed in the evanescent field of the resonator, which are
fabricated by the wet etching of tapered fiber tips prepared
by heating and stretching standard optical fibers. The position
of each particle is controlled by a nanopositioner, which tunes
the relative position and effective size of the nanoparticle in

FIG. 1. Optomechanics in a microresonator is perturbed by two
nanoparticles in the WGM field. The waveguide is driven by a laser
with frequency ωl to the WGM microresonator through a tapered
fiber. The resonator with the cavity effective gain rate 2γ supports
a mechanical mode at the frequency ωm. Here μ is the relative
angle between the two particles denoted by S1 and S2. By tuning
the relative phase angle μ between the particles, one can control the
nonreciprocal couplings E1 and E2 given by Eq. (1) between CW and
CCW modes, which results in periodic revival and suppression of
mode splitting and coalescence.

the WGM fields. The non-Hermitian optical coupling of the
CW and CCW traveling waves induced by the nanoparticles
is described by the scattering rates [153,157,172–174]

E1 = λ1 + λ2ei2mμ,

E2 = λ1 + λ2e−i2mμ,
(1)

where E1 (E2) corresponds to the scattering from the CCW
(CW) mode to the CW (CCW) mode, m is the azimuthal mode
number, μ denotes the relative angular position of the two
scatterers, and λ j ( j = 1, 2) is the complex frequency splitting
induced by the jth scatterer, which depends on the volume of
the jth particle within the WGM fields and is tuned by con-
trolling the distance between the particle and resonator with
nanopositioners. Steering the angle μ can bring the system to
EPs, as already observed experimentally [167,169]. Moreover,
we discuss the experimental implementation of Eq. (1) in
Appendix A. In the rotating frame V̂1 = exp[−iωl t (â†

1â1 +
â†

2â2)], the total non-Hermitian Hamiltonian of the system is
written as (h̄ ≡ 1)

ĤT = �1â†
1â1 + �2â†

2â2 + ωmb̂†b̂ + E1â†
1â2 + E2â†

2â1

− g(b̂† + b̂)(â†
1â1 + â†

2â2) + Fâ†
1 + Fâ1, (2)

where â1 (â2) and â†
1 (â†

2) denote the photon annihilation
and creation operators of the CW (CCW) mode, respectively,
satisfying [â1, â†

1] = 1 and [â2, â†
2] = 1; b̂ (b̂†) is the phonon

annihilation (creation) operator of the mechanical mode; and
� j = ω j − ωl is the detuning between the cavity and laser
with ω j = ω0 − iγ j/2 + λ1 + λ2, where ω0 is the frequency
of the bare system. The effective loss rate γ j = γ i

j − ξ is
reduced by the gain ξ (round-trip energy gain) and intrin-
sic loss rate γ i

j (γ j < 0) [175–177]. In consideration of a
small change in the cavity length, the cavity optomechanical
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coupling coefficient is written as g = ω0/
√

2R2meffωm, where
R is the radius of the resonator and meff denotes the effective
mass of the mechanical mode. In addition, F = √

2|γ1|P/h̄ωl

denotes the amplitude of the laser field with power P.
With the unitary transformation V̂2 = exp[g/ωm(â†

1â1 +
â†

2â2)(b̂† − b̂)], Eq. (2) becomes

ĤKerr = �1â†
1â1 + �2â†

2â2 + ωmb̂†b̂ + E1â†
1â2 + E2â†

2â1

− g2/ωm[(â†
1â1)2 + (â†

2â2)2 + 2â†
1â1â†

2â2]

+ Fâ†
1 + Fâ1, (3)

where we make the weak optomechanical coupling approxi-
mation, i.e., g/ωm � 1. The derivation details of Eq. (3) can
be found in Appendix B. We find that the mechanical mode is
decoupled from the optical cavity, which means the evolutions
of optical and mechanical parts are independent of each other,
i.e., the state evolution of the total system e−iĤKerrt |ψ〉sys =
e−iĤeff t |ψ〉opt ⊗ e−iωmb̂†b̂t |ψ〉mech. When we study the photon
statistical properties in the system, the mechanical part in
Eq. (3) can be ignored safely and then Eq. (3) becomes

Ĥeff = �1â†
1â1 + �2â†

2â2 + E1â†
1â2 + E2â†

2â1

−U (â†
1â1â†

1â1 + â†
2â2â†

2â2 + 2â†
1â1â†

2â2)

+ Fâ†
1 + Fâ1, (4)

where U = g2/ωm denotes the Kerr-type nonlinear strength
induced by the optomechanical coupling. We also discuss the
equivalence between the original Hamiltonian (2) and effec-
tive Hamiltonian (4) under the weak optomechanical coupling
approximation in Appendix C, which shows that the approxi-
mation used is valid.

The effective Hamiltonian (4) without the effective loss
rate can be partitioned into Hermitian and anti-Hermitian parts
Ĥeff = Ĥ+ + Ĥ−, where we have Ĥ+ = Ĥ†

+ and Ĥ− = −Ĥ†
−.

To correctly account for the driven-dissipative character of the
system, we introduce the Lindblad master equation for the
system density matrix [142–144]

dρ

dt
= −i[Ĥ+, ρ] − i{Ĥ−, ρ} +

∑
j

(γ j

2

)
D(ρ, â j )

+ 2i Tr(ρĤ−)ρ, (5)

where D(ρ, ô) = 2ôρô† − ô†ôρ − ρô†ô is the Lindblad super-
operator term for the annihilation operator ô acting on the
density matrix ρ to account for losses to the environment,
{Ĥ−, ρ} is defined as Ĥ−ρ + ρĤ−, and γ1 and γ2 denote
the effective damping constants of CW and CCW modes,
respectively. Without loss of generality, we assume that the
decay rates and eigenfrequencies of the resonator modes are
respectively equal, i.e., |γ1| = |γ2| = 2γ and ω1 = ω2 = ω

(�1 = �2 = � ≡ ω − ωl ). The steady-state solution ρs of the
density matrix ρ is obtained by setting dρ/dt = 0 in Eq. (5).

III. PHOTON STATISTICAL PROPERTIES

In this section we analyze CPB at EPs in detail and in-
vestigate the photon statistical properties with various relative
angular positions μ of two nanoparticles, which are carried
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104

0 2 4 6

100

104

(a) (b)

FIG. 2. Second-order correlation function g(2)(0) as a function
of the detuning � with various relative angular positions μ of two
nanoparticles solved by the master equation (5). The parameters are
λ1 = (1.5 − 0.355i)γ , λ2 = (1.4 − 0.645i)γ , m = 4, F = 0.1γ , and
(a) U = 2γ and (b) U = 3γ .

out by simulating the quantum master equation numerically.
First of all, the photon statistical properties of the CW mode
are described by the second-order correlation function of the
steady state defined by

g(2)(0) = 〈â†
1â†

1â1â1〉
〈â†

1â1〉2 = Tr(ρsâ
†
1â†

1â1â1)

[Tr(ρsâ
†
1â1)]

2 , (6)

which emphasizes the joint probability of detecting two pho-
tons at the same time. The case of g(2)(0) < 1 [g(2)(0) > 1]
corresponds to photon antibunching (bunching) in the cavity
mode, which is a nonclassical effect.

Figure 2 shows g(2)(0) as a function of the detuning �

with various angles μ, which is solved by Eq. (5). In order
to exactly obtain the numerical results about detuning, we
assume � to be real by choosing proper parameters [167,178–
180]: λ1 = (1.5 − 0.355i)γ , λ2 = (1.4 − 0.645i)γ , m = 4,
and F = 0.1γ . In Fig. 2(a), the bunching [g(2)(0) > 1] is
observed at μ = 0, 0.04π, 0.2π and the maximum bunching
g(2)(0) ∼ 105 is obtained for �/γ = 2. Changing μ to 0.125π

and 0.15π , the bunching effects are obviously weakened, as
shown by the purple-triangle line and pink-diamond line in
Fig. 2(a). However, at μ = 0.1171π, 0.1329π , the most strik-
ing feature is the occurrence of PB [g(2)(0) ∼ 0.005] when the
driving field is in resonance with the cavity, i.e., � = U = 2γ ,
as shown by the blue-pentagram line and yellow-square line
in Fig. 2(a). Moreover, increasing the Kerr-type nonlinear
strength to U = 3γ has a similar effect in Fig. 2(a) for �/γ =
3, as shown in Fig. 2(b). Appendix D presents the discussion
of special points � = 4γ and � = 6γ in Figs. 2(a) and 2(b).

To gain more insight into the CPB shown in Fig. 2, we in-
vestigate the eigenenergy of the non-Hermitian Hamiltonian.
In the weak driving regime (F � γ ), the Hilbert space of this
system can be restricted in a subspace with a few photons
spanned by the basis states {|n1, n2〉|N � 2} with the total
excitation number N = n1 + n2, which denotes the Fock state
with n1 photons in the bare CW mode and n2 photons in the
CCW mode. In the single-excitation subspace, we write the
eigenenergies of the non-Hermitian Hamiltonian (4) without
the driving term as

E±
1 = ω − U + c±

1 , (7)

043715-3



J. Y. SUN AND H. Z. SHEN PHYSICAL REVIEW A 107, 043715 (2023)

0 0.25 0.5 0.75
0

2

4

6

0 0.25 0.5 0.75
0

2

4

6

0 0.25 0.5 0.75
-2

-1

0

0 0.25 0.5 0.75
-2

-1

0

0 0.25 0.5 0.75
/

0

0.5

1

0 0.25 0.5 0.75
/

0.8

1

(a1)

(c1)

1 2 3 4 5 6 1 2 3 4 5 6

(c2)

(b2)(b1)

(a2)

FIG. 3. (a) Real parts of the frequency splitting, (a1) Re(E+
1 −

E−
1 ) and (a2) Re(E+

2 − E 0
2 ), as functions of μ. (b) Imaginary parts of

the frequency splitting, (b1) Im(E+
1 − E−

1 ) and (b2) Im(E+
2 − E 0

2 ).
(c) Scalar product between the eigenstates associated with the Hamil-
tonian (4) without the driving field as a function of μ. The parameters
are λ1/γ = 1.5 − 0.355i, λ2/γ = 1.4 − 0.645i, m = 4, and U/γ =
2.

with the corresponding non-normalized eigenstates

|ψ±
1 〉 = ±

√
E2|0, 1〉 +

√
E1|1, 0〉, (8)

where c±
1 = ±√

E1E2. Moreover, we also obtain the
eigenenergies Es

2 = 2ω − 4U + cs
2 and corresponding

non-normalized eigenstates |ψ±
2 〉 = √

2E2|0, 2〉 + c±
2 |1, 1〉 +√

2E1|2, 0〉 and |ψ0
2 〉 = E2|0, 2〉 − E1|2, 0〉 in the two-

excitation subspace, where s = ±, 0, c±
2 = ±2

√
E1E2, and

c0
2 = 0. This shows that the eigenmode structure depending

on the asymmetry of the coupling coefficients E1 and E2

can be tuned by controlling the relative angular position μ

between the nanoparticles.
Different from the degeneracy of eigenenergies, EPs cor-

respond to the situation where the two eigenenergies and
their eigenstates coalesce [147,181]. To find EPs of the non-
Hermitian system, we plot the real and imaginary parts of
the frequency splitting and the scalar product between the
eigenstates associated with the Hamiltonian (4) without the
driving field as functions of μ, as shown in Fig. 3, which
manifests Ĥeff has two EPs (e.g., μ1 and μ2 in Fig. 3) with
the energy E±

1 = ω − U . In this case, EPs emerge when
E+

1 = E−
1 , which leads to E2 or E1 equaling zero. The case

of E1 	= 0 and E2 = 0 corresponds to solely CW propagation,
where the eigenstate is composed of only a single Fock state,
i.e., |ψ±

1 〉=|1, 0〉, while the case of E1 = 0 and E2 	= 0 is
associated with the CCW propagation. From E2 = 0 or E1 = 0
(resulting in |λ1| = |λ2|) we obtain [153,157]

μ=[nπ ± arg(λ1/λ2)]/2m, n = ±1,±3, . . . , (9)

where + corresponds to E1 = 0 with μ2 = 0.1329π , μ4 =
0.3829π , and μ6 = 0.6329π in Fig. 3, while − denotes E2 =
0 with μ1 = 0.1171π , μ3 = 0.3671π , and μ5 = 0.6171π in
Fig. 3. Coincidentally, the special μ in Fig. 2 happens at EPs
μ1 = 0.1171π and μ2 = 0.1329π as shown in Fig. 3, where
the photon statistical properties become extremely interesting.
We first discuss the case of E1 	= 0 and E2 = 0 in Fig. 4(a). In
this case, the eigenenergy of the system is E1 = ω − U with

FIG. 4. Energy-level diagram showing the origin of the CPB at
EPs with the eigenenergy resonance of the single-excitation subspace
driven by a laser field (i.e., � = U or δ1 = 0), where |ψ j〉 (for E1 	= 0
and E2 = 0) and |ψ̃ j〉 (for E1 = 0 and E2 	= 0) denote the eigenstates
of Eq. (4) without the driving term. (a) For E1 	= 0 and E2 = 0 (i.e.,
the scattering from the CW mode to the CCW mode is forbidden),
the CPB emerges due to the anharmonic energy levels. (b) For E1 = 0
and E2 	= 0 (i.e., the scattering from the CCW mode to the CW mode
is forbidden), CCW photons are populated in the resonator, which
also results in the occurrence of the CPB for the CW mode.

the unique eigenstate |ψ1〉 = |1, 0〉 in the single-excitation
subspace. Furthermore, in the two-excitation subspace, the
eigenstate |ψ2〉 = |2, 0〉 composed of only a Fock state has

exact energy 2ω − 4U . Indeed, the indirect paths |ψ1〉 E2−→
|0, 1〉, |ψ2〉

√
2E2−−−→ |1, 1〉, and |1, 1〉

√
2E2−−−→ |0, 2〉 are forbidden

due to E2 = 0 at EPs, which induces a predominantly CW
propagating mode. Additionally, the direct path to the two-
photon state in the CW mode is allowed. Note that the uneven
spacing of the energy levels is induced by the nonlinearity,
which leads to the strong suppression of the absorption of two
photons from the incident laser. Therefore, CPB of the CW
mode occurs at the EP μ1 = 0.1171π .

Moreover, a very different situation appears for E1 = 0 and
E2 	= 0 in Fig. 4(b), where there is a unique eigenstate |ψ̃1〉 =
|0, 1〉 consisting of only a single-photon Fock state, whose
energy is exactly ω − U in the single-excitation subspace.
The two-excitation eigenstate |ψ̃2〉 = |0, 2〉 formed by only
a Fock state has the exact eigenenergy 2ω − 4U . The indirect

paths |ψ̃1〉 E1−→ |1, 0〉, |ψ̃2〉
√

2E1−−−→ |1, 1〉, and |1, 1〉
√

2E1−−−→ |2, 0〉
are blocked due to E1 = 0 at EPs. In other words, only the CW
mode couples to the CCW mode, while the CCW mode cannot
couple to the CW mode for E1 = 0, which suggests the CCW
propagating mode is predominant. Here |ψ̃1〉 = |0, 1〉 means
that the CW excitation induced by the driving field is scattered
to the CCW mode, and the same is true for the two-excitation
subspace. Additionally, the transition from |1, 0〉 to |2, 0〉 is
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forbidden due to the Kerr-type nonlinearity. Therefore, the
probability of the second photon in the CW mode is sup-
pressed, which indicates the presence of EPs resulting in the
occurrence of CPB for the CW mode.

Indeed, for E1 	= 0 and E2 = 0, the physics is dominated
by the photon of the CW mode since the eigenstates in the
single- and two-excitation subspaces are composed of only
a single Fock state |n1, 0〉 of the CW mode. For E1 = 0 and
E2 	= 0, CCW photons are populated in the resonator due
to the eigenstates consisting of only a Fock state |0, n2〉 of
the CCW mode. The reason for this difference is the non-
reciprocal coupling between CW and CCW modes at EPs.
Nevertheless, we observe effective CPB for the CW mode
in two cases, associated with the suppression of the state
|2, 0〉. In addition, CPB occurs at EPs if the eigenenergy of
the single-excitation subspace is exactly equal to the laser
frequency, i.e., ωl = E±

1 = ω − U or � = ω − ωl = U [see
below Eq. (5)], where the probability of the single-photon
state is enhanced. The CPB at EPs shows the influence of EPs
on the quantum properties of the non-Hermitian system.

IV. COMPREHENSIVE ANALYSIS

Under the weak driving condition, the state of the system
at any time is expanded as

|ψ (t )〉 =
N�2∑

n1=0,n2=0

Cn1n2 (t )|n1, n2〉, (10)

where Cn1n2 (t ) represents the probability amplitude of the
state |n1, n2〉 and satisfies |Cn1n2 |N=2 � |Cn1n2 |N=1 � |C00| �
1. Defining

δ1 = � − U,

δ2 = � − 2U,
(11)

and substituting Eqs. (4) and (10) into the Schrödinger
equation, we obtain the steady-state probability amplitude
equations

0 = δ1C10 + E1C01 +
√

2FC20 + FC00,

0 = δ1C01 + E2C10 + FC11,

0 = 2δ2C20 +
√

2E1C11 +
√

2FC10,

0 = 2δ2C11 +
√

2E1C02 +
√

2E2C20 + FC01,

0 = 2δ2C02 +
√

2E2C11, (12)

which lead to C10 = Fδ1/η1 and

C20 = F 2
(
2δ1δ

2
2 + E1E2δ2 − E1E2δ1

)
2
√

2δ2η1η2

, (13)

ignoring higher-order terms in Eq. (12), where η1 = E1E2 −
δ2

1 and η2 = E1E2 − δ2
2 . With these results we obtain

g(2)(0) � 2|C20|2
|C10|4

= |η1
(
2δ1δ

2
2 + E1E2δ2 − E1E2δ1

)|2
4
∣∣δ2

1δ2η2

∣∣2 . (14)

At EPs (E1E2 = 0), when the detuning � is close to U (δ1 →
0), the second-order correlation function tends to zero, i.e.,

g(2)(0)
∣∣
δ1→0,E1E2=0 → 0. (15)
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FIG. 5. Influences of the different parameters on the CPB at EPs
by calculating g(2)(0) as a function of μ. The blue solid lines and yel-
low dots correspond to the analytical solutions given by Eq. (14) and
numerical simulations of Eq. (5), respectively. The parameters are
(a) � = U = 2γ and m = 4, (b) � = U = 2γ and m = 2, (c) � =
U = 4γ and m = 4, and (d) � = U = 4γ and m = 2. The other
parameters are the same as in Fig. 2(a). Here μ j ( j = 1, 2, . . . , 6),
corresponding to EPs, is the same as in Fig. 3, and μ′

1 = 0.2343π

and μ′
2 = 0.2657π .

If the detuning � approaches U (δ1 → 0), but not at EPs
(E1E2 	= 0), g(2)(0) tends to infinity [g(2)(0) → ∞], which
confirms that the EP is the necessary condition of CPB for this
case. Additionally, adjusting the relative angular position μ to
EPs (E1E2 = 0), if � is not close to U (or, equivalently, δ1 does
not tend to zero), g(2)(0) can be reduced to g(2)(0) = δ2

1/δ
2
2 ,

which may be either greater than one or less than one due to
Eq. (11). However, by tuning the parameter δ1 to 0 (� → U )
and keeping E1E2 = 0, g(2)(0) rapidly decreases to 0, which
indicates the strong antibunching effect. Therefore, the condi-
tion of CPB occurring at EPs is given by

μCPB = [nπ ± arg(λ1/λ2)]/2m, n = ±1,±3, . . . , (16a)

�CPB = U, (16b)

which is consistent with the physical interpretations in
Sec. III, where Eq. (16b) can be written as δ1 = 0, calculated
by Eq. (11).

Based on the above, we can explain the relevant CPB phe-
nomena in Fig. 2. Although the physical mechanisms in both
cases (E1 = 0 or E2 = 0) are slightly different, the presence
of EPs results in the occurrence of PB for the eigenenergy
resonance of the single-excitation subspace, and the results of
the two cases are almost identical, as shown μ1 = 0.1171π

and μ2 = 0.1329π in Fig. 2. The physics behind this sim-
ilarity can be explained from the analytical solution (14),
which is symmetric about E1 and E2. In other words, g(2)(0)
depends on the product of E1 and E2 more than each one
individually. At EPs (E1 = 0 or E2 = 0), E1E2 equals zero,
which leads to the values of g(2)(0) being almost the same
in both cases. Moreover, we plot the analytical and numerical
results for g(2)(0) in Fig. 5 and find that the minimum of g(2)(0)
periodically appears with the increase of μ, which implies that
CPB periodically exists at EPs. In Figs. 5(a) and 5(b), when
the azimuthal mode number m is half as large, the period of
the line is twice as large, as also reflected in Figs. 5(c) and
5(d), which is because m determines the period of E1 and E2
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in Eq. (1). As seen from Figs. 5(a) and 5(c), the optimal angle
μ corresponding to CPB occurring remains unchanged as U
varies, which originates from the fact that U does not affect
the condition (16) in the case of imposing � = U , but it can
enhance the performance of PB [also see Figs. 5(b) and 5(d)].
More photon statistical properties of CPB at EPs can be found
in Appendix E.

Before concluding the section, we present a discussion of
CPB at non-EPs. Considering that the occurrence of CPB
needs to meet the single-excitation eigenenergy resonance,

the driven laser frequency ωl (real number) is exactly equal
to the eigenenergy in Eq. (7) [i.e., ωl = ω − U ± √

E1E2 or
� − U ± √

E1E2 = 0; see below Eq. (5)], which requires the
eigenenergies E+

1 and E−
1 to be real. Therefore, the condition

of CPB at non-EPs is given by

0 = Im
√
E1E2,

� = U ∓ Re
√
E1E2,

(17)

which can lead to

cos 2mμ = |E1||E2| − |λ1|2(cos2θ1 − sin2θ1) − |λ2|(cos2θ2 − sin2θ2)

2|λ1||λ2|(cos θ1 cos θ2 − sin θ1 sin θ2)
, (18)

where θ j = argλ j is the argument of the complex num-
ber λ j . In order to consider non-EPs (i.e., E1E2 	= 0), we
adjust λ1/γ = 1.5 − 0.355i and λ2/γ = 1.4 − 0.645i [satis-
fying Eq. (9) at EPs in Sec. III] to λ1/γ = 1.5 − 0.5i and
λ2/γ = 1.4 − 0.5i, which meet the requirement for non-EPs
given by Eq. (17). Figure 6(a) shows that the imaginary part
of the complex eigenenergy splitting 2

√
E1E2 equals zero at

μnon-EP = 0.125π , which is consistent with that calculated
from Eq. (18). In this case, the real part of 2

√
E1E2 is not zero

[i.e., 2 Re
√
E1E2 = 0.2γ as shown in the inset of Fig. 6(b)]

and the scalar product between the eigenstates tends to zero in
Fig. 6(c), which implies that it is a non-EP.

Figures 7(a) and 7(b) show g(2)(0) versus the detuning at
the EP μ1 = 0.1171π with λ1/γ = 1.5 − 0.355i and λ2/γ =
1.4 − 0.645i, while Figs. 7(c) and 7(d) correspond to g(2)(0)
at the non-EP μnon-EP = 0.125π with λ1/γ = 1.5 − 0.5i and
λ2/γ = 1.4 − 0.5i. If the laser frequency ωl is exactly equal
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0
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0 0.25 0.5
-2

-1

0

0 0.25 0.5
/

0.5

1

0.125
0

0.2

0.4

0.125

-0.08

0

0.125
0

0.05
0.1

0.15

(b)

(c)

non-EP

(a)

FIG. 6. (a) Imaginary and (b) real parts of the complex eigenen-
ergy splitting [Im(E+

1 − E−
1 ) = 2 Im

√
E1E2 and Re(E+

1 − E−
1 ) =

2 Re
√
E1E2, originating from Eq. (7)] as functions of μ. (c) Scalar

product between the eigenstates given by Eq. (8) as a function of
μ, where μnon-EP = 0.125π . The parameters are λ1/γ = 1.5 − 0.5i,
λ2/γ = 1.4 − 0.5i, m = 4, and U/γ = 2.

to the eigenenergy E±
1 , CPB emerges at the non-EP μnon-EP =

0.125π in Fig. 7(c), as shown by �1 = 1.9γ and �2 = 2.1γ ,
which are obtained from � = U ∓ Re

√
E1E2 in Eq. (17) with

U = 2γ and Re
√
E1E2 = 0.1γ given by Fig. 6(b). In this case,

we show that the eigenstate in the single-excitation subspace
splits from one (coalescence) at EPs to two (|ψ−

1 〉 and |ψ+
1 〉)

at non-EPs. If U = 3γ , Im
√
E1E2 and Re

√
E1E2 remain un-

changed due to U not affecting scattering rates E1 and E2

given by Eq. (1), which results in the occurrence of CPB at the
optimal detunings �3 = 2.9γ and �4 = 3.1γ in Fig. 7(d).

V. DISCUSSION OF UPB

In order to give a complete description of the non-
Hermitian system, we discuss UPB at non-EPs and EPs.

(1) An UPB can exist at non-EPs (E1E2 	= 0), where the op-
timal condition can be derived by setting C20 = 0 in Eq. (13).

1.5 2 2.5 3 3.5
/

10-2

100

/

1.5 2 2.5 3 3.5
/

10-2

100

1.5 2 2.5 3 3.5
/

10-2

100

1.5 2 2.5 3 3.5
/

10-2

100

1 2
3 4

(d)(c)

(a) (b)

FIG. 7. (a) and (b) Plots of g(2)(0) given by Eq. (5) versus � in
order to study the CPB at the EP μ1 = 0.1171π [see below Eq. (9)],
for the parameters λ1/γ = 1.5 − 0.355i, λ2/γ = 1.4 − 0.645i, and
(a) U = 2γ and (b) U = 3γ . (c) and (d) Plots of g(2)(0) calculated
by Eq. (5) as a function of � for investigating the CPB at the non-EP
μnon-EP = 0.125π [obtained by Eq. (18)], for the parameters λ1/γ =
1.5 − 0.5i, λ2/γ = 1.4 − 0.5i, and (c) U = 2γ and (d) U = 3γ .
Based on the above parameters, we obtain �1 = 1.9γ , �2 = 2.1γ ,
�3 = 2.9γ , and �4 = 3.1γ given by Eq. (17). The other parameters
are the same as in Fig. 2(a).
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FIG. 8. The UPB can occur at non-EPs, where g(2)(0) as a
function of � is plotted by solving Eq. (5). Based on Eqs. (21)
and (22), the parameters are (a) λ1/γ = 1.5 − 0.5i, U = 2γ ,
μUPB = 0.1165π , �UPB = 1.9598γ ; (b) λ1/γ = 1.5 − 0.5i, U =
3γ , μUPB = 0.1165π , and �UPB = 2.9726γ ; (c) λ1/γ = 1.6 − 0.5i,
U = 2γ , μUPB = 0.1132π , and �UPB = 1.9855γ ; and (d) λ1/γ =
1.6 − 0.5i, U = 3γ , μUPB = 0.1132π , and �UPB = 2.9903γ . The
other parameters are λ2/γ = 1.4 − i, F = 0.001γ , and m = 4.

Taking the imaginary part of Eq. (13) as zero, we have

Im(E1E2) = 0, (19)

while the real part of Eq. (13) equaling zero leads to

Re(E1E2) = 2δ1δ
2
2

δ1 − δ2
, (20)

which induces δ1 	= 0 (or � 	= U ) due to Re(E1E2) 	= 0. Sub-
stituting Eq. (1) into Eq. (19), we have

cos(2mμUPB) = −|λ1|2 sin θ1 cos θ1 + |λ2|2 sin θ2 cos θ2

|λ1||λ2| sin(θ1 + θ2)
.

(21)
With Eqs. (21) and (1), Eq. (20) gives

�UPB = (−2)4/3U 2 + (−2)2/3M2 + 10UM

6M
, (22)

where

M = [3(
√

1344U 6 + 660U 3q + 81q2 − 9q)−110U 3]1/3,

with q = −4U 3 − URe(E1E2)/2. We notice that when the
optimal conditions in Eqs. (21) and (22) simultaneously are

satisfied, the strong antibunching can be obtained; otherwise
the system is not in the strong antibunching regime.

In Fig. 8(a), taking λ1/γ = 1.5 − 0.5i, λ2/γ = 1.4 − i,
m = 4, and U = 2γ , an UPB occurs at μUPB = 0.1165π and
�UPB = 1.9598γ given by Eqs. (21) and (22), which explain
the point A, while μUPB = 0.1165π and �UPB = 2.9726γ at
U = 3γ are given as point B in Fig. 8(b). Moreover, point
C in Fig. 8(c) corresponds to the optimal conditions μUPB =
0.1132π and �UPB = 1.9855γ for U = 2γ calculated by
Eqs. (21) and (22) when we change λ1 = (1.5 − 0.5i)γ to
λ1 = (1.6 − 0.5i)γ . Point D in Fig. 8(d) is evaluated by
μUPB = 0.1132π and �UPB = 2.9903γ at U = 3γ . The en-
ergy levels and transition paths are shown in Fig. 9(a), where
the nonzero nonreciprocal scattering rates E1 and E2 lead to the
occurrence of the destructive quantum interference between
two different excitation paths.

(2) An UPB does not exist at EPs, which is discussed as
follows.

(a) The destructive quantum interference between two (or
more) different excitation paths occurs for the existence of
UPB. With Eq. (12), E1 = 0 leads to

0 = δ1C10 + FC00,

0 = δ1C01 + E2C10,

0 = 2δ2C20 +
√

2FC10,

0 = 2δ2C11 +
√

2E2C20 + FC01,

0 = 2δ2C02 +
√

2E2C11, (23)

which corresponds to Fig. 9(b). We note that there is only one
path for the system to reach the two-photon state |2, 0〉 given
by Eq. (23) of the CW mode, i.e., the direct transition |1, 0〉 →
|2, 0〉.

For E2 = 0, we have

0 = δ1C10 + E1C01 + FC00,

0 = δ1C01,

0 = 2δ2C20 +
√

2E1C11 +
√

2FC10,

0 = 2δ2C11 +
√

2E1C02 + FC01,

0 = 2δ2C02, (24)

where the steady-state solution C01 = C02 = C11 = 0 can be
obtained. Therefore, the transition to the two-photon state

FIG. 9. (a) Transition paths at non-EPs (E1 	= 0 and E2 	= 0) lead to the destructive quantum interference responsible for UPB. Also shown
are the transition paths at EPs for (b) E1 = 0 and E2 	= 0 and (c) E1 	= 0 and E2 = 0, which reveal that the destructive quantum interference
cannot occur due to the two different quantum pathways to the two-photon state not being formed.
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|2, 0〉 only contains |1, 0〉 → |2, 0〉 in Fig. 9(c). The destruc-
tive quantum interference cannot occur due to Eqs. (23) and
(24), which results in UPB not existing.

(b) The UPB requires C20 = 0. At EPs [E1E2 =
0 or Im(E1E2) = Re(E1E2) = 0], the optimal conditions
[Im(C20) = 0 and Re(C20) = 0] given by Eqs. (19) and (20)
for UPB to exist lead to δ1 = 0, which is exactly consistent
with Eq. (16) (i.e., the condition for CPB to occur).

In summary, we point out that UPB exists only if the
following two conditions are simultaneously satisfied: (i)
The destructive quantum interference between two (or more)
different excitation paths occurs and (ii) the two-photon prob-
ability amplitude C20 equals zero. To be specific, the first
condition (i) is not met in case (a), which leads to the fact
that UPB does not exist at EPs.

VI. CONCLUSION

We have found that CPB emerges at EPs of the non-
Hermitian optomechanical system coupled with the driven
WGM microresonator under the weak optomechanical cou-
pling approximation for the eigenenergy resonance of the
single-excitation subspace driven by a laser field. We also
discuss the origin of CPB at EPs. For E1 	= 0 and E2 = 0,
with the direct path to the two-photon state in the CW mode
allowed, CPB emerges due to the anharmonic energy level,
where the eigenstates are composed of only a Fock state
|n1, 0〉. For E1 = 0 and E2 	= 0, the coalescence of eigenstates
consisting of only a Fock state |0, n2〉 causes the system to be
unable to absorb the second photon in the CW mode, which
also results in the occurrence of CPB.

Moreover, we study CPB at non-EPs, which occurs for
two optimal detunings because of the eigenstate splitting from
one (coalescence) at EPs to two at non-EPs in the single-
excitation subspace. We also show that UPB does not exist at
EPs since the destructive quantum interference cannot occur
due to the two different quantum pathways to the two-photon
state not being formed, while UPB can occur at non-EPs. In a
broader view, our results may have important applications in
generating single-photon sources for the non-Hermitian op-
tomechanical system, which aims to improve the performance
of quantum sensors [182–184] and quantum unidirectional
devices [167,185,186].
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APPENDIX A: DISCUSSION OF THE EXPERIMENTAL
IMPLEMENTATION

In this Appendix we present a discussion of the ex-
perimental feasibility of observing the prediction for an
optomechanical system coupled with the driven WGM mi-
croresonator. For the model under study, we mainly focus
on the following point: the scatterer-induced nonreciprocal
coupling of the CW and CCW traveling lights.

The non-Hermitian optical coupling of the CW and CCW
traveling lights can be induced by the nanoparticles, where
the isolated microdisk cavity is perturbed by two particles
in Refs. [172,173]. To gain more insight into Eq. (1), we
briefly review the two-mode approximation model, whose
central assumption is that the small perturbation induced by
the nanoparticles couples only the modes within a given de-
generate mode pair of the isolated microdisk. The key idea
is to model the dynamics in the slowly varying envelope
approximation in the time domain with a Schrödinger-type
equation. Considering that the WGM microcavity is an open
system, the effective Hamiltonian in the traveling-wave basis
(CW and CCW) is given by the 2 × 2 non-Hermitian matrix

Ĥ =
(

C E2

E1 C

)
, (A1)

where the real and imaginary parts of the diagonal element C
correspond to the frequency of the system and the decay rate
of the resonant traveling waves, respectively. The complex-
valued off-diagonal element E1 (E2) is the backscattering
coefficient, which describes the scattering from the CCW
(CW) to the CW (CCW) traveling wave. In general, it is pos-
sible that the backscattering between CW and CCW traveling
waves is asymmetric, i.e., |E1| 	= |E2|. For the particular case
of the WGM microresonator perturbed through two scatterers,
ignoring the frequency shifts for negative-parity modes, the
matrix elements of Ĥ are determined by

C =ω0 − iγ +
2∑

j=1

λ j,

E1 =
2∑

j=1

λ je
i2mμS j ,

E2 =
2∑

j=1

λ je
−i2mμS j , (A2)

where γ denotes the decay rate, m is the azimuthal mode
number, μS j is the angular position of scatterer S j , and λ j is
the complex frequency splitting induced by scatterer Sj alone.
In this case, we take the position of one of the nanoparticles
as the reference position. To be specific, we take nanoparticle
S1 (see Fig. 1) as the first particle in this model and set its
angular position to μS1 = 0. Subsequently, the angular posi-
tion of the second particle S2 is μS2 = μ, where μ denotes the
relative angular position of the two nanoparticles. Therefore,
the asymmetric backscattering coefficients of CW and CCW
traveling waves induced by the nanoparticles are reduced to

λ1 + λ2e±i2mμ, (A3)

which are consistent with Eq. (1). The backscattering coeffi-
cients can be adjusted by tuning the relative angle μ, which
modifies the photon statistical properties of the system. It is
worth noting that λ j can be calculated for the single-particle-
microdisk system either fully numerically (using, e.g., the
finite-element method [187] or the boundary-element method
[188]) or analytically using the Green’s-function approach
[189].
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APPENDIX B: DERIVATION OF THE SYSTEM
HAMILTONIAN

The Hamiltonian of the whole system is given by

Ĥ1 = Ĥ0 + Ĥm + Ĥint + Ĥdr,

Ĥ0 = ω1â†
1â1 + ω2â†

2â2 + E1â†
1â2 + E2â†

2â1,

Ĥm = p̂2

2meff
+ 1

2
meffω

2
mx̂2,

Ĥint = −Gx̂(â†
1â1 + â†

2â2),

Ĥdr = Fe−iωl t â†
1 + Feiωl t â1, (B1)

where G = ω0/R denotes the cavity optomechanics cou-
pling coefficient [190]. Making a canonical transformation to
the annihilation operator b̂ and creation operator b̂† as x̂ =√

1/2meffωm(b̂† + b̂) and p̂ = i
√

meffωm/2(b̂† − b̂), Eq. (B1)
is reduced to

Ĥ2 = Ĥopt + Ĥdr,

Ĥopt = ω1â†
1â1 + ω2â†

2â2 + ωmb̂†b̂ + E1â†
1â2 + E2â†

2â1

− g(b̂† + b̂)(â†
1â1 + â†

2â2),

Ĥdr = Fe−iωl t â†
1 + Feiωl t â1, (B2)

where ω j is the resonance frequency of the jth cavity and
the cavity optomechanics coupling coefficient can be changed
as g = G/

√
2meffωm. By performing a rotating transformation

defined by V̂1 = exp[−iωl t (â†
1â1 + â†

2â2)], Eq. (B2) becomes

ĤT = V̂ †
1 Ĥ2V̂1 − iV̂ †

1

dV̂1

dt

= �1â†
1â1 + �2â†

2â2 + ωmb̂†b̂ + E1â†
1â2 + E2â†

2â1

− g(b̂† + b̂)(â†
1â1 + â†

2â2) + Fâ†
1 + Fâ1, (B3)

which corresponds to Eq. (2). In order to decouple the
mechanical resonator from the total Hamiltonian, the Hamil-
tonian (B3) with the time-independent unitary transformation
by V̂2 = exp[g/ωm(â†

1â1 + â†
2â2)(b̂† − b̂)] leads to

Ĥ3 = V̂ †
2 ĤT V̂2

= �1V̂
†

2 â†
1â1V̂2 + �2V̂

†
2 â†

2â2V̂2 + ωmV̂ †
2 b̂†b̂V̂2

+ E1V̂
†

2 â†
1â2V̂2+E2V̂

†
2 â†

2â1V̂2−gV̂ †
2 (b̂†+b̂)(â†

1â1+â†
2â2)V̂2

+ FV̂ †
2 â†

1V̂2 + FV̂ †
2 â1V̂2. (B4)

With eαÂB̂e−αÂ = B̂ + α[Â, B̂] + α2

2! [Â, [Â, B̂]] + · · · [191],
we have the identities

V̂ †
2 â†

1V̂2 = â†
1e−(g/ωm )(b̂†−b̂),

V̂ †
2 â†

2V̂2 = â†
2e−(g/ωm )(b̂†−b̂),

V̂ †
2 â1V̂2 = â1e(g/ωm )(b̂†−b̂),

V̂ †
2 â2V̂2 = â2e(g/ωm )(b̂†−b̂),

V̂ †
2 b̂†V̂2 = b̂† + g

ωm
(â†

1â1 + â†
2â2),

V̂ †
2 b̂V̂2 = b̂ + g

ωm
(â†

1â1 + â†
2â2), (B5)

and then obtain Ĥ3 from Eq. (B4) as follows:

Ĥ3 = �1â†
1â1 + �2â†

2â2 + ωmb̂†b̂ + E1â†
1â2 + E2â†

2â1

− g2/ωm[(â†
1â1)2 + (â†

2â2)2 + 2â†
1â1â†

2â2]

+ Feg/ωm (b̂−b̂† )â†
1 + Fe−g/ωm (b̂−b̂† )â1. (B6)

Under the weak optomechanical coupling approximation
(g/ωm � 1), Eq. (3) can be obtained by approximating
eg/ωm (b̂−b̂† ) to 1 in Eq. (B6).

APPENDIX C: VALIDITY OF THE APPROXIMATE
HAMILTONIAN

In this model, the crucial factor in investigating the photon
statistical properties is whether the effective Hamiltonian (4)
is equivalent to the total Hamiltonian (2) in the case of weak
optomechanical coupling. To check the validity of effective
Hamiltonian Ĥeff in Eq. (4), we give the quantum master
equation for the optomechanical system

dρopt

dt
= − i[H̃+, ρopt] − i{H̃−, ρopt} + 2i Tr(ρoptH̃−)ρopt

+
∑

j

(γ j

2

)
D(ρopt, â j ) + γm

2
D(ρopt, b̂), (C1)

where H̃+ = (ĤT + Ĥ†
T )/2 and H̃− = (ĤT − Ĥ†

T )/2 are the
Hermitian and anti-Hermitian parts of the total Hamiltonian
ĤT given by Eq. (2), respectively. γm denotes the loss rate of
the mechanical mode.

To further clarify the equivalence between the effective
Hamiltonian (4) and total Hamiltonian (2), we compare g(2)(0)
with steady states of two cases for the fixed detuning �/γ =
2. The steady-state density operators are obtained from the
numerical solutions of dρ/dt = 0 in Eq. (5) and dρopt/dt = 0
in Eq. (C1), respectively. Figure 10(a) displays g(2)(0) as a
function of μ in the case of weak optomechanical coupling,
where the numerical result corresponding to effective master
Eq. (5) (blue solid line) agrees well with that based on the
total master equation (C1) (red circles). In addition, we also
plot g(2)(0) as a function of � with various angles μ, as shown
in Fig. 10(b), which suggests that the results of the effective
master Eq. (5) and total master equation (C1) are consistent
for different μ.

All of these calculations clearly show the equivalence of
the optomechanical system given by Eq. (C1) and Kerr-type
nonlinearity of Eq. (5) in the appropriate parameter regime.
It is valid that we use the effective master Eq. (5) instead of
the total master equation (C1) to solve this problem. In this
case, we can reduce the dimension of the Hilbert space, which
makes solving the problem much more accessible.

APPENDIX D: SUPPLEMENTARY DISCUSSION OF FIG. 2

We note that there is a dip in g(2)(0) > 1 for �/γ = 4
given by Fig. 2(a) corresponding to the photon bunching,
which is revealed from Fig. 11(a), where the dip appears in
g(2)(0) for �/γ = 4 due to the fact that the cusp occurs in P20.
Figure 11(b) has a similar feature at � = 6γ .
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FIG. 10. (a) Plot of g(2)(0) as a function of μ for weak optome-
chanical coupling at fixed detuning � = U . The blue line and red
circles correspond to the numerical result based on the effective
master equation (5) and the total master equation (C1), respectively.
(b) Plot of g(2)(0) as a function of � with various angles μ for
both the effective master equation (5) (different styles of curves)
and the total master equation (C1) (different styles of data point
symbols) under the weak optomechanical coupling approximation.
The parameters are ωm = 30γ , γm = 10−5γ , and g = 7.746γ . The
other parameters are the same as in Fig. 2(a).

APPENDIX E: SUPPLEMENTARY DISCUSSION OF CPB

This Appendix discusses further the photon statistical
properties of CPB at EPs. We first plot g(2)(0) of the CW mode
in logarithmic scale as a function of � and μ, as shown in
Fig. 12. Here g(2)(0) changes periodically with the increase of
μ, which originates from the period of coupling coefficients
E1 and E2 given by Eq. (1). It is worth noting that there are
local minimum values of g(2)(0) at the EP μ j when � is
equal to U , i.e., �/γ = 2, as shown by the intersections of

-1 0 1 2 3 4 5

10-6

10-4

10-2

1 2 3 4 5 6 7

10-6

10-4

10-2

5.8 6 6.2

10-2

3.8 4 4.2
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(a) (b)

FIG. 11. Photon probability distribution varying with � at μ =
0. The solid (dashed) lines and circles (squares) correspond to the
analytical solution given by Eq. (14) in Sec. IV and numerical simu-
lations based on the master equation (5), respectively. The parameters
in (a) and (b) are the same as in Figs. 2(a) and 2(b), respectively.

FIG. 12. Second-order correlation function log10[g(2)(0)] of the
CW mode as a function of � and μ; here g(2)(0) is plotted by solving
Eq. (5). The parameters are the same as in Fig. 2(a). In this case, μ j

( j = 1, 2, . . . , 6), corresponding to EPs, is the same as in Fig. 3.

horizontal (� = 2γ ) and vertical (μ = μ j) coordinates in
Fig. 12, which agrees well with the results in Fig. 2(a). How-
ever, if we adjust the relative angular position μ away from
EPs (e.g., μ = 0.25π ), g(2)(0) arrives at the maximum for
�/γ = 2.

Moreover, CPB at EPs can also be confirmed by comparing
the photon-number distribution Pn1 with the standard Poisson
distribution Pn1 . Therefore, we investigate the relative photon
distributions of the CW mode R(n1) = (Pn1 − Pn1 )/Pn1 , as
shown in Fig. 13. When we adjust μ to EPs [μ1 = 0.1171π

in Fig. 13(a) and μ2 = 0.1329π in Fig. 13(b)], the photon-
number distribution P1 is greater than the standard Poisson
distribution P1 for the single-excitation subspace (n1 = 1),
i.e., R(1) = (P1 − P1)/P1 > 0. However, if the photon num-
ber n1 is greater than or equal to 2, the photon-number
distribution Pn1 (n1 � 2) is less than the standard Poisson
distribution Pn1 (n1 � 2), i.e., R(n1) < 0 (n1 � 2). This sug-
gests that the photon is more inclined to exist singly, namely,
the sub-Poisson distribution, which is the antibunching ef-
fect. This confirms CPB at EPs from another aspect. If we

0 1 2 3
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0.2

0.4

0.6

0 1 2 3
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FIG. 13. Relative photon distributions R(n1) = (Pn1 −
Pn1 )/Pn1 , i.e., the deviation of the photon distribution
Pn1 = ∑

n2
〈n1, n2|ρ|n1, n2〉 given by Eq. (5) from the standard

Poisson distribution Pn1 = 〈â†
1â1〉n1 e−〈â†

1 â1〉/n1! with the
same photon number n1 in the CW mode. The parameters
are (a) μ = μ1 = 0.1171π (position of the EP in Fig. 3),
(b) μ = μ2 = 0.1329π (position of the EP in Fig. 3), and
(c) μ = 0.125π (position of the non-EP). The other parameters are
the same as in Fig. 5(a).
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tune μ away from EPs, e.g., μ = 0.125π in Fig. 13(c), the
phenomenon is strikingly different, which indicates the
bunching effect. In summary, Fig. 13 shows that P1 is

enhanced while Pn1 (n1 > 1) is suppressed at EPs, which is in
sharp contrast to the case where we change the relative angular
position μ away from EPs.
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of bulk Fermi arc and polarization half charge from paired
exceptional points, Science 359, 1009 (2018).

[162] B. Yang, Q. H. Guo, B. Tremain, R. J. Liu, L. E. Barr, Q. H.
Yan, W. L. Gao, H. C. Liu, Y. J. Xiang, J. Chen, C. Fang, A.
Hibbins, L. Lu, and S. Zhang, Ideal Weyl points and helicoid
surface states in artificial photonic crystal structures, Science
359, 1013 (2018).

[163] H. Xu, D. Mason, L. Y. Jiang, and J. G. E. Harris, Topological
energy transfer in an optomechanical system with exceptional
points, Nature (London) 537, 80 (2016).

[164] H. Jing, S. K. Özdemir, X. Y. Lü, J. Zhang, L. Yang, and
F. Nori, PT -Symmetric Phonon Laser, Phys. Rev. Lett. 113,
053604 (2014).

[165] H. Lü, S. K. Özdemir, L. M. Kuang, F. Nori, and H.
Jing, Exceptional Points in Random-Defect Phonon Lasers,
Phys. Rev. Appl. 8, 044020 (2017).
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