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Atom-photon dressed states are a basic concept of quantum optics. Here, we demonstrate that the non-
Hermiticity of an open cavity can be harnessed to form the dressed bound states (DBSs) and identify two
types of DBSs, the vacancylike DBS and Friedrich-Wintgen DBS, in a microring resonator operating at a chiral
exceptional point. With the analytical DBS conditions, we show that the vacancylike DBS occurs when an atom
couples to the standing-wave mode that is a node of the photonic wave function and characterized by null spectral
density at cavity resonance. However, the Friedrich-Wintgen DBS can be accessed by continuously tuning the
system parameters, such as the atom-photon detuning, and evidenced by a vanishing Rabi peak in the emission
spectrum, an unusual feature in the strong-coupling anticrossing. We also demonstrate the quantum-optics
applications of the proposed DBSs. Our work exhibits quantum state control through non-Hermiticity of open
quantum system and presents a clear physical picture of DBSs at chiral exceptional points, which holds great
potential for building high-performance quantum devices for sensing, photon storage, and nonclassical light
generation.
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I. INTRODUCTION

Dressed states are a hallmark of strong atom-photon in-
teraction [1] and provide a basis for coherent control of
quantum states, giving rise to a rich variety of important
technologies and applications, such as quantum sensing [2],
entanglement transport [3,4], photon blockade for quantum
light generation [5–7], and the many-body interaction for scal-
able quantum computing and quantum information processing
[8,9]. Dressed states with slow decay, i.e., a narrow linewidth,
are appealing in practical applications. Although the linewidth
of dressed states is the average of atomic and photonic com-
ponents, it is often limited by the latter since the linewidth
of the quantum emitter (QE) is much smaller than the cavity
in a cryogenic environment. Therefore, a natural approach to
reduce the linewidth of dressed states is by means of a high-Q
cavity, which, however, is often at the price of a large mode
volume [10,11] or requires elaborate design [12–14]. Further-
more, light trapping and release are time-reversal processes
in linear time-invariant systems; thus, a cavity with high Q in
general leads to low excitation efficiency, which is undesirable
in practical applications. These disadvantages stimulate the
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exploration of alternative schemes to suppress the decay of
dressed states.

Although leakage is inevitable for optical resonators, it also
opens up new avenues for manipulating light-matter interac-
tion by exploiting the non-Hermitian degeneracies [15,16],
known as exceptional points. The presence of exceptional
points renders exotic features of the system dynamics due to
the reduced dimensionality of the underlying state space at
exceptional points [17–19]. Particularly, previous studies have
shown that the coalescence of counterclockwise (CCW) and
clockwise (CW) modes in a whispering-gallery-mode (WGM)
microcavity gives rise to a special type of exceptional point,
called chiral exceptional points (CEPs) [20,21], which exhibit
an unprecedented degree of freedom in state control, such
as quantum and optical states with chirality [17,20,22] and
the spontaneous emission enhancement associated with the
squared Lorentzian response [18,23–25].

In this work, we propose and identify the formation of
dressed bound states (DBSs) in an open microring resonator
with CEPs, which we call a CEP cavity hereafter. A theoretical
framework is established to unveil the origin and derive the
analytical conditions of DBSs. We show that DBSs in the
CEP cavity can be classified into two types, the vacancylike
DBS [26] and the Friedrich-Wintgen DBS [6,27–29]. The
vacancylike DBS has a unique feature in which its condition
is irrespective of atom-photon coupling strength since the
cavity mode the atom couples to is a node of the photonic
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FIG. 1. (a) Schematic of the CEP cavity with a WGM microring coupled to a QE and a waveguide with a mirror at the right end.
(b) Illustration of the origin of the vacancylike DBS: the standing-wave mode the QE coupled to is a node of a wave function. (c) Left:
Illustration of the formation of the Friedrich-Wintgen DBS via the destructive interference of two coupling pathways between the CW and
CCW modes. The CW mode is flipped to a CCW mode via mirror symmetry. Accordingly, the linearly polarized QE becomes circularly
polarized. Right: Schematic diagram of the Friedrich-Wintgen BIC for two cavities.

wave function. By contrast, DBSs with a Friedrich-Wintgen
origin depend on the system parameters, such as the frequency
detuning and the coupling strength between different sys-
tem components, which are required to fulfill the condition
of destructive interference between two coupling pathways.
We also discuss the characteristics of the spontaneous emis-
sion (SE) spectrum and dynamics associated with DBSs and
demonstrate the corresponding quantum-optics applications.

II. RESULTS AND DISCUSSION

A. Model and theory

The CEP cavity we study is depicted in Fig. 1(a), where
a WGM microring resonator is coupled to a semi-infinite
waveguide with a perfect mirror (i.e., unity reflectivity) at
the end. The mirror results in chiral coupling from the CCW
mode to the CW mode and creates a CEP [23]. A linearly
polarized QE couples to the CEP cavity with coupling strength
g. We assume that the QE is embedded inside the cavity;
thus, its coupling to free space via modes other than cavity
modes is suppressed. Furthermore, although the CEP cavity
supports a series of WGM resonances, here, we consider only
a pair of degenerate CW and CCW modes. This is justified
since in a realistic CEP cavity, the linewidth of the QE can
be much smaller than the frequency spacing � f between the
adjacent WGM resonances. For example, � f is evaluated as
∼11 THz for a SiN microdisk with a 2 µm radius [30,31],
while the linewidth of CdSe/ZnSe quantum dots is approx-
imately ∼1 THz at 77 K [32,33].

The quantum dynamics of the cavity QED system is
described by the extended cascaded quantum master equa-
tion (see Refs. [34,35] and also Appendix. A for a detailed
derivation)

d

dt
ρ = −i[H, ρ] + κL[cccw]ρ + κL[ccw]ρ

+ κ (eiφ[cccwρ, c†
cw] + e−iφ[ccw, ρc†

ccw]), (1)

where L[O]ρ = OρO† − {O†O, ρ}/2 is the Liouvillian super-
operator for dissipation of operator O. The Hamiltonian is
given by H = H0 + HI , where the free Hamiltonian H0 and
the interaction Hamiltonian HI read

H0 = ω0σ+σ− + ωcc†
ccwcccw + ωcc†

cwccw, (2)

HI = g(c†
ccwσ− + σ+cccw) + g(c†

cwσ− + σ+ccw), (3)

where σ− is the lowering operator of QE and cccw (ccw) is
the bosonic annihilation operator for the CCW (CW) mode.
ω0 and ωc are the transition frequency of the QE and the res-
onance frequency of cavity modes, respectively. The second
line of Eq. (1) describes the chiral coupling in which the CW
mode is driven by the output field from the CCW mode, where
φ = 2βL is the accumulated phase factor of light propagation,
with β and L being the propagation constant of the waveguide
and the distance between the waveguide-resonator junction
and the mirror, respectively. κ is the evanescent coupling of
the cavity modes to the waveguide, which can be tuned by
adjusting the cavity-waveguide separation. In order to achieve
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effective coupling of CW and CCW modes, we consider the
case in which κ is much larger than the intrinsic decay of the
cavity, and thus, the latter is omitted in Eq. (1).

We consider the SE process in which there is at most
one photon in the system and the case of resonant QE-cavity
coupling (ω0 = ωc). The equations of motion in the single-
excitation subspace can be obtained from Eq. (1),

d

dt
�p = −iMc �p, (4)

with �p = [〈σ−〉, 〈cccw〉, 〈ccw〉]T and the matrix Mc being

Mc =
⎡⎣ωc g g

g ωc − i κ
2 0

g −iκeiφ ωc − i κ
2

⎤⎦. (5)

The emission spectrum is experimentally relevant and
also critical for understanding the quantum dynamics of
a QE. Therefore, we investigate the spectrum properties
of DBSs via the SE spectrum of the QE, which can
be measured via fluorescence of the QE and is defined
as S(ω) = limt→∞ Re[

∫∞
0 dτ 〈σ+(t + τ )σ−(t )〉eiωτ ] [1,36],

where 〈σ+(t + τ )σ−(t )〉 can be calculated from the equa-
tions of single-time averages [Eqs. (4) and (5)] using the
quantum regression theorem [1]

d

dτ

⎡⎣ 〈σ+(τ )σ−(0)〉
〈σ+(τ )cccw(0)〉
〈σ+(τ )ccw(0)〉

⎤⎦ = −iMc

⎡⎣ 〈σ+(τ )σ−(0)〉
〈σ+(τ )cccw(0)〉
〈σ+(τ )ccw(0)〉

⎤⎦. (6)

The above equations can be solved via the Laplace
transform with the initial conditions 〈σ+(0)σ−(0)〉 = 1,
〈σ+(0)cccw(0)〉 = 0, and 〈σ+(0)ccw(0)〉 = 0. The SE spectrum
of the QE is expressed as (see Appendix B for a detailed
derivation)

S(ω) = 1

π

�(ω)

[ω − ωc − �(ω)]2 + [�(ω)
2

]2 , (7)

where �(ω) = −2g2 Im[χ (ω)] is the local coupling strength
and �(ω) = g2 Re[χ (ω)] denotes the photonic Lamb shift,
with χ (ω) being the response function of the CEP cavity:

χ (ω) = 2

(ω − ωc) + i κ
2

− iκeiφ[
(ω − ωc) + i κ

2

]2 . (8)

The SE dynamics of the QE can be retrieved from F[S(ω)],
the Fourier transform of the SE spectrum.

Equations (1)–(8) constitute the basic theoretical frame-
work for studying the cavity quantum electrodynamics in the
CEP cavity. In the following sections, we derive the conditions
of a single-photon DBS in the CEP cavity based on Eqs. (4)
and (5).

B. VacancyLike dressed bound state

The coupled cavity is the simplest model that supports the
vacancylike DBS, where the QE interacts with one of two
cavities [26]. At first glance our model is different from the
coupled cavity proposed in Ref. [26], but it would be the
same if the basis of the cavity modes were changed. To find
the condition of the vacancylike DBS in the CEP cavity, we

rewrite cccw and ccw in terms of the operators that represent
the standing-wave modes c1 and c2 [37]:

ccw = 1√
2

(c1 + c2), cccw = 1√
2

(c1 − c2). (9)

Substituting Eq. (9) into Eq. (5), we obtain d�s/dt = −iMs�s,
with �s = [〈σ−〉, 〈c1〉, 〈c2〉]T . The matrix Ms takes the form

Ms =

⎡⎢⎢⎣
ωc

√
2g 0√

2g ωc − i
κ(1+eiφ )

2 i κ
2 eiφ

0 −i κ
2 eiφ ωc − i

κ(1−eiφ )
2 .

⎤⎥⎥⎦ (10)

Equation (10) shows that the QE is decoupled from the
standing-wave mode c2. The vacancylike DBS forms when
the decay of c2 is vanishing, i.e., φ = 2nπ (n is an integer). In
this case, the eigenstate is

|ψV L〉 =
(

−iκ√
8g2 + κ2

, 0,
2
√

2g√
8g2 + κ2

)T

, (11)

with energy ωV L = ωc, the same as in the bare QE. Equa-
tion (11) indicates that the photon cannot be found at c1 since
its wave function is zero. As a consequence, the DBS can
exist if we utilize the dissipative coupling of the cavity to a
semi-infinite waveguide. Our model is thus different from the
original model reported in the previous work [26] in terms
of the method of coupling between two cavity modes, i.e.,
waveguide-mediated dissipative coupling instead of coherent
coupling. Accordingly, the standing-wave mode c1 is called
the vacancy cavity. Figure 1(b) illustrates the concept of the
vacancylike DBS in our model.

The existence of a vacancylike DBS can be confirmed
by inspecting the spectral density of the CEP cavity, which
is given by J (ω) = Re

∫ +∞
−∞ dτeiωτ 2g2〈c†

1(τ )c1(0)〉 for φ =
2nπ [38,39], where the two-time correlation 〈c†

1(τ )c1(0)〉 can
be calculated in a fashion similar to 〈σ †

+(τ )σ−(0)〉 using
the quantum regression theorem. With the initial conditions
〈c†

1(0)c1(0)〉 = 1 and 〈c†
1(0)c2(0)〉 = 0, the spectral density

can be analytically obtained:

J (ω) = 2g2κ

π

[
ω − ωc

(ω − ωc)2 + ( κ
2

)2
]2

. (12)

Equation (12) indicates that on resonance (ω = ωc) the spec-
tral density is zero, implying a null electric-field amplitude
at the location of the QE. Physically, this means that there
is no available channel for the QE to decay, consistent with
the nature of the vacancylike DBS. Figure 2 compares the
analytical spectral density of a realistic CEP cavity (pink solid
line) with the numerical results obtained from electromagnetic
simulations (pink circles), where good agreement can be seen.
The insets in Fig. 2 show the electric-field distribution at
J (ω) = 0, where we can see that the QE is located at a node
of cavity modes and thus decoupled from c1, contract to the
conventional Lorentz cavity (blue line and circles), i.e., the
CEP cavity without the mirror, where the QE locates exactly
the antinode of the standing-wave mode. We thus understand
that in a CEP cavity, the physical origin of a vacancylike
DBS can be interpreted as being a result of the destructive
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FIG. 2. Spectral density of a realistic CEP cavity with the fol-
lowing parameters: outer radius R = 5 µm, width w = 0.25 µm,
refractive index nc = 3.47, edge-to-edge separation to the waveguide
d = 0.2 µm. The width of the waveguide is d , and the mirror is
made of 100-nm-thick silver. The refractive index of the background
medium is nb = 1.44. The blue circles plot the numerical results of
the Lorentz cavity (CEP cavity without the mirror at the end), while
the blue solid line shows the fitting results with the Lorentz spectral
function. The pink solid line and circles represent the analytical and
numerical results of the CEP cavity, respectively. The insets show the
electric-field distribution of vacancylike DBS.

interference between the cavity field of the CCW mode and
the reflected field of the CW mode.

Figure 3(a) shows that the SE spectrum is a triplet deviated
from the DBS, with a Fano-type line shape around the cavity
resonance. As the QE energy approaches the cavity resonance,
the central peak in the SE spectrum becomes sharper and goes
upwards; on resonance (ω0 = ωc) the central peak disappears,
implying the formation of a vacancylike DBS. In this case,
the SE spectrum exhibits a symmetrical Rabi splitting with a
width of approximately

√
2g.

Figure 3(b) plots the time evolution of the population on
the excited QE. It can be seen that the population of the QE

can be fractionally trapped for various g/κ . As the eigenstate
|ψV L〉 indicates, the steady-state population remains finite but
decreases as g increases due to the stronger population transfer
from the QE to the cavity. By contrast, the population of c1 is
depleted at the steady state (blue dashed line), as expected.

Since the vacancylike DBS occurs in the case of
resonant QE-cavity coupling, it is beneficial for numerous
quantum-optics applications, especially those involving
energy transfer mediated by the cavity, such as the
spontaneous entanglement generation (SEG) between qubits
[4,40,41]. It is straightforward to extend our model to the
multi-QE case by replacing H in Eq. (1) with the multi-QE
Hamiltonian HM , which is given by HM = HM

0 + HM
I ,

where HM
0 = ω0

∑
i σ

(i)
+ σ

(i)
− + ωcc†

ccwcccw + ωcc†
cwccw and

HM
I =∑i gi(c†

ccwσ
(i)
− + σ

(i)
+ cccw) +∑i gi(c†

cwσ
(i)
− + σ

(i)
+ ccw).

With an initially excited qubit, the generated entanglement
between two qubits is quantified by the concurrence
C(t ) = 2|Ceg(t )C∗

ge(t )| [40,42], where Ceg(t ) and Cge(t ) are
the probability amplitudes of two single-excitation states in
which one qubit is in the excited state while the other is in the
ground state (a detailed derivation is given in Appendix C).
The inset in Fig. 3(c) shows an illustration of SEG mediated
by the CEP cavity, where long-distance entanglement can be
generated between two qubits. The results of g2 = g1 = g
are shown in Fig. 3(c), which shows that higher and faster
steady-state entanglement can be achieved as g increases and
reaches a maximum of 0.5 with g/κ = 1. Since the Q factor
of the WGM cavity is typically 105 at near infrared [20], the
vacancylike DBS allows for fast and perfect entanglement
without requiring a demanding coupling strength between the
qubits and the cavity. In addition, we can see that Figs. 3(b)
and 3(c) present opposite trends for large g. This indicates
that the strong population transfer from the QE to cavity is
unfavorable for population trapping of a single QE but can
lead to an efficient QE-QE interaction mediated by the cavity
and thus is beneficial for achieving SEG with long-lived
entanglement.

We consider identical g for two QEs in Fig. 3(c); however,
this is hard to realize in experiments due to the difficulty of
precisely controlling the QEs’ locations. We study the impact
of nonidentical g on SEG in Fig. 6 in Appendix C. We see that
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dashed line in (b) shows the population of c1 for g/κ = 1/2. The inset in (c) illustrates the configuration of SEG.
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DBS for various g/κ .

the concurrence can be enhanced or reduced according to the
values of g2/g1 and g/κ , but the entanglement of two QEs can
still be achieved in the steady state. This result is attributed to
the feature of the vacancylike DBS in which its condition is
irrespective of g. The results thus show the vacancylike DBS
is a promising candidate for robust SEG.

C. Friedrich-Wintgen dressed bound state

In addition to the vacancylike DBS, the CEP cavity sup-
ports another type of DBS that has a mechanism similar to
the Friedrich-Wintgen bound states in the continuum (BICs)
[29,43–45]. The right panel of Fig. 1(c) shows a schematic il-
lustration of Friedrich-Wintgen BICs for coupled resonances,
where the radiation of two cavities into the same waveg-
uide gives rise to the via-the-continuum dissipative coupling.
When the coherent coupling of two cavities J exists, the com-
plete destructive interference of two cavities, i.e., the BIC, can
be formed at some specific values of the continuous parameter.
The cavity modes in the CEP cavity couple in a way similar to
that of Friedrich-Wintgen BICs, as the left panel of Fig. 1(c)
depicts, except the coherent coupling of two cavity modes
is replaced by the indirect coupling through the QE and the
waveguide-mediated coupling is unidirectional.

To derive the condition of the Friedrich-Wintgen DBS in
the CEP cavity, we recast Mc in the following form [43]:

Mc = HB − i�, (13)

with the Hermitian part giving rise to real energy for the DBS,

HB =
⎡⎣ωc g g

g ωc i κ
2 e−iφ

g −i κ
2 eiφ ωc

⎤⎦, (14)

and the dissipative operator governing the imaginary part of
the eigenenergies,

� = D†D =

⎡⎢⎣0 0 0
0 κ

2
κ
2 e−iφ

0 κ
2 eiφ κ

2

⎤⎥⎦. (15)

Subsequently, we can determine the coupling matrix D =
(0,

√
κ/2,

√
κ/2e−iφ ) and introduce an un-normalized null

vector of D, |ψ0〉 = (α,−e−iφ, 1)T , satisfying D|ψ0〉 = 0,
where α is an undetermined coefficient. The Friedrich-
Wintgen DBS appears when |ψ0〉 fulfills HB|ψ0〉 = ωFW|ψ0〉.
The solutions yield the energy and condition of the Friedrich-
Wintgen DBS,

ωFW = ωc ±
√

8g2 − κ2

2
, (16)

φFW = −i ln

(
− (4g2 − κ2) ± iκ

√
8g2 − κ2

4g2

)
. (17)

Figure 4(a) plots φFW versus g/κ , showing that φFW tends
to π for a large g. With φFW, there are only two peaks
seen in the SE spectrum; the Rabi peak corresponding to

043714-5



YUWEI LU, HAISHU TAN, AND ZEYANG LIAO PHYSICAL REVIEW A 107, 043714 (2023)

the Friedrich-Wintgen DBS is invisible due to the vanish-
ing linewidth, as the inset of Fig. 4(a) shows. On the other
hand, by continuously varying the QE-cavity detuning, we
observe an unusual behavior of strong-coupling anticrossing
in Figs. 4(b) and 4(c), where the linewidth of one of the bands
is narrower and the peak disappears at a specific frequency
[on resonance here; see the green circle in Fig. 4(b) and the
pink line in Fig. 4(c)], a signature of Friedrich-Wintgen-type
bound states [27,46]. The real and imaginary parts of the
eigenenergies versus g/κ are plotted in Figs. 4(d) and 4(e),
respectively, which show that the real energies of the CEP
cavity are nearly the same as those of the Lorentz cavity,
while the imaginary parts are dissimilar. It is worth noting
that the linewidth of the remaining Rabi peak significantly
narrows for g > κ compared to that of the Lorentz cavity and
approaches zero as g gradually increases [see the thin solid
line in Fig. 4(e)]. The corresponding linewidth is found to
be ∼[1 + cos(φFW)]/2 for g 
 κ . The linewidth narrowing
of dressed states is accompanied by the decay suppression
of Rabi oscillation in the time domain [see the SE dynamics
for various g/κ in Fig. 4(f)]. Therefore, for the Friedrich-
Wintgen DBS, a large g benefits achieving a long decoherence
time.

Although both are DBSs in the same cavity QED system,
there are two great differences between the vacancylike DBS
and the Friedrich-Wintgen DBS. One difference is that the
steady-state population of the former depends on the coupling
strength g [see Fig. 3(b)], while the latter does not, as Fig. 4(f)
shows. We find that half the energy can be trapped in the
system via the Friedrich-Wintgen DBS and the steady-state
population of the QE is 1/4 irrespective of g. Another dif-
ference lies in the energy of the DBS. The energy of the
vacancylike DBS is equal to the bare QE for any g, while
the Friedrich-Wintgen DBS occurs at one of the anharmonic
energy levels in which the energy spacing is proportional to
g. This feature offers the Friedrich-Wintgen DBS a unique
potential for single-photon generation utilizing the photon-
blockade effect [5,47,48]. Figure 5 compares the performance
of single-photon blockade of the CEP cavity with that of
the Lorentz cavity. It shows that the best performance is
achieved at the Friedrich-Wintgen DBS (vertical dashed line),
where both the single-photon efficiency Ic = 〈c†

cwccw〉 and the
photon correlation g(2)(0) = 〈c†

cwc†
cwccwccw〉/I2

c manifest a re-
markable enhancement of more than two orders of magnitude
compared to the dressed states in the conventional Lorentz
cavity (dashed lines).

III. CONCLUSION

In conclusion, we demonstrated and unveiled the origin
of dressed bound states (DBSs) in a prototypical microring
resonator operating at chiral exceptional points (CEPs), which
are classified into two types, the vacancylike and Friedrich-
Wintgen-type bound states. DBSs studied in this work exist
in the single-photon manifold, while the principles can be
applied to higher-excitation manifolds for exploring multipho-
ton DBSs. Besides the spontaneous entanglement generation
and single-photon generation demonstrated here, we envi-
sion prominent advantages of DBSs in diverse applications,
such as quantum logic gate operation and quantum sensing,

-3 -2 -1

10-6

10-4

10-2

100

g
2

(0
)

CW mode

Lorentz cavity
1 2 30

 / gL

10-5

100

I c

FW

FIG. 5. Comparison of the single-photon blockade of the CEP
cavity (circles for numerical results and solid lines for analytical re-
sults) with the Lorentz cavity (dashed lines). The results are obtained
by implementing a driving Hamiltonian Hd = �(e−iωLtσ+ + eiωLtσ−)
and a Liouvillian superoperator γL[σ−]ρ for QE dissipation in
Eq. (1). The numerical results are obtained using QUTIP [49]. The
parameters used in the simulations are g = κ/2, γ = κ/20, and
� = 10−2γ . The analytical expressions of Ic and g(2)(0) are derived
in Appendix D. The vertical dashed line indicates ωFW given by
Eq. (16).

due to the long decoherence time and extremely sharp line
shape of DBSs. We believe our work not only deepens the
understanding of DBSs at CEPs but also paves the way for
harnessing the non-Hermitian physics to manipulate quantum
states.
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APPENDIX A: DERIVATION OF THE EXTENDED
CASCADED QUANTUM MASTER EQUATION

The extended cascaded quantum master equation (QME)
in Eq. (1) can be derived by tracing out the waveguide modes
based on the model depicted in Fig. 1(c). The system Hamil-
tonian including the waveguide modes is written as (h̄ = 1)

HS = H + HB + HSB, (A1)

where H = H0 + HI is given in Eq. (1). HB is the free Hamil-
tonian of the waveguide,

HB =
∫

dωωb†
RbR, (A2)
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and HSB describes the Hamiltonian of the cavity-waveguide
interaction,

HSB = i
∑

j=ccw,cw

∫
dω

√
κ

2π
b†

Re−ikx j c j + H.c., (A3)

where bR is the bosonic annihilation operator of the
right-propagating waveguide mode with frequency ω and
wave vector k = ωc/v, with v being the group ve-
locity. xccw and xcw are the locations of the CCW
mode and the mirrored CW mode, respectively. Apply-
ing the transformation H̃ = UHU † − idU/dtU † with U =
exp[i(ωc

∑
j=ccw,cw c†

j c j + ∫ dωωb†
RbR)], we have

H̃SB(t ) = i
∑

j=ccw,cw

∫
dω

√
κ

2π
b†

Rei(ω−ωc )t e−iωx j/vc j + H.c.

(A4)

The equation of motion of bR can be obtained from the
Heisenberg equation,

d

dt
bR(t ) =

∑
j=ccw,cw

√
κ

2π
c je

i(ω−ωc )t e−iωx j/v. (A5)

The above equation can be formally integrated to obtain

bR(t ) =
∑

j=ccw,cw

∫ t

0
dτ

√
κ

2π
c je

i(ω−ωc )τ e−iωx j/v, (A6)

where we have taken bR(0) = 0 since the waveguide is ini-
tially in the vacuum state. On the other hand, the equation of
motion of the arbitrary operator O is given by

d

dt
O(t ) =

∑
j=ccw,cw

∫
dω

√
κ

2π
{b†

R(t )ei(ω−ωc )t e−iωx j/v[O(t ), c j (t )] − [O(t ), c†
j (t )]bR(t )e−i(ω−ωc )t eiωx j/v}. (A7)

Substituting bR(t ) into the above equation, we have

d

dt
O(t ) = κ

2π

∑
j,l=ccw,cw

∫ t

0
dτ

∫
dω
{
ei(ω−ωc )(t−τ )e−iωx j/vc†

l (τ )[O(t ), c j (t )] − [O(t ), c†
j (t )]cl (τ )e−i(ω−ωc )(t−τ )eiωx jl /v

}
, (A8)

where x jl = x j − xl . We apply the Markov approximation by assuming the time delay x jl/v between the CCW mode and the
mirrored CW mode can be neglected. Therefore,

κ

2π

∑
l=ccw,cw

∫ t

0
dτ

∫
dωei(ω−ωc )(t−τ )e−iωx jl /vc†

l (τ ) = κ
∑

l=ccw,cw

∫ t

0
dτδ

(
t − x jl

v
− τ
)

e−ikx jl c†
l (τ )

≈ κ

2
c†

j (t ) + κ
∑

l=ccw,cw

�
(

t − x jl

v

)
e−ikx jl c†

l (t ), (A9)

where x jl > 0 and �(t ) is the step function. With Eq. (A9) and taking the averages of Eq. (A8), we have

d

dt
〈O(t )〉 = κ

2

∑
j=ccw,cw

{〈c†
j (t )[O(t ), c j (t )]〉 − 〈[O(t ), c†

j (t )]c j (t )〉}

+ κ
∑

j,l=ccw,cw, j �=l

{e−ikx jl 〈c†
l (t )[O(t ), c j (t )]〉 − eikx jl 〈[O(t ), c†

j (t )]cl (t )〉}. (A10)

Since 〈O(t )〉 = Tr[O(t )ρ(0)] = Tr[Oρ(t )], we can simplify the averages of operators in the above equation by using the cyclic
property of the trace. For example,

〈[O(t ), c†
j (t )]c j (t )〉 = Tr[Oc†

j c jρ(t ) − c†
j Oc jρ(t )] = Tr[Oc†

j c jρ(t ) − Ocjρ(t )c†
j ] = Tr{O[c†

j , c jρ(t )]}. (A11)

Therefore, we can obtain a QME in the following form:

d

dt
ρ(t ) = −i[H, ρ(t )] + κ

2

∑
j=ccw,cw

{[c j, ρ(t )c†
j ] − [c†

j , c jρ(t )]} + κ
∑

j,l=ccw,cw, j �=l

{e−ikx jl [c j, ρ(t )c†
l ] − eikx jl [[c†

j , clρ(t )]}.

(A12)

Note that kx jl = φ, and thus, j = cw and l = ccw in the
third term on the right-hand side. In addition, the second term
on the right-hand side can be expanded and rewritten using
the Liouvillian superoperator. We thus arrive at the extended
cascaded QME in Eq. (1).

APPENDIX B: DERIVATION OF THE SPONTANEOUS
EMISSION SPECTRUM

The spontaneous emission (SE) spectrum, also called
the polarization spectrum, reflects the local dynamics of a
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quantum emitter (QE). The SE spectrum is given by S(ω) =
limt→∞ 2 Re[

∫∞
0 dτ 〈σ+(t + τ )σ−(t )〉eiωτ ], where the corre-

lation 〈σ+(t + τ )σ−(t )〉 can be solved from Eqs. (4) and (5)
using the quantum regression theorem, which yields the fol-
lowing equations of motion:

d

dτ

⎡⎣ 〈σ+(τ )σ−(0)〉
〈σ+(τ )cccw(0)〉
〈σ+(τ )ccw(0)〉

⎤⎦ =
⎡⎣ω0 g g

g ωc − i κ
2 0

g −iκeiφ ωc − i κ
2

⎤⎦
×
⎡⎣ 〈σ+(τ )σ−(0)〉

〈σ+(τ )cccw(0)〉
〈σ+(τ )ccw(0)〉

⎤⎦. (B1)

Using the initial conditions 〈σ+(0)σ−(0)〉 = 1,
〈σ+(0)cccw(0)〉 = 0, and 〈σ+(0)ccw(0)〉 = 0, the above
correlations can be easily obtained by taking the Laplace
transform 〈O(τ )〉 → 〈O(s)〉,

s

⎡⎣ 〈σ+σ−(s)〉
〈σ+cccw(s)〉
〈σ+ccw(s)〉

⎤⎦ =
⎡⎣ω0 g g

g ωc − i κ
2 0

g −iκeiφ ωc − i κ
2

⎤⎦
×
⎡⎣ 〈σ+σ−(s)〉

〈σ+cccw(s)〉
〈σ+ccw(s)〉

⎤⎦+
⎡⎣1

0
0

⎤⎦. (B2)

The solutions are given by

〈σ+σ−(s)〉 = 1

s + iω0 + g2

s+i(ωc−i κ
2 )
[
2 − κeiφ

s+i(ωc−i κ
2 )
] . (B3)

Transforming into the frequency domain [Eq. (B3)] by replac-
ing s = −iω, we have⎛⎜⎝−i(ω − ω0) + 2g2

−i(ω − ωc) + κ + i ( κ
2 )2

ω−ωc

⎞⎟⎠〈σ+σ−(ω)〉 = 1.

(B4)
Therefore,

〈σ+σ−(ω)〉 = i

(ω − ω0) − g2
{

2
(ω−ωc )+i k

2
− iκeiφ

[(ω−ωc )+i κ
2 ]2

} .
(B5)

We identify the response function of the CEP cavity as

χ (ω) = 2

(ω − ωc) + i κ
2

− iκeiφ[
(ω − ωc) + i κ

2

]2 , (B6)

where the first term on the right-hand side denotes the usual
Lorentz response, with the factor of 2 representing the cou-
pling of the QE to two cavity modes. The second term on
the right-hand side demonstrates the characteristic of squared
Lorentz response and thus is contributed by the CEP. Equa-
tion (B5) can be rewritten as

〈σ+σ−(ω)〉 = i

ω − ω0 − �(ω) + i �(ω)
2

. (B7)

Therefore, the SE spectrum is expressed as

S(ω) = 2

π
Re[〈σ+σ−(ω)〉] = 1

π

�(ω)

[ω− ω0 − �(ω)]2+ [�(ω)
2

]2 ,

(B8)
with the photon-induced Lamb shift

�(ω) = g2 Re[χ (ω)] =
[
(ω − ωc)2 − ( κ

2

)2]
[2(ω − ωc) + κ sin(φ)] + κ2(ω − ωc)[1 − cos(φ)][

(ω − ωc)2 + ( κ
2

)2]2 (B9)

and the local coupling strength

�(ω) = −2g2 Im[χ (ω)] = −2

[
(ω − ωc)2 − ( κ

2

)2]
κ[1 − cos(φ)] − κ (ω − ωc)[2(ω − ωc) + κ sin(φ)][

(ω − ωc)2 + ( κ
2

)2]2 . (B10)

For the vacancylike DBS (φ = 2nπ ), the local coupling strength is

�(ω) = 4g2κ

[
ω − ωc

(ω − ωc)2 + ( κ
2

)2
]2

= 2πJ (ω), (B11)

where J (ω) is given in Eq. (12).

APPENDIX C: SPONTANEOUS ENTANGLEMENT GENERATION AT THE VACANCYLIKE BOUND STATE

The system Hamiltonian for spontaneous entanglement generation (SEG) is written as

HM = HM
0 + HM

I , (C1)
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where HM
0 and HM

I are given by

HM
0 = ωc

∑
j=1,2

σ
( j)
+ σ

( j)
− + ωcc†

ccwcccw + ωcc†
cwccw, (C2)

HM
I =

∑
j=1,2

gi
(
σ

( j)
− c†

ccw + cccwσ
( j)
+
)+ gi

(
σ

( j)
− c†

cw + ccwσ
( j)
+
)
. (C3)

With the extended cascaded QME [Eq. (1)], we can obtain the effective Hamiltonian in the single-excitation subspace,

Heff = ωc

∑
j=1,2

σ
( j)
+ σ

( j)
− +

(
ωc − i

κ

2

)
c†

ccwcccw +
(
ωc − i

κ

2

)
c†

cwccw +
∑
j=1,2

gi
(
σ

( j)
− c†

ccw+ cccwσ
( j)

+
)

+ gi
(
σ

( j)
− c†

cw + ccwσ
( j)
+
)− iκeiφcccwc†

cw. (C4)

The corresponding state vector is given by

|�(t )〉 = Cgg(t )|gg00〉 + Ceg(t )|eg00〉 + Cge(t )|ge00〉 + C10(t )|gg10〉 + C01(t )|gg01〉, (C5)

where |n1n2mp〉 = |n1〉 ⊗ |n2〉 ⊗ |m〉 ⊗ |p〉, with |n1〉 and |n2〉 representing that the QE is either in the excited state (|n1〉, |n2〉 =
|e〉) or in the ground state (|n1〉, |n2〉 = |g〉) and |m〉 and |p〉 denoting that there are m photons in the CCW mode and p photons in
the mirrored CW mode, respectively. With the Schrödinger equation id|�(t )〉/dt = Heff |�(t )〉, we can obtain the equations of
coefficients:

i
d

dt
Ceg(t ) = ωcCeg(t ) + g1C10(t ) + g1C01(t ), (C6)

i
d

dt
Cge(t ) = ωcCge(t ) + g2C10(t ) + g2C01(t ), (C7)

i
d

dt
C10(t ) =

(
ωc − i

κ

2

)
C10(t ) + g1Ceg(t ) + g2Cge(t ), (C8)

i
d

dt
C01(t ) =

(
ωc − i

κ

2

)
C01(t ) + g1Ceg(t ) + g2Cge(t ) − iκeiφC10(t ). (C9)

For vacancylike DBS (φ = 2nπ ), the above equations can be easily solved through the Laplace transform,

Ceg(t ) = e(i
√

2gs− κ
2 )t g2

1

(
4g2

s − i
√

2gsκ
)+ e−(i

√
2gs+ κ

2 )t g2
1

(
4g2

s + i
√

2gsκ
)+ g2

s

(
8g2

2 + κ2
)

g2
s (8g2

s + κ2)
, (C10)

Cge(t ) = e−(i
√

2gs+ κ
2 )t g1g2

[
4g2

s

(
1 + ei2

√
2gst − 2e(i

√
2gs+ κ

2 )t
)− i

√
2gsκ (−1 + ei2

√
2gst )

]
g2

s

(
8g2

s + κ2
) , (C11)

where gs =
√

g2
1 + g2

2. Then the dynamical concurrence can
be obtained as C(t ) = 2|Ceg(t )C∗

ge(t )|.
In the main text, we consider the SEG of identical g. In

Figs. 6(a) and 6(b), we investigate the concurrence versus

g2/g1 for g1 = κ and g1 = κ/4, respectively, where we can
see that the identical g correspond to the highest concur-
rence for g1 = κ/4, while g2 < g1 is beneficial for achieving
higher concurrence for g1 = κ . Steady-state concurrence as
a function of g1/κ and g2/g1 is shown in Fig. 6(c), which
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Enhanced entanglement

FIG. 6. (a) and (b) Dynamical concurrence versus g2/g1 for g1 = κ/4 and g1 = κ , respectively. (c) Steady-state concurrence as a function
of g1/κ and g2/g1. The white dashed line indicates the optimal g2/g1 for the maximum steady-state concurrence when g1/κ > 1. The black
solid line labels the parameter range of enhanced entanglement compared to the case of g2 = g1.
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clearly shows that nonidentical g are beneficial to enhancing
the entanglement of QEs with g1/κ > 0.5 and g2/g1 in the
range of 0.4 < g2/g1 < 1.

APPENDIX D: SINGLE-PHOTON GENERATION AT THE
FRIEDRICH-WINTGEN BOUND STATE

The single-photon generation through photon blockade re-
quires weak coherent pumping. In this Appendix, we present a
derivation of the analytical expressions for the average photon
number and zero-time-delay second-order correlation func-
tion of the CW mode using perturbation theory. A driving
Hamiltonian is implemented in the extended cascaded QME
for the QE-driven case, which is

Hdriving = �(e−iωLtσ+ + σ−eiωLt ), (D1)

where ωL is the frequency of the laser field and � is the
driving strength. Applying the unitary transformation U =
exp[−iωL(c†

ccwcccw + c†
cwccw + σ+σ−)t], we can obtain the ef-

fective Hamiltonian

Ht
eff = Ht + EV, (D2)

with

Ht = �0σ+σ− + �cc†
ccwcccw + �cc†

cwccw

+ g(σ−c†
ccw + cccwσ+) + g(σ−c†

cw + ccwσ+)

− iκeiφcccwc†
cw (D3)

and

V = �(σ+ + σ−), (D4)

where �0 = �cL − iγ /2 and �c = �cL − iκ/2, with �cL =
ωc − ωL being the frequency detuning between the system and
the laser field. E is a perturbative parameter of laser intensity.
Since the evaluation of g(2)(0) = 〈c†

cwc†
cwccwccw〉/I2

c requires
calculating the second-order correlation function of the cavity
operator, we expand the time-dependent wave function |�(t )〉
in terms of E as |�(t )〉 =∑l=2 El |ψl (t )〉, where we have
truncated the state space by the two-excitation manifold, and
as a result, |ψl (t )〉 is expressed as

|ψl (t )〉 =
∑

n+m+p�2,n=0,1

Cl
nmp|n〉e|m〉ccw|p〉cw, (D5)

where Cl
nmp is the coefficient of quantum state |n〉e|m〉ccw|p〉cw

in the l-order expansion, where there are m photons in the
CCW mode and p photons in the CW mode, while the QE is
either excited (n = 1) or unexcited (n = 0). For l = 1 and 2,
the state vectors are given by

|ψ1(t )〉 = C1
100|100〉 + C1

010|010〉 + C1
001|001〉, (D6)

|ψ2(t )〉 = C2
011|011〉 + C2

10|110〉 + C2
101|101〉 + C2

020|020〉
+ C2

002|002〉. (D7)

From the Schrödinger equation id|�(t )〉/dt = Ht
eff |�(t )〉, we

have

i
d

dt
|ψ0(t )〉 = Ht |ψ0(t )〉, (D8)

i
d

dt
|ψl (t )〉 = Ht |ψl (t )〉 + V |ψl−1(t )〉. (D9)

Substituting Ht [Eq. (D2)] and V [Eq. (D3)] into Eqs. (D8)
and (D9), we can obtain the following equations of motion for
coefficients:

i
d

dt
C1

100 = �0C
1
100 + gC1

010 + gC1
001 + �, (D10)

i
d

dt
C1

010 = �cC
1
010 + gC1

100, (D11)

i
d

dt
C1

001 = �cC
1
001 + gC1

100 − iκeiφC1
010, (D12)

and C0
000 ≈ 1 due to the assumption of weak pumping. The

above equations yield

C1
001 = �g

�c + iκeiφ

D1
, (D13)

with

D1 =
∣∣∣∣∣∣
�0 g g
g �c 0
g −iκeiφ �c

∣∣∣∣∣∣. (D14)

Therefore, the average photon number of the CW mode is
given by

Ic = 〈�(0)|c†
cwccw|�(0)〉 ≈ ∣∣C1

001

∣∣2 =
∣∣∣∣�g

�c + iκeiφ

D1

∣∣∣∣2.
(D15)

We can see that the eigenvalues of D1 are the same as the
matrix Mc in Eq. (13), and thus, the cavity photon Ic di-
verges at the Friedrich-Wintgen DBS due to the zero decay
(linewidth), and perfect single-photon purity can be achieved
since g(2)(0) ∝ I−2

c . This unphysical result comes from the
truncation of state space with at most one excitation. Ic will
remain finite when taking into account higher-order mani-
folds. However, the analytical expression of Ic predicts that the
formation of a bound state in the single-excitation subspace
can produce a prominent enhancement of both the efficiency
and purity of single-photon blockade.

From Eq. (D9), we can also obtain the equations of a two-
excitation subspace:

i
d

dt
C2

011 = 2�cC
2
011 + gC2

101 + gC2
110 − i

√
2κeiφC2

020, (D16)

i
d

dt
C2

110 = (�0 + �c)C2
110 +

√
2gC2

020 + gC2
011 + �C1

010,

(D17)

i
d

dt
C2

101 = (�0 + �c)C2
101 + gC2

011 +
√

2gC2
002 − ikeiφC2

110

+ �C1
001, (D18)

i
d

dt
C2

020 = 2�cC
2
020 +

√
2gC2

110, (D19)

i
d

dt
C2

002 = 2�cC
2
002 +

√
2gC2

101 − i
√

2κeiφC2
011. (D20)
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We thus can obtain

C2
002 = 2

√
2gD−1

2

(
C1

001{�c[2�c(�c + �0) − 3g2] + iκeiφ[�c(�c + �0) − 2g2]}
+C1

010{�cg2 + iκeiφ[�c(3�c + �0) + g2] − κ2e2iφ (2�c + �0)}), (D21)

with

D2 =

∣∣∣∣∣∣∣∣∣∣∣

2�c g g −i
√

2κeiφ 0
g �0 + �c 0

√
2g 0

g −iκeiφ �0 + �c 0
√

2g
0

√
2g 0 2�c 0

−i
√

2κeiφ 0
√

2g 0 2�c

∣∣∣∣∣∣∣∣∣∣∣
= 4D1[−2g2 + �c(3�c + 2�0)] + 4�4
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Then the zero-time-delayed second-order correlation function is evaluated as

g(2)(0) = 〈�(0)|c†
cwc†

cwccwccw|�(0)〉/I2
c ≈ ∣∣C2

002

∣∣2/I2
c . (D23)
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