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Inverse problem of photocount statistics: Applicability criterion for the inverse
Bernoulli transform method
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It is shown that the applicability conditions for the inverse Bernoulli transform method to solve the inverse
problem of photocount statistics are determined by the fulfillment of the associativity condition for multiplying
the matrices included in this transformation. A general criterion for evaluating the photocount distributions Qm

in the case of few-photon light, which makes it possible to establish whether the solution to the inverse problem
of photocount statistics by the inverse Bernoulli transform method is applicable for η < 0.5, is found. As an
example of the application of the obtained criterion, the critical quantum efficiency ηcr is found for compound
Poisson distribution, below which the solution of the inverse problem of photocount statistics becomes incorrect.
Additionally it is shown that the normalization of Qm is not sufficient to obtain a correct solution using the inverse
Bernoulli transform.
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I. INTRODUCTION

One of the most widely used methods for determining
the energy characteristics of light is based on measuring
the photocount distribution [1], that is, the statistics of elec-
trons emitted from the photocathode irradiated by the light
beam. This method is based on detecting the optical radiation
by single-photon counters [2]. To date, the photon counting
method, which has a long history [3], is widely used in both
applied [4–8] and fundamental research [9–12]. Nowadays,
it is one of the key experimental methods used in quantum
optics.

A. Semiclassical inverse problem of photocount statistics

Already at the initial stage of application of the photon
counting method, in addition to the direct problem (finding the
photocount distribution from the known light state) interest
was aroused by the inverse problem, the determination of the
light properties from the known photocount statistics. One of
the most important properties of light is the energy distribu-
tion. The problem of reconstructing the energy distribution
from the photocount one was considered in [13]; later, various
approaches were developed to solve this problem [14–16].
These studies were based on Mandel’s semiclassical formula
for the photocount distribution Qm [17], which is mathe-
matically the averaged Poisson distribution over the energy
distribution of the detected radiation (Poisson transformation
of the energy distribution)

Qm =
∫ ∞

0

(ηE )m

m!
exp(−ηE )w(E )dE, (1)
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where E = E (T ) = ∫ t+T
t

∫
S I (r, t )d2rdt is the light energy

falling onto the detector area S during time T in a number of
photons; η is the quantum efficiency of detection; I (r, t ) is the
light intensity in (m2s)−1; w(E ) is the probability density of
the fluctuating parameter E ; m is a number of photoelectrons,
emitted during time T .

Within the framework of the semiclassical model, the
inverse problem of photocount statistics [18] is the recon-
struction of the distribution w(E ) from measured distribution
Qm. The problem of reconstructing the energy distribution
has been solved more than once. Thus, in [13], the Poisson
transform was inverted using the Fourier transform and the
apparatus of characteristic functions. In [14], an expansion
of the intensity distribution in terms of Laguerre polynomials
was applied. The authors of [15] used Padé approximants to
inverse the Poisson transform and cubic B-splines were used
in [16] for the same purpose.

B. Quantum inverse problem of photocount statistics

For a correct description of the photodetection process,
especially when applied to few-photon light, the field itself
should also be considered as a quantum object. A consistent
theory of such a process gives the following result [19]:

Qm =
〈
:

1

m!
[ηÊ]m exp[−ηÊ] :

〉
. (2)

Here Ê = Ê (T ) = ∫ t+T
t

∫
S Ê−(r, t )Ê+(r, t )d2rdt is the oper-

ator of the light energy; Ê−(Ê+) is the negative- (positive-)
frequency field operator, 〈::〉 is the normally ordered
averaging. 〈: Ê (T ) :〉 is the light energy falling onto the de-
tector area S during time T in a number of photons. As shown
in [19], the expression (2) can be rewritten in the Fock basis
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as

Qm =
∞∑

n=m

Cm
n ηm(1 − η)n−mPn, (3)

where Pn = 〈: 1
n! Ên exp[−Ê] :〉 is the photon-number distribu-

tion, or the probability that n photons hits a detector during a
time T , and Cm

n = n!/[m!(n − m)!] is the binomial coefficient.
The formula (3) is commonly called the Bernoulli transforma-
tion [20–22]. The distribution (3) allows us to give a clear
physical interpretation. Since η is the probability of regis-
tering one photon during the measurement interval, then ηm

is the probability of registering m photons, and (1 − η)(n−m)

is the probability of not registering (n − m) photons when n
photons arrive at the detector. The coefficient Cm

n takes into
account the possible number of combinations of occurrence
of m photoelectrons.

Thus, in the quantum approach, the photocount distri-
bution is given by the convolution of the photon-number
distribution with the Bernoulli one (3) and differs from
the semiclassical Mandel formula (1). Therefore, at a low-
intensity (few-photon) level, for a correct description of the
photodetection process, one must proceed from the Bernoulli
transformation (3).

The inverse problem of the photocount statistics in a few-
photon mode is the finding Pn from the known distribution
Qm which are associated by the relation (3). The importance
of this problem lies, in particular, in the fact that, currently,
few-photon light sources are of significant interest in quan-
tum technologies [2,23,24]. Photon-number distribution for
few-photon radiation is an analog of the intensity for bright
radiation; therefore, it can be considered as one of the most
important characteristics of a light source. Experimentally,
the photon counting method is apparently the simplest and
cheapest method to obtain data about the photon-number
distribution. If we had an ideal photon counter with η = 1
there would not be any problem with obtaining these data,
as distributions Qm and Pn coincide. However, the quantum
efficiency of existing photon counters is typically less than
1, for example, for modern silicon photomultipliers (SiPM)
detectors η � 0.65 [25]. This, as will be shown below, causes
significant difficulties in inverting the formula (3).

At present, numerical statistical methods are most often
used to solve the inverse problem. They give an approximate
solution to the problem under some reasonable assumptions
about its structure. One of the main methods of this kind is
the maximum likelihood method [26], in which a solution
is sought that maximizes the likelihood function. Combined
with expectation [27,28] and entropy [29] maximization
methods, it gives very good results. However, these methods

are not universal. The problem is that they are approximate
and use a priori information when searching for a solution,
which limits their generality, making it impossible to solve
the problem reliably in all cases.

Analytical methods [20–22,30,31] are free from this short-
coming. Analytical methods, in contrast to numerical ones,
not only give an exact solution to the problem, but also al-
low us to understand its essence. The best known and most
commonly used analytical method for solving the inverse
problem for few-photon light, which takes into account the
losses in photodetection due to η < 1, is the method based on
the direct inversion of the Bernoulli transformation [20,21].
As is known, one of the main fundamental problems that
arise in solving inverse problems is the problem of stabil-
ity of their solutions. Apparently, the first work in which a
fundamental study of the stability of solutions obtained by
the inverse Bernouli transform was carried out is the work
[21], where the authors managed to get an expression of
statistical uncertainty for Pn values and to make the first base
research of the solution convergence. They showed that for
any finite Qm the solutions are stable for arbitrary η. However,
for infinite Qm, the solutions are stable only if η > 0.5, and in
the case of η < 0.5, one can find counterexamples when the
solution turns out to be unstable. As an example, they gave
the thermal distribution, for which the stable reconstruction
is impossible below some critical quantum efficiency. The
results obtained in this work caused a scientific discussion
[21,22,32–34] about whether the threshold value identified
in [21] is a fundamental limitation, i.e., whether it is due to
any physical reasons or due to mathematical problems of the
solution. However, the causes for the instability of solutions
were not identified in the subsequent works, and the question
remained open.

In this paper, we managed to find the reasons for the
apparent instability of the solutions of the inverse Bernoulli
transform. In addition, we found a general criterion for eval-
uating the distributions Qm, which allows us to establish
whether the solution of the inverse problem obtained by the
inverse Bernoulli transform method is mathematically correct
for a given value of η less then 0.5.

II. INVERSE BERNOULLI TRANSFORM METHOD

The inverse Bernoulli transform method is based on the
fact that the formula (3) can be reversed [20]. The easiest way
to see this is to represent this formula in matrix form Q = T̂ P.
In the case of a finite Pn, when the number of members in the
distribution is limited to N , the matrix representation of the
formula (3) has the form

⎛
⎜⎜⎜⎜⎜⎜⎝

Q0

Q1

.

.

QN−1

QN

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 (1 − η) (1 − η)2 · · (1 − η)N

0 η 2η(1 − η) · · Nη(1 − η)N−1

0 0 η2 · · ·
· · · . . . · ·
0 0 0 . ηN−1 NηN (1 − η)
0 0 0 · 0 ηN

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

P0

P1

·
·

PN−1

PN

⎞
⎟⎟⎟⎟⎟⎟⎠

, (4)
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FIG. 1. Ranges of possible values of Pn (red) and Qm for η = 0.8
(blue), and η = 0.4 (green), depicted in three-dimensional space.

or simply

Q = T̂ P, (5)

where Q and P are the N-dimensional vectors. This matrix
equation is easy to solve:

P = T̂ −1Q, (6)

where T̂ −1 is an inverse matrix to T̂ .
Calculating the inverse matrix and passing back to analyt-

ical form, it is possible to show [20] that the solution to the
inverse problem of photocount statistics can be represented as

Pn =
∞∑

m=n

Cn
mη−n

(
1 − 1

η

)m−n

Qm. (7)

As seen from the formula (7), the inverse matrix is triangu-
lar, like the original matrix T̂ . If the distribution Qm is finite
and no restrictions are imposed on it, then no problems with
the solutions to the inverse problem arise for any η [21].

Before turning to the presentation of the main results re-
lated to the analysis of the inverse Bernoulli transform as
applied to infinite distributions of photons and electrons, let us
dwell on some important properties of this transform, which
usually remain outside the scope of the standard consider-
ation. First, note that vectors P and Q are the probability
distributions, hence Pn � 0 for all n and Qm � 0 for all m.
Moreover, the normalization conditions must be met, i.e.,∑N

n=0 Pn = 1 and
∑N

m=0 Qm = 1. The listed restrictions im-
posed on Pn and Qm lead to the important feature of the
solution (7), namely, that the transformation T̂ turns out to
be contracting (all distances shrink). If to interpret Pn and
Qm as projections of unit vectors to coordinate axes in N-
dimensional space, it is convenient to illustrate a contraction
action of T̂ by depicting the ranges of possible values for Pn

and Qm in such a space. To illustrate this, refer to Fig. 1,
which shows the ranges of valid values of Pn and Qm for
three-dimensional distributions. In Fig. 1 the distributions Pn

and Qm are interpreted as projections of unit vectors on the
coordinate axes in three-dimensional space.

The domains of possible values of Pn and Qm lie in the
same plane, which intersects the coordinate axes at the points

A = {1, 0, 0}, B = {0, 1, 0},C = {0, 0, 1}. However, the sizes
of these domains are different. Thus, the possible values of Pn

fill the equilateral triangle ABC, while the possible values of
Qm lie inside the triangle ADE or AD′E ′ of a smaller areas
depending on η. Note that the coordinates D and E of the ver-
tices of this triangle coincide with the columns of the matrix
T̂ , and, therefore, depend on the η: D = {1 − η, η, 0}, E =
{(1 − η)2, 2η(1 − η), η2}. If η = 1 then P and Q triangles
coincide. In the case of N dimensions the reasoning is sim-
ilar, but instead of triangles one should use multidimensional
generalization of triangles: simplices.

This specified property of the transformation T̂ causes
potential incorrectness in the Pn reconstruction from experi-
mentally obtained Qm according to the formula (7). Indeed, in
the case of a contraction mapping, normalization of the Q dis-
tribution does not guarantee the correctness of reconstruction
since, although the normalization guarantees that the end of
the vector Q falls on the ABC plane, it does not guarantee that
it falls inside the Q-simplex. As a result, the reconstructed Pn

distribution may be outside of P-simplex and you can obtain,
in principle, arbitrary values of Pn, both greater than 1 and
even negative values.

To illustrate this conclusion, consider an example of incor-
rect recovery of Pn from a prenormalized three-dimensional
Qm. Let us assume that Q = {0, 0, 1}, then according to for-
mula (7) the elements of the reconstructed distribution Pn will
have the form: P0 = (1 − 1

η
)2, P1 = 2η−1(1 − 1

η
), P2 = η−2.

For example, if η = 0.5 then P = {1,−4, 4}. Note that, de-
spite the obtained negative value of P1, the normalization of
the distribution Pn remains.

This feature of the solution (7) becomes critical in the
processing of experimental data and, no doubt, requires the
development of special methods which would not allow the
experimental values to go beyond the boundaries of the Q-
simplex. However, this problem is beyond the scope of the
questions discussed in this article and we will not touch on
this issue further.

III. CRITERION FOR THE EXISTENCE OF A SOLUTION
TO THE INVERSE PROBLEM OF PHOTOCOUNT

STATISTICS FOR INFINITE DISTRIBUTIONS

In most physical problems, the photocount statistics is
described by infinite distributions. As mentioned in the In-
troduction, when studying the properties of the solution to
the inverse problem of photocounts by the method of inverse
Bernoulli transformation in the case of infinite distributions,
a possible instability of the behavior of the solution (7) was
found for quantum efficiency values η < 0.5. At the same
time, in the case of finite distributions, no peculiarities in
the behavior of solutions were noted. If we trace the deriva-
tion of the formula (7), then at first glance, no mathematical
reasons for the appearance of the instability threshold are
visible. Indeed, let us describe in more detail the procedure
for finding a solution to the inverse problem in matrix form
(5). Multiplying both sides of the equation (5) on the left by
T̂ −1, we obtain T̂ −1Q = T̂ −1T̂ P. Considering that T̂ −1T̂ = 1,
we directly arrive at the solution of the inverse problem: P =
T̂ −1Q. However, if we look closely at the above derivation, we
can see that the derivation implicitly assumed the associativity

043710-3



GOSTEV, MAGNITSKIY, AND CHIRKIN PHYSICAL REVIEW A 107, 043710 (2023)

of matrix multiplication T̂ −1, T̂ , and P. However, as follows
from functional analysis, the product of infinite matrices is
generally not associative, i.e., T̂ −1(T̂ P) is not always equal to
(T̂ −1T̂ )P. It follows that the solution to the problem formu-
lated in the introduction is not to find the stability regions of
the solution (6), but to determine the ranges of η for which the
matrix product T̂ −1T̂ P is associative, i.e., when the solution
of the inverse problem can in principle be written as (6).

As an associativity criterion, one can choose the conditions
for the convergence of the series that determine the elements
of the products of matrices. From a technical point of view,
it is easier to examine not the associativity of matrices, but to
examine for convergence the final solution (7), which from a
mathematical point of view can be viewed as a countable set of
series. Therefore, the solution exists if all series (7) converge
for any n.

Below are the results of studying the existence of a solution
to the inverse problem in the form (6) for various distri-
butions of photons. Let us choose from the solution (7) an
arbitrary series with number n and rewrite it in the equivalent
form

Pn = (η − 1)−n
∞∑

m=n

(−1)m

(
1

η
− 1

)m

Cn
mQm, (8)

where it can be seen that it is an alternating series. Denoting
anm = ( 1

η
− 1)mCn

mQm, we can write it in a more compact form

Pn = (η − 1)−n
∞∑

m=n

(−1)manm. (9)

An interesting feature of the solution (8) is the presence
of a critical value of the quantum detection efficiency ηcr =
0.5. You can see this by looking at the structure of the se-
quence anm, which can be considered as the product of two
sequences a(1)

nm = ( 1
η

− 1)mCn
m and a(2)

m = Qm. Because the se-

ries
∑∞

m=n Qm converges for any distributions Qm due to the
normalization condition, then by Abel convergence criterion
it is sufficient for the convergence of the series (8) that the
sequence a(1)

nm is monotonic and limited. The sequence a(1)
nm

starting from some number m is monotonic, therefore, for its
boundedness it is sufficient that it converges to 0. As follows
from the explicit form of a(1)

nm, for η > 0.5 limm→∞a(1)
nm = 0,

and for η < 0.5 limm→∞a(1)
nm = ∞. This implies that for η >

0.5 the series (8) converges for any distribution Qm, and for
η < 0.5 the convergence of the series (8) depends on the type
of distribution Qm.

Now we can find the criterion that the distribution Qm must
satisfy to ensure the convergence of the series (8) for η < 0.5.
The series (8) will converge for any n if the Leibniz criterion
is fulfilled for partial series starting from some finite indexes
Mn ∈ N, Mn < ∞ possible dependent from n, i.e., for any
n the sequence anm, m � Mn monotonically tends to zero as
m → ∞. Noticing that

an,m+1 = anm
m + 1

m − n + 1

(
1

η
− 1

)
Qm+1

Qm
, (10)

we obtain the condition of monotonicity for the sequence anm

in the form

Qm+1 < Qm

(
1 − n

m + 1

)
η

1 − η
. (11)

The relation (11) can be regarded as a criterion for the
convergence of the series (7) for an arbitrary n. To prove its
necessity we can form a proof by contradiction.

If the criterion is not necessary, we can find a converges
series violated it. Let us assume that the series (9) converges
for a fixed n. If the relation (11) is not met for a finite subset
of indices m, we can fix the lower bound Mn outside of this
subset. So the relation (11) must not met for all m. Obviously,
that the mildest violation of the criterion is achieved if

Qm+1 = Qm

(
1 − n

m + 1

)
η

1 − η
. (12)

Let us simplify the formula (9) using the equality (12) as a
recursive relation

Pn = η−nQn

∞∑
m=n

(−1)mCn
m

(
1 − n

m + 1

)m−n

. (13)

To test the divergence of the series (13) we can use nth-term
test for absolute values of its terms. It is simple to calculate
that

lim
m→∞Cn

m

(
1 − n

m + 1

)m−n

= ∞. (14)

So the series (13) diverges in contradiction to our initial guess
and the relation (11) is a sufficient and necessary condition for
the convergence of the series (7).

In relation to the question of the existence of the inverse
problem solution in the form (7) this existence criterion should
be understood as follows. If for all n for a given η it is possible
to find a finite m = Mn, starting from which the condition (11)
is satisfied, then the solution to the inverse problem exists.
Note that it follows from the obtained criterion that for each
m there exists some ηcr below which the solution in the form
of the inverse Bernoulli transform does not exist.

IV. EXAMPLES OF APPLICATION
OF THE EXISTENCE CRITERION

A. Poisson distribution

Let Qm be the Poisson distribution

Qm = (m)m

m!
e−m, (15)

where m is the mean number of photocounts.
The stability criterion (11) for the distribution (15) is writ-

ten as

(m)m+1

(m + 1)!
e−m <

(
1 − n

m + 1

)
η

1 − η

(m)m

m!
e−m. (16)

From the relation (16) it follows that the inequality is satisfied
if m > Mn = n − 1 + (1 − η)η−1m. Hence it follows that for
any given n and η there exists Mn, starting from which the
existence criterion is fulfilled. It means that in the case of the
Poisson distribution the solution obtained by inverse Bernoulli
transform exists for arbitrary η.

043710-4



INVERSE PROBLEM OF PHOTOCOUNT STATISTICS: … PHYSICAL REVIEW A 107, 043710 (2023)

FIG. 2. Compound Poisson distributions with m = 4, a =
0.2, 1, 50.

B. Compound Poisson distribution

Let Qm be the compound Poisson distribution

Qm = �(a + m)

m!�(a)

(
m

a

)m 1

(1 + m/a)m+a
, (17)

where m is the mean number of photocounts, a is a cluster-
ization (or bunching) parameter. Using (17) we can describe
a wide class of photocount distributions [35]. As shown from
Fig. 2, this distribution strongly depends on the a value. If
a → ∞ it goes to the Poisson distribution, if a = 1 it coin-
cides with the thermal one. Also, it has a physical meaning if
0 < a < 1 and for negative integers if m � −a. However, for
negative a the distribution becomes finite and as shown above
all series (7) converge. So problems of convergence can arise
only for a > 0.

Writing down the existence criterion (11) for the distribu-
tion (17) and taking into account that �(a + m + 1) = (a +
m)�(a + m), we arrive to the inequality

m

(
η

1 − η
− m

a + m

)
>

η(n − 1)

1 − η
+ ma

a + m
. (18)

Further transformation of inequality (18) depends on the sign
of ξ = η(1 − η)−1 − m(a + m)−1.

If ξ > 0, then the inequality (18) can be written as

m > Mn =
(

η(n − 1)

1 − η
+ ma

a + m

)(
η

1 − η
− m

a + m

)−1

.

(19)

Note that for n = 0 the right-hand side of the inequality (19)
for small a can be negative, but it will hold for any m and we
can put Mn = 0.

If ξ < 0, then the inequality (18) leads to an upper con-
straint of m, which means that Mn does not exist. Thus, the
condition for the existence of Mn is the fulfillment of the
condition ξ > 0, from which it immediately follows that

ηcr =
( a

m
+ 2

)−1
. (20)

As is known, the compound Poisson distribution trans-
forms into the usual Poisson distribution for a → ∞. With
this a the critical quantum efficiency ηcr = 0, i.e., the solution
exists for any η, which coincides with the conclusion obtained
above when analyzing the usual Poisson distribution.

The expression (20) also generalizes the special case of the
thermal distribution given in [21] as an example of the possi-
bility of the existence of unstable solutions. The compound
Poisson distribution transforms into a thermal distribution
at a = 1. Substituting this value into (20) we obtain ηcr =
(m−1 + 2)−1, which coincides with the value obtained in [21]
from fundamentally different considerations. This analysis
additionally confirms the correctness of the existence criterion
obtained in this paper.

V. CONCLUSION

Nonideal quantum efficiency η < 1 leads to a number of
problems when trying to reconstruct photon-number distri-
bution Pn from the measured photocount distribution Qm for
an unbounded number of photons. These problems must be
taken into account in practical implementation of the recovery
procedure. In the present paper we showed that, for η < 0.5
in the case of an infinite distribution of photons, the problems
associated with solving the inverse problem of photocount
statistics in the form (6) do not reside in the instability of the
behavior of its solution, but in the fact that a solution in the
form of the inverse Bernoulli transform does not always exist.

Also, we found the criterion that allows us to determine
whether or not there exists a solution to the inverse problem
of photocount statistics in the form of the inverse Bernoulli
transform for arbitrary types of infinite photocount distribu-
tions for any η ∈ (0, 1]. According to the obtained criterion,
it becomes possible for each Qm to determine the minimum
possible detector quantum efficiency η = ηcr, below which
the reconstruction of the infinite Pn distribution by inverse
Bernoulli transform becomes impossible. This conclusion is
also important for experimental applications of the method.
The found criterion limits a scope of good conditioning of
the inverse problem in the case of experimentally obtained
finite photocount statistics with statistical uncertainty. If the
criterion is met, the problem is well conditioned, otherwise it
is ill-conditioned.

Insights obtained here for finite distributions are also im-
portant since they should be useful for the development of
stable numerical methods for solving the inverse problem
of photocount statistics for finite photon-number distribu-
tions. The obtained results show that normalization of the
experimentally obtained distribution of photocounts can be
insufficient to obtain the correct solution using the inverse
Bernoulli transform. It is necessary to additionally ensure
that probabilities Qm lie inside the Q-simplex. This condition
indicates a different way of developing algorithms for solving
the inverse problem of photocount statistics.
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