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Active whispering-gallery microclock in pulsed-operation mode
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A whispering-gallery-mode microlaser in the bad-cavity limit serves as an active optical clock. In this clock
scheme, an ensemble of two-level atoms is trapped in a two-color ring-shaped optical lattice, i.e., Lamb-Dicke
regime, and evanescently interacts with an optical microcavity. The microclock is operated in the pulsed mode,
where the atoms are periodically pumped into the upper state of the electric-dipole-forbidden clock transition,
providing the optical gain. The numerical simulation shows that the fractional frequency instability of the
microclock reaches 5 × 10−14 at 103 s of averaging, mainly limited by the lattice-induced frequency shifts.
This miniature optical clock owns the high integration and can be potentially used to supply the time standard in
a photonic network, paving the way towards the on-chip metrology.
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I. INTRODUCTION

Optical atomic clocks have surpassed their microwave
counterparts in both frequency stability and accuracy by over
two orders of magnitude [1–3], promoting the redefinition of
the SI second on an optical reference. The miniaturization
of optical clocks is one of the key issues from the viewpoint of
out-of-laboratory applications such as satellite-based geopo-
sitioning and communication engineering [4,5]. Recently, a
transportable optical clock that is fixed in a car trailer showed
a frequency stability of ∼10−15 at the averaging time of
1 s and a systematic uncertainty at the 10−17 level [6]. The
comparison between two transportable optical lattice clocks
located in the Tokyo Skytree tower with a 450-m height dif-
ference allows for testing the gravitational redshift at the 10−5

level [7]. Further shrinking the size of optical clocks down to
the chip scale degrades the clock performance because of the
cancellation of, for example, the complicated optical systems
for laser cooling and trapping of atoms and the prestabilization
of local optical oscillators [8]. Nevertheless, such minimized
optical references possess the advantages of low cost, less
complexity, and small energy consumption and are highly
desired for commercial applications. In particular, they can be
integrated with nanophotonic waveguides and optical micro-
combs [9], opening up the possibility of the on-chip optical
frequency synthesization [10].

In addition to the usual passive operation, the chip-scale
optical clocks may also be operated in the active manner,
where a bad-cavity (i.e., the cavity loss rate greatly exceeding
the optical gain bandwidth) laser directly serves as a stable
optical frequency standard [11]. The underlying mechanism is
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the substantial suppression of the cavity pulling effect in the
bad-cavity limit [12]. In such laser systems, the conventional
Fabry-Pérot resonators can be replaced with the whispering-
gallery-mode (WGM) microcavities such as microspheres and
microtoroids [13–15] that make use of the continuous total
reflection at the interface between the dielectric medium and
air. These microstructures possess the advantages of high
quality factors (∼1010 [13–15]) and small mode volumes
(∼10−16 m3 [16]) and have been extensively used in sens-
ing [17–19], nonlinear optics [20], non-Hermitian physics
[21–23], and optomechanics [24–26]. Specifically, the strong
coupling between trapped atoms and WGM microcavities has
been demonstrated in experiments [27–29], showing the po-
tential of implementing the micro-sized light source [30,31].

In this paper, we propose an active optical WGM mi-
croclock based on the superradiant emission of 87Sr atoms
into a silica microsphere. The atoms are trapped in a two-
color ring-shaped optical lattice and interact evanescently
with the microsphere. Two lattice wavelengths are respec-
tively close to the blue- and red-detuned magic wavelengths
for the ultranarrow-linewidth clock transition. The microclock
is operated in the pulsed mode, where the pump and emission
processes are separated in time, eliminating the influence of
the pump beam on the superradiant radiation. The numerical
simulation shows that the fractional Allan deviation of the
microclock follows σy(τ ) = 1.7 × 10−12/

√
τ with the aver-

age time τ , primarily limited by the lattice-induced frequency
shifts. This active optical microclock can be integrated into a
photonic circuit and provide the time standard for the on-chip
metrology [32].

II. PHYSICAL MODEL

As shown in Fig. 1(a), an ensemble of 87Sr atoms evanes-
cently interacts with the TE-polarized clockwise (n0 = 1, l0 =
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FIG. 1. (a) Schematic diagram of active microclock. A clockwise
WGM u(r) in a microsphere whose radius is R = 20.3 µm resonantly
interacts with an ensemble of 87Sr spins that are trapped in a two-
color ring-shaped optical lattice U (r). All trapping beams, pump
light, and clock laser are coupled into or out of the microsphere
through a fiber under the critical coupling condition. (b) All spins are
initially excited into the upper |↑〉 state and then collectively emit
photons into the microsphere. (c) Section of ring-shaped optical lat-
tice. The potential depth of each lattice site is 16 µK. (d) Evanescent
coupling between a spin and the clock WGM u(r).

255, m0 = l0) WGM (frequency ωC) in a silica microsphere
whose radius is R = 20.3 µm (see Appendixes A and B).
Here, we use the radial n, polar l , and azimuthal m num-
bers to characterize a specific WGM and refer to the
(n0, l0, m0) WGM as the clock WGM whose electric field
vector is u(r). Each atom is modeled as a spin-1/2 system,
|↓〉 = (5s2) 1S0(F = 9

2 , mF = 9
2 ) and |↑〉 = (5s5p)3P0(F =

9
2 , mF = 9

2 ) with the clock transition frequency ωA [see
Fig. 1(b)]. The spins are tightly trapped in a two-color ring-
shaped optical lattice that is formed around the microsphere
[30]. All trapping beams are ez polarized and coupled into
the microsphere through an optical fiber. Since the resonance
wavelengths of WGMs are solely determined by the micro-
sphere’s radius R, it is challenging to find other two WGMs
(i.e., trapping WGMs) located exactly at the magic wave-
lengths for the clock transition under the condition that the
clock WGM is resonantly coupled to the clock transition.
Nonetheless, we may choose the trapping WGMs near the
magic wavelengths.

The blue-detuned trapping beam is resonant to the TE-
polarized clockwise (nb = 1, lb = 468, mb = lb) WGM with
the resonance wavelength λb = 389.974 nm. Since λb is close
to the blue-detuned magic wavelength of 389.889 nm for the
clock transition [33], the repulsive optical potentials that are
exerted by the evanescent field of the (nb, lb, mb) WGM on
the spins in |↓〉 and |↑〉 approximately have the same profile

(see Appendix C). In contrast, two opposite red-detuned trap-
ping beams are resonant to the TE-polarized clockwise and
counterclockwise (nr = 1, lr = 218, mr = ±216) WGMs, re-
spectively, whose resonance wavelength λr = 812.148 nm is
near the red-detuned magic wavelength of 813.428 nm [34].
The superposition of (nr, lr, mr ) WGMs forms a standing
wave and the attractive optical potentials imposed by the
evanescent field on the spins in |↓〉 and |↑〉 are approximately
the same. Besides optical potentials, the spins in the vicinity
of the dielectric surface also experience the attractive van
der Waals potentials, which are approximately the same for
|↓〉 and |↑〉. Due to the difference between the evanescent
decay lengths of blue- and red-detuned trapping WGMs, a
three-dimensional ring-shaped optical lattice U (r) is attained
with the number of lattice sites 2|mr | = 432 [see Fig. 1(c)].

Setting the blue-detuned circulating-beam and red-detuned
standing-wave powers at 3 and 0.5 W, respectively, the lat-
tice potential depth reaches 16 µK, large enough for trapping
ultracold spins [35]. The resultant vibrational frequencies in
the radial, polar, and azimuthal directions are (�ρ,�θ ,�ϕ ) =
2π × (105, 11, 110) kHz. The corresponding characteristic
lengths are computed as (ξρ, ξθ , ξϕ ) = (33, 104, 32) nm,
where ξν=ρ,θ,ϕ = √

h̄/(M�ν ) and M is the spin mass. All
spins stay in the ground vibrational state ψ (r) and interact
with the evanescent field of the clock WGM [see Fig. 1(d)].
The small Lamb-Dicke parameter η = ωCξϕ/c = 0.29 en-
sures the recoil-free absorption of pump photons and the
emission of clock photons [36]. More details on the ring-
shaped optical lattice can be found in Appendix D.

A short pump π pulse, which is resonant to the clock
WGM, is applied to excite all spins into |↑〉, and the su-
perradiant emission occurs subsequently. Due to the directed
superradiance of the timed Dicke state [37,38], we ne-
glect the interaction between spins and the counterclockwise
(n0, l0,−l0) WGM. The coherent spin-microsphere coupling
is described by the Hamiltonian

Ĥ/h̄ = ωCâ†â + ωAĴz + g(Ĵ†
−â + â†Ĵ−), (1)

where â and â† are photon annihilation and creation opera-
tors of the clock WGM, respectively, and Ĵ− = ∑

j (|↓〉 〈↑|) j

denotes the lowering operator of the spin ensemble. The
subscript j accounts for the jth spin. Three components of
the total pseudospin vector Ĵ = Ĵxex + Ĵyey + Ĵzez are given
by Ĵx = (Ĵ− + Ĵ†

−)/2, Ĵy = i(Ĵ− − Ĵ†
−)/2, and Ĵz = i(ĴyĴx −

Ĵx Ĵy). The spin-microsphere coupling strength takes the form

g = μ

h̄

√
h̄ωC

2ε0V

∫
[u(r)ez]ψ (r)dr, (2)

with the dipole matrix element μ of the clock transition. The
microcavity mode volume

V =
∫

ε(|r|)|u(r)|2dr
max[ε(|r|)|u(r)|2]

, (3)

approximates 2 × 10−17 m3, which is, for example, six orders
of magnitude smaller than that of the Fabry-Pérot cavity in
[39], resulting in g = 2π × 0.3 kHz. Here, ε(|r| < R) denotes
the relative permittivity of the microsphere while ε(|r| >

R) = 1.
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FIG. 2. (a) Superradiant pulse I (t ) and single-spin population
inversion jz(t ) with the spin number N = 400. (b) Peak emission rate
Ipeak, delay time td , and pulse duration tw versus N . Symbols: numeri-
cal simulation. Squares represent Ipeak, up triangles are assigned to td ,
and down triangles correspond to tw . Lines: curve fitting. Solid line:
Ipeak. Dash-dotted line: td . Dashed line: tw . (c) Uncertainties � jz,⊥(t )
with N = 400. (d) Correlation function C(τ ) and spectrum S(ω) with
N = 400. For all curves and symbols, the spins resonantly interact
with the microsphere, ωC = ωA.

The dissipative dynamics of the coupled system is gov-
erned by the master equation [40]

d ρ̂/dt = −i[Ĥ/h̄, ρ̂] + D(ρ̂), (4)

of the spin-microcavity density matrix ρ̂(t ) with the Lindblad
operator

D(ρ̂) = κ (âρ̂â† − â†âρ̂/2 − ρ̂â†â/2). (5)

Here, we omit the spontaneous decay of spins since the
lifetime of |↑〉 is over 102 s, much longer than the clock
cycle time (see below). The extra dephasing sources such
as collisional (density) shifts and high-order ac Stark shifts
can be substantially suppressed using the methods of shal-
low optical lattices and operational magic intensities [41–44],
and are thereby negligible. At the critical fiber-microsphere
coupling point [45], the linewidth of the clock WGM is κ =
2π × 1.2 MHz (see Appendix B). In the adiabatic limit κ 	
g, the photon operator may be approximately expressed as
â = −igĴ−/(κ/2 + i�) with the detuning � = ωC − ωA [46].
The expectation value of an arbitrary operator Ô is given by
〈Ô(t )〉 = Tr[ρ̂(t )Ô]. We explore the superradiance by directly
solving the master equation, rather than using the mean-field
method. Due to the absence of inhomogeneous sources, the
maximally symmetric Dickes states [47,48] can be chosen as
the basis states of spins.

III. SUPERRADIANCE

Figure 2(a) depicts an example of the time evolution of
the photon emission rate I (t ) = (κ/2)〈â†(t )â(t )〉. It is seen
that I (t ) presents an asymmetric pulse shape and can be
characterized by the peak emission rate Ipeak, the delay time
td of the peak, and the full width at half maximum duration

(a) (b)

FIG. 3. (a) Superradiant pulses I (t ) with different detunings
�. Here, � is introduced by varying the clock WGM frequency
ωC . (b) Frequency shift versus �. Symbols: numerical simulation.
Lines: curve fitting. For all curves and symbols, the spin number is
N = 400.

tw. According to [49], we predict Ipeak = cpeakN2g2/κ , td =
(cdκlnN )/(Ng2), and tw = cwκ/(Ng2) with the spin number
N and the dimensionless factors cpeak = 0.39, cd = 0.26, and
cw = 1.2 determined by the curve fitting [see Fig. 2(b)].
Unlike [49], in which the atom number exceeds 105, Ipeak

does not show a threshold behavior because of the absence
of the atomic decoherence or atom loss in our relatively
small system. Additionally, the analysis in [49] is based upon
the mean-field theory, where the quantum fluctuations of the
spins are omitted. In contrast, we directly solve the master
equation without using the mean-field approximation. Both
reasons contribute to the difference between (cpeak, cd , cw )
obtained in this work and the ones in [49].

Following the photon emission, the single-spin population
inversion jz(t ) = 〈Ĵz(t )〉/J exhibits a damping behavior that
is maximized at td . Here, J = N/2 denotes the total angular
momentum quantum number. In contrast, j⊥(t ) = 〈Ĵ⊥(t )〉/J
of an arbitrary transverse vector Ĵ⊥e⊥ with e⊥ez = 0 stays
at zero. The uncertainty of Ĵα=z,⊥/J is given by � jα (t ) =√

〈Ĵ2
α (t )〉 − 〈Ĵα (t )〉2/J . In spite of � jz(0) = 0, the initial

nonzero quantum fluctuations � j⊥(0) = 1/
√

N turn on the
superradiant emission. At td , � j⊥(t ) reaches its maximum,
boosting the decay of the spin ensemble [see Fig. 2(c)]. It
should be noted that � jz,⊥ are omitted in the mean-field
approximation [49].

The autocorrelation function C(τ ) = ∫ 〈â†(t + τ )â(t )〉dt
of the superradiant pulse is computed using the quantum
regression theorem [17]. We find that C(τ ) primarily fol-
lows a Gaussian damping profile with a characteristic 1/e
decay time close to tw [see Fig. 2(d)]. This coherence time
is multiple orders of magnitude longer than the cold-cavity
lifetime κ−1. Indeed, it arises from the fact that the long-lived
quantum memory of the collective spin polarization maintains
the temporal coherence of the superradiant emission [50]. The
power spectral density of the superradiant pulse is given by the
Fourier transform S(ω) = ∫

C(τ )e−iωτ dτ , of whom the full
width at half maximum �ω approximates ∼(4

√
ln2)t−1

w .
The profile of the superradiant emission depends strongly

on the detuning �. As illustrated in Fig. 3(a), when |�| grows
the peak emission rate Ipeak decreases and the width tw is
broadened. To interpret this, we rewrite the dissipative term
in the master equation as

D(ρ̂) = �(Ĵ−ρ̂Ĵ+ − Ĵ+Ĵ−ρ̂/2 − ρ̂Ĵ+Ĵ−/2), (6)
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where the collective decay rate � = g2κ/(κ2/4 + �2) de-
clines as |�| is increased. In addition, the central frequency
ωL of the superradiant spectrum S(ω) presents a dispersion be-
havior around |�| ∼ 0, (ωL − ωA) ∝ g2�/(κ2/4 + �2) [see
Fig. 3(b)]. Actually, this frequency shift originates from the
long-range exchange interactions between spins mediated by
the microcavity [46]. The resonant spin-microsphere coupling
leads to ωL = ωA. Since the system is operated in the bad-
cavity regime κ 	 g, the shift |ωL − ωA| is well below κ , that
is, the cavity pulling effect is substantially suppressed.

IV. UNCERTAINTIES

The superradiant emission is subject to various uncer-
tainties. To eliminate the clock frequency shifts caused by
the long-range virtual-photon-mediated interactions between
spins [51], the number N of lattice-trapped spins should be
small enough that each lattice site is occupied by, at most, one
spin. The ensemble of spins is released from the optical lattice
after collectively emitting photons and a new spin ensemble is
then prepared (i.e., cooling and trapping) and excited into |↑〉.
Thus, N varies for different ensembles. We set the average
value of N to be N̄ = 400 with a standard deviation σN = 40.
The nonzero σN affects Ipeak, td,w, and �ω, rather than shifting
the clock transition frequency ωA.

It is essential to consider the lattice-induced light shifts of
the clock transition, although the trapping beam wavelengths
λb,r are respectively apart from the blue- and red-detuned
magic wavelengths by small amounts. At lattice sites, the
local evanescent intensities of blue-detuned circulating and
red-detuned standing waves are 11 and 37 kW/cm2, respec-
tively, leading to the corresponding light shifts of 2.4 kHz and
−1.9 kHz. Assuming the uncertainties of the trapping-beam
intensities to be ∼10%, the resultant uncertainty of ωA is
0.4 kHz. In addition, the small difference of the van der Waals
potentials exerting on the spin in |↓〉 and |↑〉 leads to an
extra clock frequency shift of 1.5 kHz. The spatial distribution
uncertainty ξρ introduces an extra uncertainty of 0.3 kHz to
ωA. Therefore, the total uncertainty of ωA induced by the ring-
shaped optical lattice is δωA = 2π × 0.7 kHz, which actually
accounts for the optical gain bandwidth.

In addition, various environmental noises such as ground
vibrations and temperature fluctuations disturb the clock
WGM frequency ωC . The fundamental stability of ωC is
placed by the thermorefractive noise, where the thermal fluc-
tuations cause the variations of the refractive index in the
dielectric microsphere [52]. The corresponding Allan de-
viation is computed as σ TR

C,y (τ ) = 6.6 × 10−13/
√

τ with the
average time τ . Indeed, the practical frequency noise spectrum
of ωC follows

SC ( f ) =
∫

〈ωC (t + τ )ωC (t )〉e−i2π f τ dτ

= hC,0 f 0 + hC,−2 f −2, (7)

with hC,0 = 2κ/ω2
C = 2.0 × 10−24 s and the typical value

hC,−2 = 2.0 × 10−22 s−1 [18]. The white frequency noise
component (∝ f 0) governs the high- f regime and the
corresponding Allan deviation is given by σ WT

C,y (τ ) =√
hC,0/(2τ ) = 1.0 × 10−12/

√
τ . In contrast, the brown noise

FIG. 4. Fractional Allan deviation σy(τ ) of the WGM micro-
clock with the clock cycle Tc = 1 s. Symbols: numerical results.
Circles represent the frequency stability of the WGM microcav-
ity under the perturbation of white frequency noise σ WT

C,y (τ ) and
linear-drift-induced brown noise σ BN

C,y (τ ). Squares correspond to the
frequency stability of the active optical clock. Lines: curve fitting.
Solid line: frequency stability of the active optical clock. Dashed
lines: typical white-noise-limited σ WT

C,y (τ ) and linear-drift-limited
σ BN

C,y (τ ) stabilities of a practical WGM microcavity. Dash-dotted
line: thermorefractive-noise-limited stability σ TR

C,y (τ ) of the WGM
microcavity.

component (∝ f −2) arises from the linear drift of ωC and
dominates the low- f regime. The corresponding Allan de-
viation is expressed as σ BN

C,y (τ ) = √
2π2hC,−2τ/3 = 3.6 ×

10−11√τ . Both σ WT
C,y (τ ) and σ BN

C,y (τ ) are above σ TR
C,y (τ ) (see

Fig. 4). Nevertheless, as we will see below, the WGM fre-
quency fluctuations hardly influence the stability of the central
frequency ωL of the superradiant emission in the bad-cavity
limit.

V. CLOCK OPERATION

We now consider the microclock running in the pulsed
mode. The clock cycle, which includes the preparation (i.e.,
laser cooling and trapping) and excitation of an ensemble of
spins and the detection of the superradiant emission, is re-
peated continuously (see Appendix E). One may numerically
simulate the clock operation as follows: For each cycle with
a duration Tc, the spin number N is generated according to
the gaussian distribution with the mean N̄ and the standard
deviation σN . The light shift of ωA is produced according to
the Gaussian distribution with the mean of 2 kHz and the
standard deviation δωA. In addition, the time sequence of the
WGM frequency ωC is created based on the noise spectrum
SC ( f ) using the digital filtering method [53]. After simulating
each superradiant pulse, the corresponding spectrum S(ω)
is computed through the quantum regression theorem and
the central frequency ωL is determined accordingly. Finally,
the Allan deviation σy(τ ) of ωL is evaluated, where the av-
erage time τ must be the integer multiple of Tc. Within Tc,
the superradiant emission measurement time is set to be 0.1 s,
greatly exceeding the typical pulse width tw, while the rest
duration accounts for the preparation and excitation of a new
spin ensemble.
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The simulation results are plotted in Fig. 4. Since the
optical gain bandwidth δωA well surpasses the cavity pulling
effect in the bad-cavity limit, the fractional frequency insta-
bility of the microclock is dominated by the total uncertainty
of lattice-induced light shifts. The curve fitting illustrates

σy(τ ) = δωA

ωA

√
Tc

τ

= (1.7 × 10−12)

√
Tc

τ
. (8)

Reducing the cycle duration Tc enhances the frequency stabil-
ity. However, the preparation and excitation of spins restrict a
strong suppression of Tc. We choose the typical value Tc = 1 s
and obtain the frequency stability of 5 × 10−14 at τ = 103 s,
encouragingly close to that of the recently demonstrated chip-
scale optical clock [8].

In practice, the stability σy(τ ) can be derived from the
heterodyne beat measurement between the active microclock
and a highly stable reference laser [11]. A number of technical
noises potentially degrade the frequency comparison. In our
active system, each spin emits only one photon per clock
cycle. At the critical coupling point [45], half of the intracavity
photons can be collected by the photodetector. The corre-
sponding photon shot noise leads to the signal-to-noise ratio
SNR =

√
N̄/2 ≈ 14 of the heterodyne detection, high enough

to suppress the relevant influence on σy(τ ). Additionally, the
Dicke effect caused by the relatively large dead time (occupy-
ing 90 percent of the clock cycle) converts the high-frequency
noise of the reference laser down to low Fourier frequencies
[54]. Following the method introduced in [11], the relevant
contribution is estimated to be of the order of 10−16 at τ = 1 s
of averaging, negligible to σy(τ ).

VI. CONCLUSION

In summary, we proposed an active optical microclock
based on the WGM microcavity. The cavity pulling effect
is considerably suppressed in the bad-cavity limit. In the
pulsed operation, the pump and emission processes are sepa-
rated in time, eliminating the pump-beam-induced light shifts.
The frequency stability of the microclock follows σy(τ ) =
1.7 × 10−12/

√
τ , primarily limited by the lattice-induced

light shifts. The trapping beam wavelengths do not satisfy
the magic-wavelength condition, resulting in light shifts much
larger than that of conventional optical lattice clocks. The
different van der Waals potentials exerted on the spin in |↑〉
and |↓〉 add an extra shift to the clock transition. The sub-
stantial reduction of these light shifts relies on the appropriate
microcavity design. Engineering microclocks, frequency mi-
crocombs, and waveguides on a photonic chip potentially
allows for the on-chip optical frequency comparison and
synchronization.
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APPENDIX A: WHISPERING-GALLERY MODES
IN MICROSPHERE

The mechanism of optical WGMs originates from the con-
tinuous total internal reflection of light waves at the interface
between the microcavity and its surrounding medium. The
isotropic dielectric microsphere has a relative permittivity εi

higher than that of the outside-sphere region εo. In spherical
coordinates (ρ, θ, ϕ), the rigorous solutions of TE-polarized
WGMs that are allowed to exist in the microsphere are ex-
pressed as [17]

E(i)
n,l,m(r) = A(i)

n,l,m

ψl (kiρ)

kiρ
Xl,m(θ, ϕ), ρ < R, (A1a)

E(o)
n,l,m(r) = A(o)

n,l,m

ξl (koρ)

koρ
Xl,m(θ, ϕ), ρ > R, (A1b)

with the amplitudes A(i)
n,l,m and A(o)

n,l,m and the intracavity
(outside-cavity) wave number ki = √

εiω/c (ko = √
εoω/c).

A specific WGM is characterized by the radial n � 1, po-
lar l , and azimuthal m numbers. The fundamental WGMs
correspond to (n = 1, l, m = ±l ). WGMs with m > 0 (m <

0) circulate in the clockwise (counterclockwise) direction.
In above equations, we defined the Ricatti-Bessel ψl (z) =
z jl (z) and ξl (z) = ψl (z) + iznl (z) functions with the spherical
Bessel functions jl (z) and nl (z). The vector spherical harmon-
ics takes the form

Xl,m(θ, ϕ) = [∇Y m
l (θ, ϕ)

] × r, (A2)

with the spherical harmonic function Y m
l (θ, ϕ). The boundary

conditions lead to

A(i)
n,l,mψ ′

l (kiR) = A(o)
n,l,mξ ′

l (koR), (A3a)

koA(i)
n,l,mψl (kiR) = kiA

(o)
n,l,mξl (koR), (A3b)

from which one may derive the resonance frequency ω

and further compute the electric-field profile of the (n, l, m)
WGM. According to [55], the WGM frequency ω depends on
(n, l ) and can be approximately evaluated by the following
asymptotic formula:

ωn,l = c

R
√

εi

[
ν + αn

21/3
ν1/3 −

√
εi

εi − εo
+ 3

10

α2
n

22/3
ν−1/3

−1

3

(
εi

εi − εo

)3/2
αn

21/3
ν−2/3 + O(ν−1)

]
, (A4)

with ν = l + 1/2 and the nth root αn of the Airy function
Ai(−α). For silica, its dispersion equation is given by [56]

εi = 1 + 0.6961663 × λ2

λ2 − 0.06840432
+ 0.4079426 × λ2

λ2 − 0.11624142

+ 0.8974794 × λ2

λ2 − 9.8961612
, (A5)

where the wavelength λ is in units of µm. Substituting R =
20.3 µm, Eq. (A5), and εo = 1 into Eq. (A4), we find the
following WGM resonance wavelengths λ = 2πc/ω:

λC = 698.446 nm for (n0 = 1, l0 = 255, m0 = 255),

λb = 389.974 nm for (nb = 1, lb = 468, mb = 468),

λr = 812.148 nm for (nr = 1, lr = 218, mr = ±216).
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APPENDIX B: QUALITY FACTOR OF CLOCK WGM

Various optical loss mechanisms influence the quality fac-
tor Q of the microcavity. (1) The radiation loss is attributed
to the fact that a portion of light leaks out of the microsphere
each time when the beam hits on the microsphere’s surface.
The relevant quality factor may be evaluated by

Qrad = 2l + 1

4

√
εi − 1

εi
exp [(2l + 1)(βn,l − tanhβn,l )],

(B1)
with the shorthand

βn,l = cosh−1

{
√

εi

[
1 + 2

2l + 1

(
αn

(
2l + 1

4

)1/3

−
√

εi

εi − 1

)]−1}
. (B2)

(2) When the light wavelength λ is located outside the trans-
parency window of the cavity material, the light beam suffers
from a strong attenuation when circulating inside the micro-
sphere. The material-loss-limited quality factor Qmat takes the
form

Qmat = 2π

λ

√
εi

αmat
, (B3)

with the attenuation coefficient αmat. Generally, αmat of silica
is composed of Rayleigh scattering and the material ab-
sorption (mainly in the infrared regime). (3) The imperfect
fabrication techniques inevitably lead to a surface rough-
ness of the microsphere. Thus, the light traveling at the
microsphere’s surface experiences a discontinuity in refractive
index. The surface-roughness-limited quality factor Qss may
be expressed as [14]

Qss = 3
√

εi

4π2

(
εi

εi − 1

)2
λ3

√
2Rλ

σ 2B2
, (B4)

with the standard deviation σ and the spatial correlation length
B of the surface roughness of the microsphere. (4) After the
fabrication, the hemosorption of the atmospheric water can
form a layer of OH groups upon the microsphere’s surface.
The adsorbed water may cause the extra optical loss and the
relevant quality factor is estimated by [14]

Qsa =
√

πR

16n3
watλ

1

δβ
, (B5)

with the refractive index nwat, thickness δ, and absorption
coefficient β of the water layer.

We are interested in the quality factor of the clock
(n0, l0, m0) WGM that is used for the clock operation. Dif-
ferent quality factor components are listed in Table I. The
intrinsic quality factor is evaluated as

Q0 = (
Q−1

rad + Q−1
mat + Q−1

ss + Q−1
sa

)−1

≈ 7.3 × 108. (B6)

In addition, the fiber-microcavity coupling introduces an extra
cavity loss and the relevant quality factor is Qc. The total
quality factor of the clock WGM is then given by Q = (Q−1

0 +

TABLE I. Different quality factor components of the clock
(n0, l0, m0) WGM.

Radiation-loss-induced Qrad 7.7 × 1038

Material-loss-induced Qmat
a 1.5 × 1010

Surface-scattering-induced Qss
b 7.3 × 108

Surface-absorption-induced Qsa
c 1.3 × 1010

Intrinsic quality factor Q0 7.3 × 108

Total quality factor Qd 3.6 × 108

aAt λ = 698 nm, αmat approximates 3.7 dB/km [57].
bIn the experiment, σ is 2 nm and B is 5 nm.
cIn the experiment, δ approximates 0.2 nm.
dAt the critical coupling point, the coupling quality factor is equal to
Q0.

Q−1
c )−1. Typically, the fiber-microcavity coupler is operated at

the so-called critical coupling point [45], Q0 = Qc, and hence
one has the total cavity loss rate κ = ω/Q = 2π × 1.2 MHz.

APPENDIX C: AC STARK SHIFTS AND VAN DER
WAALS POTENTIALS

To the second-order approximation, the ac Stark shift �ν

of the clock transition induced by a far-detuned light field
(intensity I0 and wavelength λ) is expressed as [58]

h�ν(λ) = −cμ0I0

2
[α|↑〉(λ) − α|↓〉(λ)], (C1)

where α|u〉=|↑〉,|↓〉 corresponds to the dynamic polarizabil-
ity of the |u〉 spin. One may compute α|u〉(λ) by using
the data listed in [59]. The light shift �ν vanishes at the
blue-detuned magic wavelength of 389.889 nm [33] and
the red-detuned magic wavelength of 813.428 nm [34].
Around magic wavelengths, the rate of change of �ν with
respect to λ is (d�ν/dλ)λ=389.889 nm = 2.67 kHz/nm and
(d�ν/dλ)λ=813.428 nm = 39.5 Hz/nm, where we set I0 =
1 kW/cm2. Thus, we obtain �ν(λb) = 226 Hz and �ν(λr ) =
−50 Hz. It was found that the relative difference between
α|↑〉 and α|↓〉 at λb is about 1%. Approximately, we may treat
α|↑〉 ∼ αb ≡ α|↓〉 = −455 a.u. when considering the optical
potential produced by the blue-detuned (nb, lb, mb) WGM.
Similarly, the relative difference between α|↑〉 and α|↓〉 at λr

is less than 2%. We approximately treat α|↑〉 ∼ αr ≡ α|↓〉 =
278 a.u. when considering the standing-wave optical potential
produced by the red-detuned (nr, lr,±mr ) WGMs.

Besides optical potentials (i.e., ac Stark shifts), the spin in
the vicinity of the dielectric surface with a distance d also
experiences the van der Walls potential [60]

UvdW(|u〉 = |↑〉 , |↓〉) = −C3(|u〉)

d3
, (C2)

with the coefficient C3(|u〉) for the spin in |u〉,

C3(|u〉) = h̄

16π2ε0

∫ ∞

0
α|u〉(iz)

ε(iz) − 1

ε(iz) + 1
dz. (C3)

The relative permittivity function ε is given by Eq. (A5).
The relative difference between C3(|↑〉) and C3(|↓〉) is less
than 3% and one may treat C3(|↑〉) ∼ C3 ≡ C3(|↓〉) = 4.8 ×
10−49 J m3.
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APPENDIX D: RING-SHAPED OPTICAL LATTICE

In spherical coordinates (ρ, θ, ϕ), the total potential ex-
erted on a spin in the vicinity of microsphere is written as
[30]

Utot(r) = Ub(r) + Ur (r) − C3

(ρ − R)3
, (D1)

with the blue-detuned (replusive) Ub(r) and red-detuned (at-
tractive) Ur (r) optical potentials

Ub(r) = −αb

4

∣∣E(o)
nb,lb,mb

(r)
∣∣2

, (D2a)

Ur (r) = −αr

4

∣∣E(o)
nr ,lr ,mr

(r) + E(o)
nr ,lr ,−mr

(r)
∣∣2

. (D2b)

The trapping beam powers are given by

Pb = cε0

2

∫ √
ε(ρ)

∣∣E(i/o)
nb,lb,mb

(r)
∣∣2

ρdρ sin θdθ, (D3a)

Pr = cε0

2

∫ √
ε(ρ)

∣∣E(i/o)
nr ,lr ,mr

(r) + E(i/o)
nr ,lr ,−mr

(r)
∣∣2

× ρdρ sin θdθ, (D3b)

with the spatial distribution of the relative permittivity ε(ρ <

R) = εi and ε(ρ > R) = εo. We focus on the lattice site lo-
cated at (ρ0, θ = π/2, ϕ = 0) and consider the vibrational
states of the spin (mass M) moving in Utot(r). The value of
ρ0 will be determined later. The corresponding Schrödinger
equation takes the form[

− h̄2

2M

(
∂2

∂ρ2
+ 2

ρ

∂

∂ρ
+ 1

ρ2 sin θ

∂

∂θ
sin θ

∂

∂θ

+ 1

ρ2 sin2 θ

∂2

∂ϕ2

)
+ Utot(r)

]
ψ (r) = Eψ (r), (D4)

with the eigenfunction ψ (r) and the eigenvalue E . Since
the WGMs are tightly confined near the equator of the mi-
crosphere, i.e., θ ∼ π/2, the harmonic vector Xl,m(θ, ϕ) is
simplified as

Xl,m(θ, ϕ) ≈ �l,m(θ )ez

= (|m|/π )1/4√
2l−|m|(l − |m|)!

Hl−|m|(
√

|m|(θ − π/2))

×e− |m|(θ−π/2)2

2 e−imϕez, (D5)

where Hq(z) denotes the Hermite polynomials of the degree q.
Writing θ = π/2 + δθ/

√
lb and ϕ = δϕ/mr with small angles

δθ and δϕ, we have the approximations

�lb,mb (θ ) ≈
√

lb/π [1 − (δθ )2], (D6a)

�lr ,mr (θ ) ≈
√

mr/(64π )[1 − (3mr/lb)(δθ )2], (D6b)

cos2 mrϕ ≈ 1 − (δϕ)2. (D6c)

Following the approach of the separation of variables, we sub-
stitute ψ (r) = ψρ (ρ)ψθ (δθ )ψϕ (δϕ) and E = Eρ + Eθ + Eϕ

into the Schrödinger equation (D4) and obtain[
− h̄2

2M

(
∂2

∂ρ2
+ 2

ρ

∂

∂ρ

)
+ Uρ (ρ)

]
ψρ (ρ)

= Eρψρ (ρ), (D7a)

FIG. 5. Vibrational states in the radial potential with the trapping
beam powers of Pb = 3 W and Pr = 0.5 W.

[
− h̄2

2M
lb

∂2

∂ (ρ0δθ )2
+ Uθ (ρ0)(δθ )2

]
ψθ (δθ )

= Eθψθ (δθ ), (D7b)[
− h̄2

2M
m2

r

∂2

∂ (ρ0δϕ)2
+ Uϕ (ρ0)(δϕ)2

]
ψϕ (δϕ)

= Eϕψϕ (δϕ), (D7c)

with three potential components

Uρ (ρ) = −αbA2
b

4

√
lb
π

ξ 2
lb

(kbρ)

(kbρ)2

−αrA2
r

√
mr

64

ξ 2
lr

(krρ)

(krρ)2
− C3

(ρ − R)3
, (D8a)

Uθ (ρ0) = αbA2
b

4

√
lb
π

ξ 2
lb

(kbρ0)

(kbρ0)2

+αrA2
r

√
mr

64π

3mr

lb

ξ 2
lr

(krρ0)

(krρ0)2
, (D8b)

Uϕ (ρ0) = αrA2
r

√
mr

64π

ξ 2
lr

(krρ0)

(krρ0)2
. (D8c)

Here, we defined Ab = A(o)
nb,lb,mb

and Ar = A(o)
nr ,lr ,mr

. The radial
wave function ψρ (ρ) can be solved in a numerical way while
ψθ (δθ ) and ψϕ (δϕ) behave similarly to a quantum harmonic
oscillator.

Setting Pb = 3 W and Pr = 0.5 W, we obtain a three-
dimensional potential well with a depth of about 16 µK,
large enough for trapping ultracold Sr spins [35]. The dis-
tance from the microsphere’s surface to the potential-well
minimum is (ρ0 − R) = 230 nm with the distance ρ0 be-
tween the microsphere’s center and the potential well (see
Fig. 5). In the x-y plane, the trapping potential presents
a ring-shaped lattice pattern and the number of lattice
sites is 2mr = 432. Solving Eq. (D7), we may derive
the ground vibrational state whose characteristic frequen-
cies are (�ρ,�θ ,�ϕ ) = 2π × (105, 11, 110) kHz along the
radial, polar, and azimuthal directions, respectively. The cor-
responding characteristic lengths are computed as (ξρ =√

h̄
M�ρ

, ξθ =
√

h̄
M�ρ

, ξθ =
√

h̄
M�ϕ

) = (33, 104, 32) nm. In ad-

dition, at (ρ0, θ = π/2, ϕ = 0), the local intensity of the

043712-7



YU, CHEN, AND ZHANG PHYSICAL REVIEW A 107, 043712 (2023)

FIG. 6. Schematic diagram of clock operation. Each cycle in-
cludes a superradiant pulse and the dead time for preparing and
exciting a new spin ensemble. The spin number N follows the Gaus-
sian distribution with a mean value N̄ and a standard deviation σA.
The light shift of the clock transition also follows the Gaussian dis-
tribution with a standard deviation δωA. The fluctuations of the clock
WGM frequency ωC are generated according to the noise spectrum
SC ( f ) = hC,0 f 0 + hC,−2 f −2.

blue-detuned trapping beam is 11 kW/cm2, leading to a light
shift of �ν(λb) = 2.4 kHz. Assuming the uncertainty of the
trapping-beam intensity to be ∼10%, the corresponding un-
certainty of �ν(λb) is about 0.2 kHz. In contrast, the local
intensity of the red-detuned standing wave is 37 kW/cm2,
resulting in �ν(λr ) = −1.9 kHz. The uncertainty of the
standing-wave intensity of ∼10% gives an uncertainty of
�ν(λr ) of about 0.2 kHz. Moreover, the small difference

between C3(|↑〉) and C3(|↓〉) leads to an extra frequency
shift �νvdW = C3(|↑〉)−C3(|↓〉)

h(ρ0−R)3 = 1.5 kHz. The uncertainty ξρ

gives rise to an uncertainty 3ξρ

(ρ0−R)
C3(|↑〉)−C3(|↓〉)

h(ρ0−R)3 = 0.3 kHz of
�νvdW. Thus, the ring-shaped lattice potential induces a total
uncertainty of (δωA/2π ) = 735 Hz to the clock transition
frequency.

APPENDIX E: CLOCK OPERATION

The clock operation scheme is illustrated in Fig. 6. Each
clock cycle with a duration Tc includes one superradiant pulse
and the dead time for preparation (i.e., cooling and trapping)
and the excitation of a new spin ensemble. The integration
time of the photodetector is chosen as 0.1 s, long enough
to measure the entire superradiant pulse. The number N of
trapped spins varies for different clock cycles and follows the
Gaussian distribution with the mean value N̄ = 400 and the
standard deviation σN = 40. In addition, the lattice-induced
light shifts introduce an uncertainty of the clock transition
frequency ωA. We model it as a Gaussian distribution with
a mean value of 2π × 2 kHz and a standard deviation δωA =
2π × 0.7 kHz. In numerical simulation, one may generate N
and ωA for each cycle. Moreover, we numerically produce the
frequency ωC of the noise-perturbed clock WGM based on
the spectrum SC ( f ) = hC,0 f 0 + hC,−2 f −2 with hC,0 = 2.0 ×
10−24 s and hC,−2 = 2.0 × 10−22 s−1. It should be noted that
the frequency ωC fluctuates throughout the entire clock opera-
tion (including multiple cycles). For each cycle, the spectrum
S(ω) of the corresponding superradiant pulse is computed
through the master equation and the quantum regression
theorem, and then the central frequency ωL is determined
accordingly. Finally, the Allan deviation of the ωL sequence
is evaluated.
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