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Decoherence and nonclassicality of photon-added and photon-subtracted multimode Gaussian states
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Photon addition and subtraction render Gaussian states non-Gaussian. We provide a quantitative analysis of
the change in nonclassicality produced by these processes by analyzing the Wigner negativity and quadrature
coherence scale (QCS) of the resulting states. The QCS is a recently introduced measure of nonclassicality
[Phys. Rev. Lett. 122, 080402 (2019); Phys. Rev. Lett. 124, 090402 (2020)], which we show to undergo a
relative increase under photon addition and subtraction that can be as large as 200%. This implies that the
degaussification and the concomitant increase of nonclassicality come at a cost. Indeed, the QCS is proportional
to the decoherence rate of the state so that the resulting states are considerably more prone to environmental
decoherence. Our results are quantitative and rely on explicit and general expressions for the characteristic and
Wigner functions of photon-added and -subtracted single- and multimode Gaussian states for which we provide a
simple and straightforward derivation. These expressions further allow us to certify the quantum non-Gaussianity
of the photon-subtracted states with positive Wigner function.
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I. INTRODUCTION

Gaussian states are prominent in continuous-variable quan-
tum information as they are relatively easy to produce
experimentally and simple to study theoretically. Never-
theless, non-Gaussian states or operations are essential for
performing certain quantum information tasks. They are,
for example, needed to achieve universal photonic quantum
computation[1,2]. One possible method for producing non-
Gaussian states is through photon addition or subtraction from
a Gaussian state. This technique has attracted interest because
it allows the engineering of a variety of non-Gaussian quan-
tum states. It has, for example, been shown that cat states with
small amplitude can be prepared with a fidelity close to one
by subtracting a photon from a vacuum squeezed state [3–5].
Over the last few years, a variety of experimental techniques
have been developed to generate and study photon-added and
-subtracted Gaussian states [3,6–12]. For reviews on photon
addition and subtraction, we refer to [13,14].

For a state to be non-Gaussian is, however, not always
enough for it to be interesting in the context of quantum in-
formation or quantum computing tasks. Indeed, non-Gaussian
states may still be classical, meaning that they may be mix-
tures of coherent states. Or they may be more generally
mixtures of Gaussian states, in which case they are said not
to be quantum non-Gaussian or genuinely non-Gaussian (see
[14–17] and references therein for details on the latter sub-
ject). Nonclassicality or the stronger property of quantum (or
genuine) non-Gaussianity is needed for certain quantum infor-
mational tasks, and a variety of techniques for their detection
and measure have been developed. In this paper we provide
a quantitative analysis of the degree to which photon-added
and -subtracted Gaussian states are nonclassical or quantum
non-Gaussian.

For our analysis, we will concentrate on two distinct mea-
sures of nonclassicality and non-Gaussianity, namely, their
quadrature coherence scale (QCS) and their Wigner nega-
tivity, as expressed through their Wigner negative volume.
The QCS is a recently introduced nonclassicality measure
[18,19], the definition and main nonclassical features of which
are recalled in Sec. III. The Wigner negativity, on the other
hand, is a common measure of nonclassicality and has been
shown to be a monotone in a resource theory of quantum
non-Gaussianity [16].

Our results for single-mode states, detailed below, establish
that the degaussification through photon addition and sub-
traction does substantially enhance the nonclassical features
of the underlying Gaussian states. At low and intermediate
squeezing, photon addition is more efficient in doing so, but
at high enough squeezing, photon addition or subtraction is
shown to be equivalent in this respect. Importantly, these
results also entail that the increased nonclassicality that is
generated in the process comes at a cost. Indeed, the QCS
of a state is proportional to its decoherence rate [19], so that
a large value of the QCS is equivalent to a short decoherence
time. The photon-added and -subtracted states are therefore
much more sensitive to environmental decoherence than their
Gaussian mother states, and the photon-added states tend to be
considerably more sensitive than the photon-subtracted ones.

More precisely, we show that the Wigner negative volume
of single-mode photon-added and -subtracted Gaussian states
reaches its maximal value when there is no noise, hence on
the photon-added and -subtracted squeezed vacuum states.
This maximum is independent of the amount of squeezing.
In the presence of noise, and at low to intermediate val-
ues of the squeezing, we show the Wigner negative volume
is more sensitive to noise and hence smaller for photon-
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subtracted squeezed Gaussian states than for photon-added
ones. This means that, at intermediate squeezing, the intu-
itive idea that photon addition is more efficient than photon
subtraction in producing nonclassical features such as Wigner
negativity and hence quantum non-Gaussianity is indeed cor-
rect for Gaussian states. One should note, however, that, as
we show, there is a tradeoff between squeezing and Wigner
negative volume: photon-added squeezed thermal states lose
Wigner negative volume as the squeezing is increased. At
large squeezing, the advantage of photon-addition over photon
subtraction is diminished: we establish that the Wigner nega-
tive volume is then identical for photon-added and -subtracted
states.

Concerning the QCS of photon-added and -subtracted
single-mode Gaussian states, we show that the degaussifica-
tion accomplished by photon addition and subtraction does
typically increase the QCS, and hence the associated non-
classical features of the state, and that this increase is often
substantial. As for the Wigner negative volume, it is more
pronounced for photon addition than for photon subtraction,
except at large values of the squeezing, where it is again
asymptotically identical.

As a byproduct of our analysis, we show a number of
structural results about photon addition and subtraction that
are of independent interest and valid for arbitrary n-mode
Gaussian states ρG. While photon addition and subtraction
are guaranteed to make n-mode Gaussian states non-Gaussian,
it is known, and very easy to see, that photon subtraction
applied to a n-mode classical Gaussian state yields a classical
non-Gaussian state. We will show that, in addition, photon
subtraction applied to a n-mode nonclassical Gaussian state
yields a nonclassical non-Gaussian state (Proposition 1). Note
that this is not true for non-Gaussian states: for example,
the one-photon Fock state, which is nonclassical, is trans-
formed into the vacuum, which is classical. In addition, we
show that, if a single-mode photon-subtracted Gaussian state
ρG

− ∼ a(c)ρGa†(c) [see Eq. (18)] is Wigner negative, then
the underlying Gaussian state ρG has a QCS strictly larger
than 1 (Lemma 3). This is in contrast to what happens with
photon addition, which, applied to any Gaussian state, is
known [20,21] to always produce a Wigner negative and hence
nonclassical state. We further use a sufficient criterium for
quantum non-Gaussianity in terms of the Wigner function
from [15] to identify a family of photon-subtracted Gaussian
states with positive Wigner function that are quantum non-
Gaussian.

The paper is organized as follows. In Sec. II we give a brief
review of the phase space formalism of quantum optics. In
Sec. III we introduce the QCS and recall its main features
as a nonclassicality witness and measure. To compute it for
photon-added and -subtracted states, we need their Wigner
and/or characteristic functions. We show how to straightfor-
wardly compute those for general multimode photon-added
and -subtracted states in Sec. IV and apply the result when
the initial state is Gaussian. The resulting formulas are simply
expressed in terms of the covariance matrix and displacement
operator characterizing the initial Gaussian state; see Eqs. (21)
and (24). Equivalent but less explicit formulas were obtained
previously in [14,20,21], using a more complex and consider-
ably more lengthy derivation. We first use these expressions

to make a number of general qualitative and quantitative ob-
servations on the (non)classicality and Wigner negativity and
positivity of photon-subtracted multimode Gaussian states in
Sec. V. In Sec. VI and VII we then turn to a quantitative study
of the Wigner negative volume and of the relative change
in the QCS for single-mode photon-added and -subtracted
squeezed thermal states. In Sec. VIII we discuss the two-mode
case through some illustrative examples, some of which have
recently been prepared experimentally [10]. We conclude and
discuss some open problems in Sec. IX.

II. PHASE SPACE FORMALISM

We start by briefly introducing the symplectic formalism
employed for continuous-variable states in quantum optics.
More details can be found, for example, in [22,23].

A continuous-variable system is represented by n modes.
To each of them are associated the annihilation and cre-
ation operators ai and a†

i verifying the commutation re-
lation [ai, a†

i ] = 1. We define the vector of quadratures
r̂ = (x̂1, p̂1, x̂2, p̂2, . . . , x̂n, p̂n) where

x̂ j = 1√
2

(a j + a†
j ), p̂ j = − i√

2
(a j − a†

j ) ∀ j = 1, . . . , n.

Each quantum state ρ can be described by a characteristic
function

χ (z) = TrρD(z), (1)

where

D(z) = exp

⎡
⎣ n∑

j=1

(z ja
†
j − z̄ ja j )

⎤
⎦ = ea†(z)−a(z) (2)

is the n-mode displacement operator and where

a†(z) =
∑

i

zia
†
i , a(z) =

∑
i

z̄iai. (3)

Note that, for any z, z′ ∈ Cn,

[a(z), a†(z′)] =
∑

i

ziz
′
i = z · z′.

For later use, we recall

a†(c)D(z) = D(z)[a†(c) + z · c], (4)

a(c)D(z) = D(z)[a(c) + z · c]. (5)

The Fourier transform of the characteristic function gives
the Wigner function

W (α) = 1

(π2)n

∫
χ (z)e(z̄·α−z·ᾱ) d2nz, (6)

where d2nz = dnRe(z) dnIm(z),α = (α1 · · · αn)T and
α j = α j1 + iα j2 = 1√

2
(x j + ip j ) ∈ C. It is normalized so that∫

W (α)d2nα = χ (0) = 1.
For later reference, we recall that a state ρ is said to be

optically classical [24] if and only if there exists a positive
function P(z) so that

ρ =
∫

P(z)|z〉〈z| dz. (7)
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Here |z〉 = D(z)|0〉 are the coherent states with |0〉 the vacuum
state. Otherwise, the state is said to be optically nonclassical.
In other words, a state is said to be optically nonclassical if it
is not a mixture of coherent states. In what follows, we will
drop “optically” from “optically nonclassical.”

The first-order moments of a state ρ constitute the displace-
ment vector, defined as d = 〈r̂〉 = Tr(r̂ρ), while the second
moments make up the covariance matrix V whose elements
are given by

Vi j = 2Cov[r̂i, r̂ j] = 〈{r̂i, r̂ j}〉 − 2〈r̂i〉〈r̂ j〉, (8)

where {·, ·} represents the anticommutator.
A Gaussian state ρG is fully characterized by its displace-

ment vector and covariance matrix. Its characteristic function
is a Gaussian:

χG(ξ) = e− 1
2 ξT �V �T ξ−i

√
2(�d )T ξ (9)

with

� =
n⊕

j=1

(
0 1

−1 0

)
.

Here, for all 1 � i � n, ξT
i = (ξi1, ξi2) ∈ R2 and

ξT = (ξT
1 , . . . , ξT

n ) ∈ R2n. Also, we define

z j = ξ j1 + iξ j2 (10)

and z = (z1, . . . , zn) ∈ Cn, and we will write, with the usual
abuse of notation, χG(z) = χG(ξ).

The Wigner function W G(α) of a Gaussian state is also a
Gaussian. See Appendix C for the explicit expression.

III. THE QUADRATURE COHERENCE SCALE

The quadrature coherence scale C(ρ) (QCS) of a state ρ is
defined as [18,19]

C2(ρ) = 1

2nP

⎛
⎝ 2n∑

j=1

Tr[ρ, r̂ j][r̂ j, ρ]

⎞
⎠, (11)

where P = Trρ2 is the purity of the state ρ. A summary of its
main features is given in this section.

The expression Eq. (11) for C(ρ) does not explain why it is
called the quadrature coherence scale. To see this, we consider
for simplicity of notation the case where only one mode is
present: the general case is obtained by taking an average
over the modes. It turns out that the QCS can be rewritten
as follows:

C2(ρ) = 1

2P

[∫
(x − x′)2|ρ(x, x′)|2 dx dx′

+
∫

(p − p′)2|ρ(p, p′)|2 d p d p′
]
. (12)

Here ρ(x, x′) [respectively, ρ(p, p′)] is the operator kernel
of ρ in the x̂ representation (respectively, p̂ representation).
Since |ρ(x, x′)|2/P [respectively, |ρ(p, p′)|2/P] is a proba-
bility distribution, one readily sees the first (second) term in
this expression provides the scale (squared) on which the co-
herences, meaning the off-diagonal matrix elements ρ(x, x′)
[respectively, ρ(p, p′)], of the density matrix ρ live. Roughly

speaking, one can think of ρ(x, x′) and ρ(p, p′) as matrices;
the square root of the first (respectively, second) term in
Eq. (12) provides the width of the strip parallel to its diagonal
in which the x̂ coherences (respectively, p̂ coherences) of ρ are
substantial. It follows that a large C(ρ) implies that either the x̂
or p̂ coherences live far from the diagonal. Conversely, a small
C(ρ) implies that the off-diagonal coherences of both quadra-
tures must be small away from the diagonal. As explained in
[19], a large value of the QCS manifests itself in nonclassical
phenomena such as fast oscillations of the Wigner function,
of the probability densities ρ(x, x) and/or ρ(p, p) for position
and momentum and of the photon number probability, which
can be interpreted as interference phenomena.

In fact, as pointed out already in the introduction, C2(ρ)
provides a measure of optical nonclassicality. More precisely,
C2(ρ) > 1 implies ρ is nonclassical, and a large value of the
QCS corresponds to a large nonclassicality [18]. Coherent
states, on the other hand, have a QCS equal to 1; all other
classical states have a QCS less than or equal to 1, which
is therefore a natural reference value for the QCS. The eval-
uation of the QCS on large families of benchmark states in
[18,19,25,26] confirms the efficiency of the QCS as an optical
nonclassicality measure. For example, highly excited Fock
states, cat states with large separation, highly squeezed states,
and strongly entangled states all have a large QCS. Some
explicit examples of this type are given in this section. In the
following sections, the QCS of photon-added and -subtracted
Gaussian states will be studied in detail, and the results will
confirm this general picture.

The QCS has recently be shown to be experimentally
accessible. In [27] an interferometric scheme was proposed
allowing a direct measurement of the QCS using two identical
copies of the state, thereby avoiding having recourse to a full
state tomography. This scheme has then been carried out on a
cloud quantum computer [28].

For our purposes here, a second feature of the QCS is
crucial. It was proven in [19] that the QCS is directly related
to the decoherence time of ρ, as follows. When coupled to a
thermal bath, and provided C2(ρ) > 1, the half-life τP of the
purity of ρ satisfies

τP ≈ 1

2

1

(2n∞ + 1)C2(ρ) − 1
tR,

where tR is the timescale on which the system converges to
the thermal equilibrium with mean photon number n̄∞, which
characterizes the temperature of the bath. Similarly, the half-
life of C2(ρ) itself is also inversely proportional to n∞C2(ρ).
In other words, the speed at which environmental decoherence
takes place is proportional to the QCS (squared).

In conclusion, whereas a large QCS does imply strong
nonclassical properties of the state, as recalled above,
this nonclassicality is accompanied automatically with an
increased sensitivity to environmental decoherence and
hence to a shorter decoherence time. For more details we
refer to [19].

In what follows, we investigate how the QCS of Gaussian
states is affected by photon addition or subtraction. This will
inform us on the change in decoherence time of the degaus-
sified states, compared to the original Gaussian state. We will
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see that, as a rule, the degaussified state has a much larger
QCS, and hence a much shorter decoherence time.

For our purposes, neither the expression in Eq. (11) nor the
one in Eq. (12) is suitable. It is shown in [18] that the QCS for
a general n-mode state can be written in terms of the Wigner
or characteristic function of the state:

C2(ρ) = ‖|ξ |χ‖2
2

n‖χ‖2
2

= 1

4

‖∇W ‖2
2

n‖W ‖2
2

. (13)

Here ξ and α belong to Cn and ‖ · ‖2 stands for the L2 norm,
meaning, for example, ‖W ‖2

2 := ∫ |W (α)|2 d2nα. The expres-
sions obtained for the Wigner and characteristic function of
photon-added and -subtracted states in the next section will
allow us to compute their QCS and the corresponding change
in QCS.

Let us note that, for pure states, a simple computation
starting from (11) shows that

C2(ρ) = 1

n

∑
i

(	x̂i )
2 + (	p̂i )

2, (14)

which is the so-called total noise of ρ [29]. As a result, for the
nth Fock state |n〉, one finds

C2(|n〉〈n|) = 2n + 1, (15)

and for cat states |ψ±〉  |α〉 ± | − α〉, one has
C2(|ψ±〉〈ψ±|)  2|α|2.

For an n-mode Gaussian state ρG, pure or mixed, one finds
[19,26]

C2
G = C2(ρG) = 1

2n
TrV −1. (16)

For example, the squeezed thermal states, defined in Eq. (40),
have C2

SqTh = 1−q
1+q cosh r [see Eq. (42)]. Note the growth of the

QCS with n, α and the squeezing parameter r, respectively.
We will continue the practice of [18,19] in referring to non-

classical states ρ for which the QCS is less than 1 as weakly
nonclassical states, the others being strongly nonclassical. In
other words, we have that

C2(ρ) � 1

if and only if ρ is either classical or weakly nonclassical.
The relevance of this boundary between weakly and strongly
nonclassical is clear from the many benchmark states investi-
gated previously and will emerge again below in Sec. V and
in Sec. VII.

IV. CHARACTERISTIC AND WIGNER FUNCTIONS
OF MULTIMODE PHOTON-ADDED

AND -SUBTRACTED STATES

A. General photon-added and -subtracted states

We first define what we mean by a general photon-added
n-mode state ρ+. Recall that the most general multimode one-
photon state is of the form

|c〉 = a†(c)|0〉,
where a†(c) is given by Eq. (3), c ∈ Cn and

∑
i |ci|2 = 1. In

general, a photon-added state is then defined as

ρ+ = N+ a†(c)ρ a(c) with N+ = (Tr[a†(c)ρ a(c)])−1, (17)

where ρ is the initial or mother state to which a photon is
added. Similarly, the photon-subtracted state is defined as

ρ− = N− a(c)ρ a†(c) with N− = (Tr[a(c)ρ a†(c)])−1. (18)

Note that

Tr[a†(c)ρ a(c)] = Tr[a(c)ρ a†(c)] + 1 � 1,

so that 0 < N+ � 1. However, Tr[a(c)ρ a†(c)] can vanish,
in which case a(c)ρa†(c) = 0 so that ρ− is not defined. We
will come back to this point below, but for now we assume
N− < +∞.

We write χ± for the characteristic function of ρ±. Its
expression is obtained by a short and straightforward com-
putation, and we find

χ±(z) = −N±

[
c ·

(
∂z ∓ z̄

2

)][
c̄ ·

(
∂z̄ ∓ z

2

)]
χ (z), (19)

where χ (z) is the characteristic function of the state ρ. To see
this, we note first that the displacement operator can be written
as

D(z) = ea†(z)e−a(z)e−|z|2/2

or equivalently as

D(z) = e−a(z)ea†(z)e|z|2/2.

Consequently, one has the well-known formulas

∂z j D(z) =
(

a†
j − z j

2

)
D(z) = D(z)

(
a†

j + z j

2

)
,

∂z j D(z) = −D(z)
(

a j + z j

2

)
= −

(
a j − z j

2

)
D(z).

Hence, for all c ∈ Cn, a short computation shows that

−
(

c · ∂z̄ − c · z
2

)(
c · ∂z − c · z

2

)
D(z) = a(c)D(z)a†(c).

This implies Eq. (19) for χ+. The proof for χ− is similar.
It is clear from Eq. (19) that, when adding m

photons, one needs to apply m times the operator
−[c · (∂z − z̄

2 )][c̄ · (∂z̄ − z
2 )] and to normalize the result.

To compute the Wigner function W±(α) of ρ± it now suf-
fices to compute the Fourier transform of χ±(z) [see Eq. (6)].
Details of the calculation can be found in Appendix A. We
obtain

W±(α) = N±

[
c ·

(
∂α

2
∓ ᾱ

)][
c̄ ·

(
∂ᾱ

2
∓ α

)]
W (α). (20)

The one-mode version of this expression was already obtained
in [30].

Clearly then, if the characteristic function χ (or Wigner
function W) of ρ is known, the characteristic or Wigner func-
tion of an arbitrary photon-added and -subtracted state can be
straightforwardly computed. We illustrate this in the following
subsection for Gaussian states.

B. Photon-added and -subtracted Gaussian states

We suppose now that ρ = ρG is Gaussian. The computa-
tion in Eq. (19) then reduces to elementary algebra, using (9).
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The details are given in Appendix B, and the result is

χG
± (z) = N±

(
1
2 mT

c V mc ± 1
2 − βT

±mcmT
c β±

)
χG(z). (21)

Here the covariance matrix V is the one of the Gaussian
mother state,

β± = 1
2 (�V � ∓ I)U †Z + i�d, (22)

the matrix U is given by [31]

U =
n⊕

j=1

u, where u = 1√
2

(
1 i
1 −i

)

and

Z =

⎛
⎜⎜⎜⎜⎝

z1

z1
...

zn

zn

⎞
⎟⎟⎟⎟⎠ =

√
2Uξ, mc = U †

⎛
⎜⎜⎜⎜⎝

c1

0
...

cn

0

⎞
⎟⎟⎟⎟⎠. (23)

Note that

mT
c V mc = 2Cov[a†(c), a(c)].

With analogous calculations (see Appendix C), one also
finds the Wigner function of a photon-added and -subtracted
Gaussian state. The resulting expressions are similar with
the difference that they involve the inverse of the covariance
matrix V . One finds1

W G
± (r) = N±

(
M±(V, c) + λT

±mcmT
c λ±

)
W G(r), (24)

where

λ± = [(V −1 ± I)r − V −1d] ∈ R2n, (25)

and M±(V, c) ∈ R is independent of r and given by

M±(V, c) = ∓ 1
2 − 1

2 mT
c V −1mc. (26)

Let us note that in [20,21] expressions for the characteristic
and Wigner functions of photon-added and -subtracted Gaus-
sian states were derived through a rather involved computation
of the truncated correlation functions of the states, which then
need to be summed. The resulting expressions are, however,
less directly formulated in terms of the covariance matrix V
and displacement vector d characterizing the Gaussian mother
state. Our derivation here, starting as it does from the general
and straightforward expressions in Eqs. (19) and (20), is ele-
mentary, and the results are simply expressed in terms of d and
of the (inverse of) V . We use them now to analyze the QCS
and Wigner negativity of the photon-added and -subtracted
Gaussian states. Let us mention that yet another approach to
the computation of the Wigner function of photon-subtracted
states is proposed in [14]; the resulting expressions are again
less explicit than the ones proposed here.

V. (NON)CLASSICALITY AND WIGNER NEGATIVITY
OF PHOTON-SUBTRACTED GAUSSIAN STATES

To prepare our quantitative analysis of the QCS of photon-
added and -subtracted Gaussian states, we obtain in this

1With the usual abuse of notation, we write W (α) = W (r).

section general results on the (non)classicality and Wigner
negativity and positivity of photon-subtracted Gaussian states.
We know that photon addition and subtraction degaussifies
any Gaussian state. The question we address is: under what
conditions on the Gaussian state and on c does it become
nonclassical or even Wigner negative? Note that, for photon
addition, the answer is immediate. Photon addition transforms
any Gaussian state, centered or not, classical or not, into a
Wigner negative and hence nonclassical and even quantum
non-Gaussian state. This follows directly from Eqs. (24)–(26)
and was pointed out already in [20,21]. We therefore concen-
trate on the photon-subtracted case.

For one-mode photon-subtracted Gaussian states, we es-
tablish a relation between Wigner negativity and the QCS.
Recall that a state is said to be Wigner positive if its Wigner
function is everywhere nonnegative. Otherwise it is said,
somewhat abusively, to be Wigner negative.

A. (Non)Classicality of photon-subtracted Gaussian states

It is well known that photon subtraction transforms a
classical state into a classical state. We recall the argument.
Suppose ρ is classical and let P(z) be its P function, which
is nonnegative. Then it follows directly from Eq. (7) that
N−|c · z|2P(z), which is still nonnegative, is the P function of
ρ−. In addition, photon subtraction can make a nonclassical
state classical: a1|1〉 = |0〉 is an example. In other words,
while photon subtraction always preserves the classicality of
states, it does not always preserve their nonclassicality.

We show here that, nevertheless, photon subtraction always
transforms a Gaussian nonclassical state into a nonclassical
state. In other words, photon subtraction preserves both the
classicality and the nonclassicality of Gaussian states. This is
the content of Proposition 1 below. It generalizes an obser-
vation made in [32] where it is remarked that, under photon
subtraction, a single-mode squeezed vacuum state remains
nonclassical for all values of squeezing r > 0. Our result
holds for all nonclassical Gaussian multimode states, centered
or not.

As a preliminary step, we first identify those c ∈ Cn with
c · c = 1, and ρG for which a(c)ρGa†(c) = 0; for such c and
ρG photon subtraction therefore does not lead to a state. The
result is stated in the following lemma.

Lemma 1. Let ρG be a Gaussian state with covari-
ance matrix V and displacement vector d, and let c ∈ Cn.
Then a(c)ρGa†(c) = 0 if and only if mc ∈ Ker(V − I) and
mc · d = 0.

When V = I, the Gaussian state is in fact a coherent state
|z〉. In that case the first condition of the lemma is satisfied for
all c ∈ Cn, and the second condition reads c · z = 0. In other
words, one has

a(c)|z〉 = 0 ⇔ c · z = 0. (27)

Of course, this particular case follows immediately from the
well-known identity

a(c)|z〉 = (c · z)|z〉, (28)

which is in turn a direct consequence of Eq. (5). When there
is only one mode, then Eq. (27) can be satisfied only if
|z〉 = |0〉. With several modes, on the other hand, it does occur
for nonzero z. Lemma 1 treats the case of a general Gaussian
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state, and the proof, which uses Eq. (21) and (22), is slightly
more involved.

Proof. ρ̃G
− := a(c)ρGa†(c) = 0 if and only if χ̃G

− (z) = 0
for all z ∈ Cn, where χ̃G

− is the characteristic function of ρ̃G
− .

From Eqs. (21) and (22), it is given by

χ̃G
− (z) = (

1
2 mT

c V mc − 1
2 − βT

−mcmT
c β−

)
χG(z).

For this to vanish, the polynomial factor preceding the expo-
nential factor χG must vanish for all z ∈ Cn. Let v ∈ R2n be
an eigenvector of V with eigenvalue λ �= 1. Then define, for
all μ ∈ R,

Z(μ) = μU�T v. (29)

Then

βT
−mc = μ

2
(λ − 1)(�v)T mc + i(�d )T mc. (30)

It follows that

χ̃G
− [Z(μ)] = p(μ)χG[Z(μ)], (31)

where p(μ) is a polynomial of degree two. This polynomial
vanishes identically if and only if it has vanishing coefficients.
One readily checks this is equivalent to

(�v)T mc = 0, (32)

1
2

(
mT

c (V − I)mc
)+ | (�d )T mc |2= 0. (33)

Since �T mc = imc, the first of these two conditions is equiva-
lent to vT mc = 0. Since this needs to hold for all eigenvectors
of V with eigenvalue λ �= 1, it follows that mc ∈ Ker(V − I).
Hence the first term in Eq. (33) vanishes, and so does therefore
the second one. This concludes the proof. �

We are now ready to fully characterize the classical and
hence the nonclassical photon-subtracted Gaussian states.

Proposition 1 Let ρG be a Gaussian state. Let c ∈ Cn and
suppose a(c)ρGa†(c) �= 0. Then:

(i) ρG
− is classical [respectively, nonclassical] if and only

if ρG is classical [respectively, nonclassical].
(ii) ρG

− is classical if and only if V − I � 0.
In Proposition 1, conditions (i) and (ii) are equivalent since

it is well known that the classicality of a Gaussian state
is equivalent to V � I [31]. Proposition 1 (i) asserts that,
whereas it is true that photon subtraction cannot produce a
nonclassical state from a classical one, it is also true that
it does never transform a nonclassical Gaussian state into a
classical one. We will show in the next section that it can in
fact considerably increase the degree of nonclassicality of a
given Gaussian state.

Proof. In view of the previous comment, it is sufficient to
prove that if ρG

− is classical, then V � I. For that purpose, we
use the fact that, if ρG

− is classical, then the Fourier transform

of the P function, which is known to be given by e
1
2 ξ·ξχG

− (ξ)
[33], is a bounded function. Using Eqs. (9) and (21) this
implies

|e 1
2 ξ·ξχG

− (ξ)| = N−
∣∣ 1

2 mT
c V mc − 1

2 − βT
−mcmT

c β−
∣∣

× e− 1
2 ξT �(V −I)�T ξ (34)

is bounded. Suppose it is not true that V � I. Then there
exists v ∈ R2n, v · v = 1, and 0 � γ < 1 so that V v = γ v.

For such v, we define Z(μ) as in Eq. (29), and hence ξ(μ) =
1√
2
U †Z(μ) = μ 1√

2
�T v. The exponential factor in (34) then

grows without bound for large μ. Hence e
1
2 ξ·ξχG

− can be
bounded only if the polynomial prefactor p(μ) in Eq. (31)
vanishes identically. This in turn is equivalent to Eqs. (32)
and (33). Since Eq. (32) holds for all eigenvectors of V with
eigenvalue strictly less than 1, it follows that mc belongs to the
nonnegative spectral subspace of V − I. Equation (33) then
implies that mc in fact belongs to the kernel of V − I and, in
addition, that d is perpendicular to mc. By the lemma, this in
turn implies that a(c)ρGa†(c) = 0, which is a contradiction.
In conclusion, V − I � 0. �

B. Wigner positivity and negativity of photon-subtracted
Gaussian states

Using Eqs. (24)–(26) one easily characterizes the Wigner
positive and negative photon-subtracted Gaussian states as
follows.

Lemma 2. Let ρG be a Gaussian state and c ∈ Cn. Suppose
ρG

− is Wigner negative. Then

mc
T V −1mc > 1. (35)

Suppose that either d = 0 or that 1 is not an eigenvalue of V .
Then Eq. (35) is both necessary and sufficient for ρG

− to be
Wigner negative.

Note that it follows from Lemma 2 that photon-subtracted
Gaussian states are Wigner positive if

mc
T V −1mc � 1.

This straightforward condition therefore identifies a family of
Wigner positive states indexed by V and by c, which is of
independent interest because a complete characterization of
all Wigner positive states is not known [34].

Proof. Since mcmT
c is a rank one projector in C2n, the

term λT
−mcmT

c λ− in Eq. (24) is nonnegative. It follows then
from Eq. (24)–(26) that if ρG

− is Wigner negative, then
M−(V, c) < 0, which is equivalent to Eq. (35). This proves
the first statement of Lemma 2. For the second statement, note
that, if d = 0, then the term λT

−mcmT
c λ− vanishes when r = 0.

When 1 is not an eigenvalue of V , then (V −1 − I) is invertible,
and then this term vanishes provided r = (I − V )−1d. Hence,
in both cases the Wigner function of ρG

− is negative in at least
one point of the phase space if and only if

M−(V, c) < 0, (36)

which yields the result. �
In the case where only a single mode is present (n = 1)

the previous result can be sharpened and a link established
between the Wigner negativity of the photon-subtracted state
and the QCS of the Gaussian mother state. First, without loss
of generality, one can now take c = 1, and one finds from
Eq. (16) that

C2(ρG) = 1
2 TrV −1 = mT

c V −1mc, (37)

M±(V, c) = ∓ 1
2 − 1

2 mT
c V −1mc

= − 1
2 (C2(ρG) ± 1). (38)
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Next, introduce an orthogonal eigenbasis e1, e2 for V :

0 < v1 � v2, ei ∈ R2, V ei = viei.

One then has the following result.
Lemma 3. Suppose v1 > 1. Then the one-mode photon-

subtracted Gaussian state ρG
− is classical and hence Wigner

positive.
Suppose v1 < 1. Then the one-mode photon-subtracted

Gaussian state ρG
− is Wigner negative if and only if

C2(ρG) > 1. (39)

Suppose v1 = 1. Then the one-mode photon-subtracted
Gaussian state ρG

− is Wigner negative if and only if

C2(ρG) > 1 + (dT e1)2. (40)

In general, therefore, if ρG
− is Wigner negative, then the

Gaussian mother state ρG is strongly nonclassical, meaning
C2(ρG) > 1. We already showed in the previous subsection
that photon-subtracted states are nonclassical if and only if ρG

is nonclassical. One now sees in addition that if their Wigner
function has some negativity, then the Gaussian mother state
is strongly nonclassical.

Proof. The first statement follows directly from Proposi-
tion 1. Since detV � 1, the condition v1 < 1 implies v2 > 1.
Hence Lemma 2 implies the result in this case.

Now suppose v1 = 1, so that v2 � 1. If v2 = 1, the state ρG

is a coherent state, in which case C(ρG) = 1 and the condition
is never satisfied; but this is compatible with the statement of
the lemma since, in view of Eq. (28), the photon-subtracted
state is then the same coherent state and hence Wigner posi-
tive. It remains to treat the case where v1 = 1 < v2. It follows
from Eqs. (24) and (25) that the Wigner function is negative
in at least one point if and only if

min
r

(
M−(V, c) + 1

2‖λ−‖2
)

< 0,

where

λ− = [(V −1 − I)r − V −1d] ∈ R2.

Since minr ‖λ−‖2 = (eT
1 d )2 the result then follows from

Eq. (38). �
In the next sections we turn to a quantitative analysis of the

Wigner negativity and the QCS for single-mode photon-added
and -subtracted squeezed thermal states. We will show that
the Wigner negativity of such states is bounded above by that
of the one-photon Fock state and very sensitive to noise and
squeezing. The QCS can on the other hand be very strongly
enhanced by the photon-addition and subtraction process and
increases with the squeezing. It is also sensitive to noise and
losses.

VI. PHOTON-ADDED SQUEEZED THERMAL STATES

In this section we quantitatively evaluate the effect pro-
duced by adding a photon to a general centered single-mode
Gaussian state on the Wigner negative volume and on the QCS
of the state.

We note that the nonclassical nature of such photon-added
states has previously been certified theoretically and/or exper-
imentally only for the two particular cases of photon-added

thermal states (see [9,35,36]) and of photon-added squeezed
vacuum states (see [20,21,37,38]) using various nonclassical-
ity witnesses, but without providing a complete quantitative
assessment, even in these particular cases.

Our analysis of the Wigner negative volume of the
photon-added Gaussian states shows that it is highest for
photon-added squeezed vacuum states. It is sensitive to noise,
and, in the presence of noise, it decreases with increased
squeezing (Sec. VI A). In this sense, there is—at a fixed noise
level—a tradeoff between Wigner negativity and squeezing
for such states. We will further see that the degaussification
process of photon-adding tends to entail a considerable per-
centage increase in QCS (Sec. VI B). Whereas this entails
a corresponding gain in nonclassicality, it also means the
resulting state is considerably more sensitive to environmental
decoherence than its Gaussian mother state, as explained in
Sec. III.

A squeezed thermal (SqTh) state is defined as

ρSqTh = SρThS†, (41)

where

ρTh = (1 − q)
∑

n

qn|n〉〈n|

is a thermal state of temperature2 q and S = e
1
2 (z̄a2−za†2 ) is the

squeezing operator with z = reiφ . The rotational invariance of
the QCS implies we can restrict ourselves to the case where
φ = 0. The covariance matrix of these states is

VSqTh = 1 + q

1 − q

(
e−2r 0

0 e2r

)
,

and their characteristic function is

χSqTh(z) = e− 1
2

1+q
1−q (e2rξ 2

1 +e−2rξ 2
2 ),

where we recall z = ξ1 + iξ2. Their QCS, computed with
Eq. (16), is then equal to

C2
SqTh(q, r) = 1 − q

1 + q
cosh(2r). (42)

Note that it increases sharply with the squeezing parameter r
and decreases with q. Increased squeezing therefore reduces
the decoherence time sharply. A photon-added squeezed ther-
mal (SqTh+) state is defined as

ρSqTh+ = NSqTh+ a†ρSqTha,

where NSqTh+ = 2[1 + 1+q
1−q cosh(2r)]−1. Its characteristic

function can be computed using Eq. (21):

χSqTh+(z) = χSqTh(z)

[
2q|z|2

(1 − q2) cosh 2r + (1 − q)2

+q + 1

q − 1

(
e2rξ 2

1 + e−2rξ 2
2

) + 1

]
. (43)

2The actual temperature is given by T with q = e
−h̄ω
kT ; q is also

related to the mean photon number 〈n〉 as q = 〈n〉
1+〈n〉 .
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FIG. 1. Level lines of (a) the Wigner negative volume NW(ρSqTh+), (b) the QCS, C2
SqTh+, and (c) the relative gain RSqTh+ of photon-added

squeezed thermal states in function of the temperature q and the squeezing r. With the dashed red, the line C2
SqTh+(q, r) = 1 and with the dotted

orange, the level line C2
SqTh(q, r) = 1 of the QCS of the squeezed thermal states.

A. The Wigner negativity of photon-added squeezed
thermal states

To evaluate the Wigner negativity of the SqTh+ states, we
evaluate, as is customary, their Wigner negative volume [39],
which we shall denote by NW(ρ): it is defined as the absolute
value of the integral of the Wigner function over the area
where the latter is negative. We recall that the Wigner negative
volume has been proven to be a (nonfaithful) monotone of
genuine (or quantum) non-Gaussianity [16]. The Wigner func-
tion of the SqTh+ state can be readily computed with (24) (see
Appendix E for the details). One sees that it is negative inside
an ellipse centered at the origin where it reaches its minimal
value. Except when q = 0, a general analytical expression

for NW,SqTh+(q, r) is not readily obtained, but the result of a
numerical computation is shown in Fig. 1(a).

For SqV+ states, when q = 0, an analytical computation
yields the following value, independently of r [39]:

NW,SqV(r) = NW,SqTh+(0, r) = 2√
e

− 1 = 0.213. (44)

This is the maximal value attained on SqTh+ states, and it is
in particular the value for the first Fock state.

The Wigner negative volume NW,SqTh+(q, r) decreases
with the noise q, at a given value of the squeezing r: this is not
surprising, since higher q is expected to make the state more
classical. The dot-dashed purple line on Fig. 1(a) indicates for
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which value of the noise the Wigner negative volume drops
down to half the value it takes on the first Fock state. This
happens with a noise in the range 0.12 � q � 0.2 depending
on the squeezing, and it shows that the Wigner negative vol-
ume of the SqTh+ states is quite sensitive to noise.

Contrary to what happens when q = 0, when q �= 0, the
Wigner negative volume does depend on the squeezing and
in fact decreases with increasing r. In this sense, at a given
noise level, there is a tradeoff to be considered: one pays in
Wigner negative volume to gain in squeezing. In addition, as
we will see below, increased squeezing substantially reduces
the decoherence time.

The Wigner negative volume saturates to a finite value at
large r that decreases with q and that is readily computed (see
Appendix E) for small q:

NW,SqV(r) = NW,SqV(+∞) � NW,SqTh+(q,+∞)

�

(
2√
e

− 1

)
(1 − q)3

(1 + q)3
.

B. The QCS of photon-added squeezed thermal states

The QCS of the SqTh+ states can be computed with
Eq. (13). The result is explicit (it can be found in Appendix D)
but is not very instructive. To second order in q, r, it reads

C2
SqTh+(q, r) � 3 − 8q + 8q2 + 6r2.

The expression simplifies considerably for photon-added
squeezed vacuum (SqV+, q = 0) states and for photon-added
thermal (Th+, r = 0) states:

C2
SqV+(0, r) = 3 cosh(2r), (45)

C2
Th+(q, 0) = 6

q + 1
− 1 − 2(q + 1)

q2 + 1
. (46)

Examining Fig. 1(b), one observes that the QCS of SqTh+
states increases sharply with r and decreases with q, as the
QCS of their Gaussian mother states [see Eq. (42)]. The QCS
of the SqTh+ states tends, however, to be considerably higher
as we will see below. While they therefore display correspond-
ingly stronger nonclassical effects, they are also more prone to
environmental decoherence. For example, the QCS (squared)
of the first Fock state (which is the photon-added state of the
vacuum, corresponding to q = 0 = r) equals 3 [see Eq. (15)],
while that of the vacuum itself is only 1: this corresponds to a
200% increase.

We now investigate quantitatively how strongly the degaus-
sification through photon-addition affects the QCS for general
(q, r). For that purpose we will use the relative QCS change
R±(ρ) defined as

R±(ρ) = C2(ρ±) − C2(ρ)

C2(ρ)
, (47)

so that C2(ρ±) = (1 + R±(ρ))C2(ρ). It provides the percent-
age change in QCS as a result of the photon-addition and
-subtraction process. It is indeed clear that some of the QCS of
the photon-added and -subtracted Gaussian states is inherited
from the Gaussian mother state to which a photon is added or
from which it is subtracted, and that part of it is due to the
addition and subtraction process itself.

We show in Fig. 1(c) the contour plot in the (q, r) plane
of the relative change RSqTh+(q, r) of the QCS obtained with
the addition of a photon. From Eqs. (16) and (45) one sees
that for squeezed vacuum states, one has RSqTh+(0, r) = 2,
independently of the squeezing. This corresponds to a 200%
increase of the QCS due to photon addition, and it is the
maximal value reached, as can be seen from the figure. When
q > 0, the change in QCS decreases with increasing r and
with increasing q. Nevertheless, there is a large region in
the parameter space (q, r) where the relative change is pos-
itive and sizable. For q < 0.1 and values of r in the range
1 � r � 2 (which corresponds to a squeezing factor com-
prised between 7 and 15 dB), it is at least 90%, for example.
For q < 0.2 and the same range of r values, it is still at least
50%.

In the region to the right of the blue dot-dashed curve,
the relative gain is negative. This means that photon addi-
tion leads to a decrease in QCS and a concomitant increase
in decoherence time. The latter is, however, less than 10%
in the region represented. In addition, in this region the
Wigner negative volume of the states is small, at most 25%
of the maximal value reached on the photon-added squeezed
vacuum states.

Finally, one may note that the level curves of RSqTh+(q, r)
have vertical asymptotes, reflecting the fact that, at large r,
the change in QCS is independent of the squeezing. One finds
readily, for all q and r (see Appendix D), that

RSqTh+(q, r) � RSqTh+(q,+∞) = 2 − 12q
q2 + 1

q4 + 10q2 + 1
.

For example, when q � 0.1, it is larger than 90% for all
values of r. In view of what precedes, one observes that this
asymptotic value is nearly reached when r = 2. We conclude
that a considerable increase of the QCS can therefore result
from the photon-addition process at experimentally accessible
values of the squeezing and provided q is not too large.

In conclusion, if the Wigner negative volume is used as the
figure of merit, degaussification of a Gaussian one-mode state
through photon addition gives an optimal result for squeezed
vacua, independently of the amount of squeezing. This means
that photon addition can both produce a Wigner negativity
equal to that of a one-photon Fock space and at the same
time admit an arbitrary amount of squeezing. However, as our
analysis shows, the higher the squeezing, the more sensitive
the Wigner negative volume is to noise, which is always
present. In addition, a high squeezing induces a large QCS
in the SqTh+ states, meaning that the resulting states are very
sensitive to environmental decoherence, much more so than
their Gaussian mother states.

VII. PHOTON-SUBTRACTED SQUEEZED
THERMAL STATES

Like in the photon-addition case, subtracting a photon can
enhance certain nonclassical features of the state, as men-
tioned in [20,21,40]. We provide here a quantitative analysis
of the Wigner negative volume and QCS of photon-subtracted
squeezed thermal (SqTh−) states and compare the results with
those of the previous section. Details of the computations,
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which follow along similar lines as those for the SqTh+ states,
can be found in Appendix D and Appendix E.

As already mentioned, photon subtraction turns the one-
photon Fock state into the vacuum, whereas photon addition
turns it into the two-photon Fock state. Photon subtraction
also preserves the coherent states and generally transforms a
classical state into a classical state. This suggests that photon
subtraction reduces the nonclassical nature of any state to
which it is applied or at least that it cannot be very efficient
in enhancing it, whereas photon addition increases the non-
classicality efficiently. By investigating the SqTh− states we
will see this is indeed correct, but only to some extent. We will
distinguish three regimes: q = 0, q �= 0 and r small, q �= 0 and
r large.

In the absence of noise (q = 0), it is well known that adding
a photon to or removing a photon from a squeezed vacuum
(SqV) state (with r > 0) produces in fact the exact same state.
Indeed, using the relations

S†(z)a†S(z) = a† cosh r − ae−iφ sinh r,

S†(z)aS(z) = a cosh r − a†eiφ sinh r,

we have

a†|SqV〉 = a†S|0〉 = S(a† cosh r − ae−iφ sinh r)|0〉 ∝ S|1〉,
a|SqV〉 = aS|0〉 = S(a cosh r − a†eiφ sinh r)|0〉 ∝ S|1〉.

Hence, once they are normalized, the SqV+ and SqV− states
are identical. They therefore have the same Wigner negative
volume [see Eq. (44)] and the same QCS [see Eq. (45)], both
independent of r. In the absence of noise, photon subtraction
is consequently not less efficient than photon addition in cre-
ating nonclassical features.

We now consider the case where q �= 0. In that case the
photon-added and -subtracted states are distinct. We plot the
Wigner negative volume of the SqTh− states in Fig. 2(a) and
their QCS in Fig. 2(b). Recall, first, from Proposition 1 that
the line (dotted green)

r = 1

2
ln

(
1 + q

1 − q

)

separates the classical SqTh states from the nonclassical ones
and also the classical SqTh− states from the nonclassical
ones. So, SqTh− states are nonclassical only if sufficiently
squeezed. This is in contrast with SqTh+ states, which al-
ways are Wigner negative and hence nonclassical. In addition,
for the SqTh− state to be Wigner negative, the squeezing
must be larger still: the point (q, r) must lie above the curve
C2

SqTh−(q, r) = 1 (red dashed), which can be proven to coin-
cide with the curve C2

SqTh(q, r) = 1. In the region between the
(red) dashed and (green) dotted curves, one therefore finds
nonclassical Wigner positive states. They are weakly non-
classical since C2

SqTh−(q, r) < 1; note that photon subtraction
therefore transforms a weakly nonclassical Gaussian state into
a weakly nonclassical photon-subtracted state. We conclude
that, in the presence of noise and at low enough squeezing, the
SqTh− states are either classical or else weakly nonclassical
and Wigner positive. More generally, in comparing photon
addition to photon subtraction, we find that, for all values of q

and r,

NW,SqTh−(q, r) � NW,SqTh+(q, r).

We now turn to the question of the (quantum) non-Gaussianity
of the photon-subtracted Gaussian states. It is guaranteed to
hold whenever the squeezing is strong enough so that the
state is strongly nonclassical, since then the Wigner volume of
those states does not vanish. When the squeezing is too small,
they are classical and hence in the convex hull of the Gaussian
states. The question therefore poses itself nontrivially only
for the weakly nonclassical photon-subtracted Gaussian states
that correspond to the points in the region between the (red)
dashed and (green) dotted curves in Fig. 2, which are Wigner
positive. We will use the sufficient criterium for quantum
non-Gaussianity developed in [15] to address the question. It
is shown in [15] that, if a state’s Wigner function satisfies

W (0) � 2

π
e−2n(1+n), (48)

then the state is quantum non-Gaussian. Here n = Tr(ρa†a)
is the mean photon number of ρ. For the SqTh− states under
consideration here, we have (see Appendix C)

W G
− (0) = N−M−(V )W G(0) = 1

n̄G
M−(V )

2

π

1√
det V

,

where N− = 1
TrρGa†a = 1

n̄G and n̄G is the mean photon number
of the Gaussian mother state and where

M−(V ) = 1
2 [1 − C2(ρG)].

This yields explicitly

W G(0) = 2(1 − q)2[1 + q − (1 − q) cosh(2r)]

π (1 + q)2[(1 + q) cosh(2r) − (1 − q)]

and

n̄− = TrρSqTh−a†a

=
∫

W G
− (α)

(
α2

1 + α2
2 − 1

2

)
d2α

= 1

2

[
3(1 + q) cosh(2r) − 4q

(1+q) cosh(2r)−(1−q)

1 − q
− 1

]
.

(49)

The points where the inequality in Eq. (48) are saturated
are indicated as the (orange) dashed-dotted line in Fig. 2(d).
Above this line, and below the (red) dashed line, the states
are therefore guaranteed to be quantum non-Gaussian. Finer
criteria would be needed to decide if the states between the
(orange) dashed-dotted line and above the (green) dotted line
are quantum non-Gaussian.

We may conclude that at low squeezing, photon addition
applied to Gaussian states creates Wigner negativity, whereas
photon subtraction does not and, in general, that the Wigner
negative volume is larger after photon addition than after pho-
ton subtraction. This indicates that photon addition is more
efficient in inducing nonclassical features, a picture that is
confirmed by the analysis of the QCS at small and interme-
diate values of r that follows. As we shall see, however, the
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FIG. 2. Level lines of (a) the Wigner negative volume NW(ρSqTh−), (b) the QCS C2
SqTh−, and (c) the relative gain RSqTh− of photon-subtracted

squeezed thermal states in function of the temperature q and the squeezing r. Panel (d) shows a zoom of (a) where the dashed-dotted orange
line indicates the values of q and r where the inequality (48) is saturated. States above this curve are quantum non-Gaussian. With dashed red
the line C2

SqTh−(q, r) = C2
SqTh(q, r) = 1, and with dotted green, the line r = 1

2 ln( 1+q
1−q ) below which the SqTh and SqTh− states are classical.

Above the dashed red line, both types of states are strongly nonclassical, and the SqTh− states have Wigner negativity. In the gray region, the
Wigner function is positive. The region delimited by the dotted green and dashed red lines corresponds to weakly nonclassical states.

relative advantage of photon addition over photon subtraction
is strongly suppressed at large squeezing.

As in the case of photon addition, the explicit expression
for the QCS is not very instructive for general q and r (see
Appendix D), but it simplifies for SqV− and Th−states to

C2
SqV−(0, r) = 3 cosh(2r) = C2

SqV+(0, r),

C2
Th−(q, 0) = 6

q + 1
− 3 − 2(1 − q)

q2 + 1
� 1.

The QCS of SqTh− states is plotted in Fig. 2(b). One sees
that, as for SqTh+ states, C2

SqTh−(q, r) is increasing in r and
decreasing in q.

Comparing the effect of photon addition on the QCS to
the one of photon subtraction, we find that, provided either
q < 0.5 or r < 0.5,

C2
SqTh−(q, r) � C2

SqTh+(q, r).

The last inequality is reversed when q > 0.5 and r > 0.5, but
in this region the nonclassical features of the photon-added
and -subtracted states are at any rate limited as can be seen
from Figs 1 and 2. This again indicates that photon addition
tends to enhance the nonclassical features more than photon
subtraction. For example, one finds C2

SqTh+(0.1, 0.5) � 3.12
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and

C2
SqTh−(0.1, 0.5) � 0.5C2

SqTh+(0.1, 0.5) ≈ 1.55.

Similarly NW,SqTh+(0.1, 0.5) � 0.15, and

NW,SqTh−(0.1, 0.5) � 0.23NW,SqTh+(0.1, 0.5) � 0.034.

Note that, at these values of q and r, the Wigner negative vol-
ume of the SqTh− state represents only 16% of the maximal
possible value, which is the one of the SqV± state (NW,SqV± =
0.213). The Wigner negative volume of the SqTh+ state is
still 70% of the maximal value. This is due to a general effect,
namely, that the loss of Wigner negativity due to the noise, at
a given value of r, is larger for SqTh− states: the level lines
of the Wigner negative volume are closer together [compare
Figs. 1(a) and 2(a)]. As a result, for a given squeezing param-
eter r, the Wigner negative volume of a SqTh− state drops
down to half its value for the single photon state (purple dot-
dashed line) at a smaller q value than for the corresponding
SqTh+ state.

We conclude that, whereas at q = 0, photon-addition and
-subtraction applied to Gaussian states produce exactly the
same result, the nonclassical properties of those states—and in
particular their Wigner negative volume—are more sensitive
to noise for the case of photon subtraction than for the one of
photon addition. On the other hand, the price to pay is that the
photon-added states, having a larger QCS, are more sensitive
to decoherence.

We finally consider the regime where r is very large. The
situation is then very different. For the Wigner negative vol-
ume, one finds

NW,SqTh+(q,+∞) = NW,SqTh−(q,+∞)

�

(
2√
e

− 1

)
(1 − q)3

(1 + q)3
;

it is identical for photon-added and -subtracted Gaussian
states.

In addition, we plotted in Fig. 2(c) the relative gain RSqTh−
of the photon-subtracted squeezed thermal state. As for pho-
ton addition, the level curves of the relative gain have vertical
asymptotes meaning that at large r the gain is independent
of the squeezing. This asymptotic value is again identical for
photon addition and for photon subtraction, and for the latter
it now upper bounds the relative gain:

RSqTh−(q, r) � RSqTh±(q,+∞) = 2 − 12q
(
q2 + 1

)
q4 + 10q2 + 1

� RSqTh+(q, r).

This means that at large enough r a sizable relative gain in
QCS is observed when the state is not too noisy, for both
photon addition and subtraction.

In fact, by noticing that RSqTh+(+∞, q) =
RSqTh−(+∞, q), we see that photon addition or subtraction
has a very similar effect on sufficiently squeezed Gaussian
states. In this regime, we therefore find the following simple
approximate formula for the QCS of either states:

C2
SqTh±(r, q) 

[
3 − 12q(q2 + 1)

q4 + 10q2 + 1

]
1 − q

1 + q
cosh(2r).

The error between this formula and the exact expression is less
than 10% for all values of q and for r > 1.3 in the photon-
added case and for r > 0.6 in the photon-subtracted case.

In fact, as shown in Appendix E, in the limit r → +∞, the
photon-added and -subtracted Gaussian states coincide at all
values of q.

VIII. PHOTON-ADDED TWO-MODE GAUSSIAN STATES

In this section we illustrate how the general formulas
for the Wigner and characteristic functions of photon-added
Gaussian states shown in Sec. IV B can be used to study their
nonclassical features in the case when two modes are present.
We will consider states of the form

a†(c)ρG ⊗ ρGa(c), (50)

where ρG is a single-mode Gaussian state. We will not give an
exhaustive treatment here but consider two particular cases. In
Sec. VIII A we consider the case where ρG is a coherent state.
Such states where realized experimentally as reported in [10].
In Sec. VIII B we consider the case where ρG is a squeezed
thermal state.

A. Photon-added two-mode coherent state

In [10] the delocalized single-photon addition on two input
modes containing identical coherent states |α〉 is realized ex-
perimentally. Two families of states are thus constructed and
studied: ∣∣ψ even

odd

〉 =
N even

odd√
2

(a†
1|α〉|α〉 ± |α〉a†

2|α〉),

where Neven = (1 + 2|α|2)−1/2 and Nodd = 1.
The Wigner negative volume of these states can be com-

puted from Eq. (24). One finds

NWeven = 2

1 + 2|α|2
∫ 1√

2

0
e−r2−|α|2 r(1 − 2r2)I0(2r|α|) dr,

NWodd = 2√
e

− 1 = NW|1〉 ,

where I0 is the modified Bessel function. The odd states have
a Wigner negative volume equal to that of the single-mode
one-photon Fock state, independently of α. The situation is
different for the even states. When α = 0, NWeven = NWodd but
NWeven is monotonically decreasing and for α = 1.9, NWeven has
dropped to 5% of its maximal value, showing that the even
states lose their Wigner negativity fast as a function of α.

It is straightforward to compute the QCS of these states:
since they are pure, one can use Eq. (14) directly. One finds

C2
ψeven

= 1 + 1

(1 + 2|α|2)2
, C2

ψodd
= 2.

Here also the odd state shows an α-independent QCS, which
is, however, lower than the one of the single-mode one-photon
Fock state. The QCS of the even states decreases fast with α.
It follows then that, by this criterium also, the odd states are
more nonclassical than the even ones but also more prone to
environmental decoherence.

One concludes that the odd states have stronger nonclas-
sicality properties than the even ones. The same conclusion
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can be drawn from the study of the entanglement between
the two modes for those states. Indeed, in [10] it is shown
to be maximal and independent of α for the odd state. More
precisely, the negativity of the partial transpose (NPT) of these
states is

NPTeven = 1

1 + |α|2 , NPTodd = 1,

indicating the odd state is more strongly entangled than the
even one. Again, since the states are pure, one can easily
compute their entanglement of formation (EoF) [41], which
has the same behavior. Since the reduced density matrix is
a rank two operator, the maximal possible EoF is ln 2. This is
indeed the value reached for the odd states at all values of α as
well as for the even states when α = 0, as is readily checked.
For even states, on the other hand, it tends to its minimal value,
which is 0, as α tends to infinity.

B. Photon-added two-mode squeezed thermal states (2SqTh+)

We now briefly consider the case where ρG in Eq. (50) is
a squeezed thermal state. We then add one photon with the
creation operator a†(c) where c = (c1 ±

√
1 − c2

1 )T ∈ C2.
The characteristic functions and QCS can be obtained with
Eqs. (21) and (13). Once again, the formulas are explicit, but
not very instructive, and we do not show them here. It turns
out to be easy to evaluate the Wigner function of the photon-
added state at the origin and to observe it does not depend on
c. The same values are obtained whether the photon is added
on the first mode, on the second one, or shared between the
two modes. One therefore finds, for q = 0.2, r = 0.5,

NW2SqTh+ (0.2, 0.5) = 0.104,

which is the same value as for the SqTh+ states with the same
r and q.

The computation of the QCS and hence of the nonclassi-
cality gain of this state reveals the same phenomenon: they do
not depend on c. One finds

C2
2SqTh+ = 1.54 = 1

2

(
C2

SqTh + C2
SqTh+

)
,

a reflection of the fact that the QCS is the average of the
coherence scale of the quadratures.

IX. DISCUSSION AND CONCLUSION

We have quantitatively analyzed how photon addition and
subtraction affect the nonclassical properties of Gaussian
states. We concentrated on two measures of nonclassicality,
the Wigner negative volume and the quadrature coherence
scale (QCS). We have established that, since the QCS tends
to undergo a very substantial increase in the photon addition
and subtraction process, the resulting non-Gaussian states are
considerably more sensitive to environmental decoherence
than the original Gaussian states. In addition, the decoherence
time shortens rapidly with increased squeezing.

For single-mode fields, we have shown that, whereas at
low and intermediate squeezing, photon addition is consider-
ably more efficient in enhancing or creating nonclassicality
than photon subtraction, at high squeezing, the two proce-
dures produce the same effects. The Wigner negative volume

saturates in this regime to a noise-dependent fraction of
its maximal value, which is attained on photon-added and
-subtracted squeezed vacuum states. In the course of our
analysis, we identified what seems to be a new family of
quantum non-Gaussian Wigner positive states, obtained by
photon subtraction from squeezed thermal states.

One may note that the Wigner negativity and the quadrature
coherence scale are not the only telltale signs of nonclas-
sicality in quantum optics: nonclassicality comes in many
guises and can be recognized through the observation of a
variety of physical or mathematical properties signaling the
quantum nature of the state, the most prominent ones be-
ing non-Poissonian statistics, squeezing, Wigner negativity,
interference fringes, (quantum) non-Gaussianity, and entan-
glement. In the context of quantum optics, a large number of
witnesses, measures, and monotones of nonclassicality have
consequently been developed [16,25,35,39,42–60]. It would
be of interest to complete the present study by also testing how
these other figures of merit are affected by the photon addition
and subtraction process. Note, however, that the analytical
or even numerical computation of many of those quantities
is not straightforward. For example, to compute the Wigner-
Yanase skew information one needs a priori to compute the
square root of the density matrix, which is not obvious for
most states, including the photon-added and -subtracted states
considered here. Similarly, except for pure states, the quantum
Fisher information, which can be used as a nonclassicality
measure [57,58], is generally hard to determine. Let us note
that on Gaussian states, the quantum Fisher information coin-
cides with the QCS [19], as well as on pure states, but not in
general.

As for the entanglement of multimode photon-added and
-subtracted Gaussian states, it has been investigated in [20,21].
The maximal entanglement increase—as measured by the
Rényi entropy of the Wigner function—that can occur in the
process has been evaluated in [61]. For pure states, upper
bounds on the entanglement of formation in terms of the QCS
can be inferred from the results of [26].

In experiments, losses are inevitable, and any theoretical
analysis needs to take them into account in its modeling
of the situation. In quantum optics, this is usually done by
coupling the field via a beam splitter to a vacuum mode
[3,8,12,50,62,63] or by simply mixing the state with a vac-
uum component [64]. In both cases, explicit expressions of
the characteristic function of the lossy state are available in
terms of the original one. Hence, the methods expounded here
can be used to compute both the quadrature coherence scale
and Wigner negativity for lossy photon-added and -subtracted
Gaussian states. They will both be diminished by the losses,
as already illustrated in [12] for the Wigner function of single-
photon-added thermal states. For the quadrature coherence
scale, preliminary computations, not shown here, confirm this
picture. Much of the experimental work on those states has
concentrated on certifying their nonclassicality [3,8,9,12], in
particular for high noise and losses, where the quantum nature
of the states is strongly suppressed and this certification there-
fore difficult. Whereas this constitutes an obvious challenge,
a perhaps more important challenge is to prepare states of
the optical field that show strong nonclassical properties, such
as a high value for the Wigner negative volume and/or the
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squeezing. They can be expected to be more likely to be
useful in various quantum technology protocols, but, as we
show here, the high value of the quadrature coherence scale
generated by the photon addition and subtraction makes them
strongly sensitive to environmental decoherence and hence
hard to prepare and maintain.

We finally point out that the method to compute the charac-
teristic function of single-photon-added and -subtracted states
that we introduce here can easily be generalized to the case
of multiphoton addition and subtraction and can provide a
useful tool for further studies of various features of such
states.
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APPENDIX A: PROOF OF EQ. (20)

We focus on the photon-addition case. Calculations are similar in the photon-subtraction case. The Wigner function is defined
as

W+(α) = 1

π2n

∫
χ+(z)e(z̄·α−z·ᾱ)d2nz,

where χ+ is given by Eq. (19). Computing each term of the integral, we have

1

π2n

∫
(c̄ · ∂z̄)(c · ∂z)χ (z)ez̄·α−z·ᾱd2nz =

∑
i j

c̄ic j
1

π2n

∫
[∂z̄i∂z j χ (z)]ez̄·α−z·ᾱ d2nz

= −
∑

i j

c̄ic j
1

π2n

∫
[∂z j χ (z)]αie

z̄·α−z·ᾱ d2nz

= −
∑

i j

c̄ic jαiᾱ j
1

π2n

∫
χ (z)ez̄·α−z·ᾱ d2nz

= −|c · ᾱ|2W (α),

where we used an integration by parts. Here W (α) is the Wigner function of the initial state. The other terms in the integral are

1

π2n

∫
(c · z̄)(c̄ · ∂z̄)χ (z)ez̄·α−z·ᾱ d2nz =

∑
i j

cic̄ j
1

π2n

∫
z̄i
[
∂z̄ j χ (z)

]
ez̄·α−z·ᾱ d2nz

= −
∑

i j

cic̄ j
1

π2n

[∫
z̄iα jχ (z)ez̄·α−z·ᾱd2nz + δi j

∫
χ (z)ez̄·α−z·ᾱd2nz

]

= −
∑

i j

cic̄ j

[
1

π2n
α j∂αi

∫
χ (z)ez̄·α−z·ᾱd2nz + δi jW (α)

]

= −(c̄ · α)(c · ∂α)W (α) − W (α),

and similarly

1

π2n

∫
(c̄ · z)(c · ∂z)χ (z)ez̄·α−z·ᾱd2nz = −(c · ᾱ)(c̄ · ∂ᾱ)W (α) − W (α),

1

π2n

∫
(c · z̄)(c̄ · z)χ (z)ez̄·α−z·ᾱd2n = −(c · ∂α)(c̄ · ∂ᾱ)W (α).

Putting everything together, we obtain the Wigner function of the photon-added state:

W+(α) = N+

[
−1

2
+ |c · ᾱ|2 − 1

2
(c̄ · α)(c · ∂α) − 1

2
(c · ᾱ)(c̄ · ∂ᾱ) + 1

4
(c · ∂α)(c̄ · ∂ᾱ)

]
W (α)

= N+

[
c ·

(
∂α

2
− ᾱ

)][
c̄ ·

(
∂ᾱ

2
− α

)]
W (α).
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APPENDIX B: CHARACTERISTIC FUNCTION OF A PHOTON-ADDED
AND -SUBTRACTED GAUSSIAN STATE [PROOF OF EQ. (21)]

We will compute the characteristic function of a general multimode photon-added and -subtracted Gaussian state using
Eq. (19). This involves taking derivatives of the Gaussian characteristic function (9)

χG(ξ) = eKG(ξ ), with KG(ξ ) = −1

2
ξT �V �T ξ − i

√
2(�d )T ξ and � =

n⊕
j=1

�2, �2 =
(

0 1
−1 0

)
,

with respect to the complex variables z j = ξ j1 + iξ j2 ∈ C, z j ∈ C. For that purpose, we first recall the expression of KG in terms

of these variables. We define ν = 1√
2
(1 −i)T so that ξ� = 1√

2
(z�ν + z̄�ν̄). Since �2ν = −iν and �2ν̄ = iν̄, we find

�2ξ� = i
1√
2

uT �2

(
z�

z�

)
, where u =

(
ν̄T

νT

)
= 1√

2

(
1 i
1 −i

)
.

Introducing the unitary matrix U = ⊕
j u, and defining A = UVU T , we find that A is the matrix of the covariances of the

creation and annihilation operators:

A =

⎛
⎜⎜⎜⎝

Ã11 Ã12 · · · Ã1n

Ã21 ...
...

Ãn1 · · · Ãnn

⎞
⎟⎟⎟⎠ with Ãi j = 2

(
Cov[ai, a j] Cov[ai, a†

j ]
Cov[a†

i , a j] Cov[a†
i , a†

j ].

)
= uṼ i juT .

Here Ṽ i j is the two-by-two submatrix of the covariance matrix V defined by

Ṽ i j =
(

V2i−1,2 j−1 V2i−1,2 j

V2i,2 j−1 V2i,2 j

)
= 2

(
Cov[x̂i, x̂ j] Cov[x̂i, p̂ j]
Cov[ p̂i, x̂ j] Cov[ p̂i, p̂ j]

)
.

One then finds

1

2
ξT �V �T ξ = 1

2

∑
kl

ξT
k (�2Ṽ

kl�2)ξl = −1

4

∑
kl

(
zk z̄k

)
�T

2 Ãkl�2

(
zl

z̄l

)

and

i
√

2(�d )T ξ =
∑

k

dT
k uT �2

(
zk

z̄k

)
.

Using that

dT
k uT = dT

k (ν̄ ν) = (〈ak〉 〈a†
k〉),

this leads to

KG(Z) = 1
4 ZT (�T A�)Z − 	T �Z,

where

Z =

⎛
⎜⎜⎜⎜⎝

z1

z1
...

zn

zn

⎞
⎟⎟⎟⎟⎠ and 	 =

⎛
⎜⎜⎜⎜⎜⎝

〈a1〉
〈a†

1〉
...

〈an〉
〈a†

n〉

⎞
⎟⎟⎟⎟⎟⎠ = Ud.

It is now easy to take the derivatives along zk and z̄k , and we obtain

c · ∂zχ
G(z) = [Cov[a†(c), a†(z) − a(z)] + 〈a†(c)〉]χG(z),

c · ∂z̄χ
G(z) = −[Cov[a(c), a†(z) − a(z)] + 〈a(c)〉]χG(z),

(c · ∂z̄ )(c · ∂z )χG(z) = −[Cov[a†(c), a†(z) − a(z)] + 〈a†(c)〉][Cov[a(c), a†(z) − a(z)] + 〈a(c)〉]χG(z)

− Cov[a†(c), a(c)]χG(z).

According to Eq. (19), the characteristic function of the photon-added and -subtracted state is given by

χG
± (z) = N±

[
± χG(z)

2
− (c · ∂z̄ )(c · ∂z )χG(z) ± c · z̄

2
(c · ∂z̄ )χG(z) ± c · z

2
(c · ∂z )χG(z) − |c · z|2

4
χG(z)

]
.
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Hence we obtain

χG
± (z) = N±

[
Cov[a†(c), a(c)] ± 1

2 − (c · γ±)(c̄ · δ±)
]
χG(z)

with

(γ±)k = Cov[a†
k, a†(z) − a(z)] ∓ 1

2 z̄k + 〈a†
k〉, (δ±)k = −Cov[ak, a†(z) − a(z)] ∓ 1

2 zk − 〈ak〉.
This expression can be further simplified as follows. Note that U U † = ⊕n

j=1 σx with σx = (0 1
1 0) and dT =

(〈a1〉 〈a†
1〉 · · · 〈an〉 〈a†

n〉)U . Using U T �U = −i� and the unitarity of U , one then finds

(γ1 δ1 . . . γn δn)T
± = 1

2

(
�T A�Z ∓ UU †Z

) − �Ud = U
[

1
2 (�V � ∓ I)U †Z + i�d

]
.

Recalling from Eq. (23) that, for all c ∈ Cn,

mc = Ū T

⎛
⎜⎜⎜⎜⎝

c1

0
...

cn

0

⎞
⎟⎟⎟⎟⎠ = 1√

2

⎛
⎜⎜⎜⎜⎝

c1

−ic1
...

cn

−icn

⎞
⎟⎟⎟⎟⎠ ∈ C2n,

we have

mT
c U T = (0 c̄1 . . . 0 c̄n), Cov[a†(c), a(c)] = 1

2 mT
c V mc.

The term (c · γ±)(c̄ · δ±) can thus be written as

(c · γ±)(c̄ · δ±) = (γ1 δ1 γ2 δ2 . . . γn δn)±

⎛
⎜⎜⎜⎜⎝

c1

0
...

cn

0

⎞
⎟⎟⎟⎟⎠

(
0 c̄1 . . . 0 c̄n

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1

δ1

γ2

δ2
...

γn

δn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

±

=
[

ZT Ū
1

2
(�V � ∓ I) + idT �T

]
mcmT

c

[
1

2
(�V � ∓ I)Ū T Z + i�d

]
.

The characteristic function can thus be written

χG
± (z) = N±

(
1
2 mT

c V mc ± 1
2 − βT

±mcmT
c β±

)
χG(z)

with β± = 1
2 (�V � ∓ I)U †Z + i�d. This is Eq. (21).

APPENDIX C: WIGNER FUNCTION OF A PHOTON-ADDED AND -SUBTRACTED STATE [PROOF OF EQ. (24)]

To derive the expression in Eq. (24), we proceed similarly. Note, first, that, using Eq. (6), one readily computes the well-known
Wigner function of a Gaussian state with characteristic function χG. It reads

W G(α) = 2n

πn
√

det V
exp(−Y T A−1Y ),

where Y = (α1 − 〈a1〉, ᾱ1 − 〈a†
1〉, . . . , αn − 〈an〉, ᾱn − 〈a†

n〉) ∈ C2n. One then readily computes the αk and αk derivatives of
W G(α). Inserting them in Eq. (20), using the definition of mc in Eq. (23) and

A−1 = UV −1U †,

one obtains the Wigner function of the photon-added and -subtracted state:

W G
± (α) = N±[(c · μ±)(c̄ · η±) + M±(V, c)]W G(α),

where M±(V, c) ∈ R is independent of α and given by

M±(V, c) = ∓1

2
− 1

2
(c1 0 . . . cn 0)A−1

⎛
⎜⎜⎜⎜⎝

0
c̄1
...

0
c̄n

⎞
⎟⎟⎟⎟⎠ = ∓1

2
− 1

2
mT

c V −1mc,
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and where the vectors μ±, η± ∈ Cn are defined by⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ1

η1

μ2

η2
...

μn

ηn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

±

= U (V −1 ± I)U †

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1

ᾱ1

α2

ᾱ2
...

αn

ᾱn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

− A−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈a1〉
〈a†

1〉〈a2〉
〈a†

2〉
...

〈an〉
〈a†

n〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= U (V −1 ± I)r − UV −1d.

Here we used the fact that the vector of quadratures r ∈ R2n and the vector of displacement d ∈ R2 can be written as
rT = (α1 ᾱ1 · · · αn ᾱn)U and dT = (〈a1〉 〈a†

1〉 · · · 〈an〉 〈a†
n〉)U . Using U T �U = −i�, the term (c · μ±)(c̄ ·

η±) can be rewritten as follows:

(c · μ±)(c̄ · η±) = (μ1 η1 μ2 η2 . . . μn ηn)±

⎛
⎜⎜⎜⎜⎝

c1

0
...

cn

0

⎞
⎟⎟⎟⎟⎠(0 c̄1 . . . 0 c̄n)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ1

η1

μ2

η2
...

μn

ηn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

±

= [rT (V −1 ± I) − dT V −1]U †

⎛
⎜⎜⎜⎜⎝

c1

0
...

cn

0

⎞
⎟⎟⎟⎟⎠(0 c̄1 . . . 0 c̄n)U [(V −1 ± I)r − V −1d]

= [rT (V −1 ± I) − dT V −1]mcmT
c [(V −1 ± I)r − V −1d].

Introducing

λ± = (V −1 ± I)r − V −1d ∈ R2n,

this yields

W G
± (r) = N±[M±(V, c) + λT

±mcmT
c λ±]W G(r),

which is Eq. (24).

APPENDIX D: QCS OF THE SqTh+ AND SqTh− STATES

With the characteristic function (43) and Eq. (13) we find the value of the QCS of the SqTh+ state:

C2
SqTh+(q, r) = (1 − q)/(1 + q)

2(1 − q4) cosh 2r + 2(1 + q2)2 + (q4 + 10q2 + 1) sinh2 2r

× [−8q(q2 − 1) + 3(q4 − 4q3 + 10q2 − 4q + 1) cosh3 2r + 6(q − 1)2(1 − q2) cosh2 2r

+ (3q4 + 8q3 − 26q2 + 8q + 3) cosh 2r].

One then readily computes

lim
r→+∞RSqTh+(q, r) = 2 − 12q

q2 + 1

q4 + 10q2 + 1
.

Similarly, with the characteristic function

χSqTh−(z) = χSqTh(z)

[
2q|z|2

(1 − q2) cosh 2r − (1 − q)2
+ q + 1

q − 1

(
e2rξ 2

1 + e−2rξ 2
2

) + 1

]
,

and Eq. (13) we find the value of the QCS of the SqTh− state:

C2
SqTh−(q, r) =

(1 − q)
√

1
q+1

2
√

q + 1[4(q4 − 1) cosh(2r) + 3q4 − 2q2 + (q4 + 10q2 + 1) cosh(4r) + 3]

× [12(q + 1)(q − 1)3 cosh(4r) + (21q4 − 4q3 − 14q2 − 4q + 21) cosh(2r)

+ 3(1 − 4q + 10q2 − 4q3 + q4) cosh(6r) + 4(q + 1)(3q2 + 2q + 3)(q − 1)]
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and

lim
r→+∞RSqTh−(q, r) = 2 − 12q

(q2 + 1)

q4 + 10q2 + 1
= lim

r→+∞RSqTh+(q, r).

APPENDIX E: WIGNER NEGATIVE VOLUME OF THE SqTh+ AND SqTh− STATES

The Wigner negative volume [39], denoted by NW(ρ), is defined as the absolute value of the integral of the Wigner function
over the area where the latter is negative. The Wigner function of the SqTh+ state is computed with (24), and we obtain

WSqTh+(x, p) = 2(1 − q)2

π [(1 + q)2 cosh(2r) + 1 − q2]
exp

[
− (1 − q)(e2rx2 + e−2r p2)

1 + q

]

×
[(

1 − q

1 + q
e2r + 1

)2

x2 +
(

1 − q

1 + q
e−2r + 1

)2

p2 − 1 − q

1 + q
cosh(2r) − 1

]
.

We easily see that the Wigner function of a SqTh+ state is negative inside the ellipse(
1 − q

1 + q
e2r + 1

)2

x2 +
(

1 − q

1 + q
e−2r + 1

)2

p2 = 1 + (1 − q) cosh(2r)

1 + q
.

The semimajor and semiminor axes are given by

κx = e−r
√

(1 + q)2 + (1 − q2) cosh(2r)

2(cosh r − q sinh r)
, κp = er

√
(1 + q)2 + (1 − q2) cosh(2r)

2(cosh r + q sinh r)

and the Wigner function reaches its minimal value at the origin:

WSqTh+(0) = − (1 − q)2[(1 − q) cosh(2r) + 1 + q]

π (1 + q)2[(1 + q) cosh(2r) + 1 − q]
.

At large squeezing, the Wigner negative volume of these states saturates to a value that decreases with increasing temperature q.
To see this, we note that, at large r, one has, with x̃ = erx, p̃ = e−r p and μ = 1−q

1+q , that

WSqTh+(x, p) ≈ 4

π
μ3e−μ(x̃2+p̃2 )

(
μx̃2 + μ−1 p̃2 − 1

2

)
.

It then follows from a straightforward computation that

NW,SqTh+(q,+∞) := NW(ρSqTh+)(q,+∞) = μ3

π

∣∣∣∣
∫ 2π

0

[
2 − a(μ, θ )

2a(μ, θ )
− a(μ, θ )−1e− 1

2 a(μ,θ )

]
dθ

∣∣∣∣,
where

a(μ, θ ) = cos2 θ + μ2 sin2 θ.

When q = 0, one has μ = 1 and a(μ, θ ) = 1, and hence

NW(ρSqTh+)(0,+∞) = 2√
e

− 1,

as expected in view of Eq. (44). As a result, for small q one has approximately

NW,SqTh+(q,+∞) 
(

2√
e

− 1

)
μ3.

Similarly, the Wigner function of the SqTh− state is computed with (24), and we obtain

WSqTh−(x, p) = 2(1 − q)2

π [(1 + q)2 cosh(2r) − 1 + q2]
exp

[
− (1 − q)

(
e2rx2 + e−2r p2

)
1 + q

]

×
[(

1 − 1 − q

1 + q
e2r

)2

x2 +
(

1 − 1 − q

1 + q
e−2r

)2

p2 − 1 − q

1 + q
cosh(2r) + 1

]
.

We easily see that the Wigner function of a SqTh− state is negative inside the ellipse(
1 − 1 − q

1 + q
e2r

)2

x2 +
(

1 − 1 − q

1 + q
e−2r

)2

p2 = −1 + (1 − q) cosh(2r)

1 + q
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provided that q < tanh2(r). Otherwise, the Wigner function is always positive. Remark that when q, r = 0, we get N− = ∞ and
the Wigner function is not defined.

The semimajor and semiminor axes are given by

κx = e−r
√

(1 − q2) cosh(2r) − (1 + q)2

2[sinh(r) − q cosh(r)]
, κp = er

√
(1 − q2) cosh(2r) − (1 + q)2

2[sinh(r) + q cosh(r)]
,

and the Wigner function reaches its minimal value at the origin:

WSqTh−(0) = (1 − q)2[−(1 − q) cosh(2r) + 1 + q]

π (1 + q)2[(1 + q) cosh(2r) − 1 + q]
.

It is readily checked that the asymptotic behavior of WSqTh−(x, p) is, for large r, identical to that of WSqTh+(x, p).
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