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A nonperturbative approach is developed to analyze superconducting circuits coupled to quantized electro-
magnetic continuum within the framework of the functional renormalization group. The formalism allows us to
determine complete physical pictures of equilibrium properties in the circuit quantum electrodynamics (cQED)
architectures with high-impedance waveguides, which have recently become accessible in experiments. We point
out that nonperturbative effects can trigger a breakdown of the supposedly effective descriptions, such as the
spin-boson and boundary sine-Gordon models, and lead to qualitatively unique phase diagrams. The origin of the
failure of conventional understandings is traced to strong renormalizations of circuit parameters at low-energy
scales. Our results indicate that a nonperturbative analysis is essential for a comprehensive understanding of
cQED platforms consisting of superconducting circuits and long high-impedance transmission lines.
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I. INTRODUCTION

A quantum many-body state arising from strong light-
matter interaction holds the promise of exploring fundamental
physics and advancing quantum information technologies.
There have been significant ongoing efforts for achieving and
understanding unprecedentedly strong coupling regimes in a
variety of fields, including quantum optics [1–21], condensed
matter physics [22–47], and quantum chemistry [48–54].
Circuit quantum electrodynamics (cQED) provides a con-
trollable platform to study interactions between an artificial
atom consisting of Josephson junction (JJ) and quantized elec-
tromagnetic environments at microwave frequencies [55,56].
Recent experiments have realized the strong coupling between
a nonlinear superconducting circuit and the continuum of
photons propagating in a transmission line with a controllable
impedance, pushing the light-matter coupling to additional
regimes [57–63]. These remarkable developments have led
to renewed recent interest in the field of quantum dissipative
systems or, equivalently, bosonic quantum impurity systems
[64–78].

Understanding bosonic quantum impurity systems has long
been one of the central problems in quantum many-body
physics [79–91]. Two of the most common settings are
the spin-boson model and the boundary sine-Gordon model,
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where a two-level system or a quantum particle subject to
cosine potential is coupled to the bosonic environment rep-
resented as a collection of harmonic oscillators, respectively.
Early perturbative analyses have suggested the existence
of quantum phase transitions, namely, the localization-
delocalization transition [80,92,93] or the superconductor-
insulator transitions [94–98]. These predictions were initially
thought to be of direct relevance to recent cQED architectures
realizing long high-impedance waveguides.

However, an accurate interpretation of those previous re-
sults in the context of cQED has so far remained a major
challenge. The main reason for this is that it requires a careful
investigation of the validity of several nontrivial simplifica-
tions which have often been made implicit in the literature.
For instance, the spin-boson model could be derived in cQED
settings only if one can safely replace the superconducting
circuit (e.g., a fluxonium circuit) by the simplified, two-level
system. Similarly, the boundary sine-Gordon model could
provide an effective description of cQED systems only if a
certain capacitance term can be neglected (see below). Cru-
cially, the validity of these simplifying assumptions becomes
ambiguous, especially in nonperturbative regimes that have
been accessible in recent experiments. Indeed, a qualitative
modification from the Schmid-Bulgadaev diagram [94,95]
due to nonperturbative effects has been recently reported [77].
To comprehensively understand physics of cQED architec-
tures emulating quantum impurity systems, it is thus highly
desirable to develop a nonperturbative theoretical framework
that avoids those ambiguities.
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FIG. 1. Schematic of a cQED architecture analyzed in this paper.
A generic superconducting circuit with arbitrary Josephson energy
EJ , charging energy EC, and inductive energy EL interacts with the
continuum of microwave photons propagating through a long trans-
mission line with the wave velocity v and the impedance R (dashed
box).

The aim of this paper is to develop a functional renor-
malization group (FRG) approach to cQED architectures and
reveal their complete physical pictures including previously
unexplored regimes. Our nonperturbative framework provides
a unified way to analyze a generic JJ circuit coupled to
transmission line, in which an arbitrary phase potential can
be included (Fig. 1). Importantly, we achieve this without
resorting to simplifying approximations whose validity is not
obvious in nonperturbative regimes. Indeed, by applying the
present framework to several concrete examples, we demon-
strate that many of those simplifications cannot be justified
due to nonperturbative effects. In particular, our analysis leads
to the phase diagrams that are strikingly different from the
ones predicted in the supposedly effective models, such as
spin-boson or boundary sine-Gordon models. These results
demonstrate that a nonperturbative analysis is crucial for
comprehensively understanding the physics of recent cQED
platforms.

The remainder of the paper is organized as follows. In
Sec. II, we present an FRG framework for a JJ interacting
with a one-dimensional continuum of photons propagating in
a transmission line. In Sec. III, we apply our general frame-
work to the case of a JJ with double-well phase potential. We
demonstrate the breakdown of the two-level approximation
due to nonperturbative effects and determine the complete
phase diagram which is modified from the one predicted in
the spin-boson model. In Sec. IV, we next analyze the case of
cosine potential corresponding to the problem of resistively
shunted JJ. We point out the crucial role of the capacitance
term, which has been overlooked in previous studies that
rely on the boundary sine-Gordon model, and present the
qualitatively modified phase diagram from the one originally
predicted by Schmid and Bulgadaev. In Sec. V, we give
a summary of results and suggest several interesting future
directions.

II. GENERAL FORMALISM

This section presents an FRG formalism of cQED
platforms recently realized in experiments, namely, a JJ
coupled to a long microwave transmission line (see, e.g.,

Refs. [57–63]). The transmission waveguide itself typically
consists of a superconducting chain of a large number of JJs,
where low-energy degrees of freedom can be represented as
a collection of harmonic oscillators. The JJ then acts as a
quantum impurity particle that is subject to dissipation caused
by the bosonic environment and moves through a nonlinear
potential corresponding to Josephson energy. Specifically, the
circuit Hamiltonian is given by

Ĥ =EC(N̂ − n̂r )2 + V (ϕ̂) +
∑

0<k�Wc/v

ωkâ†
k âk, (1)

n̂r =
√

γ

2π

∑
0<k�Wc/v

√
2π

kL
(â†

k + âk ), (2)

in units of h̄ = 1. Here, ϕ̂ (N̂) is the JJ phase (charge) operator
and âk (â†

k) is the bosonic annihilation (creation) operator
of environmental mode k. In our setup, the outcomes of the
calculation do not depend on whether the JJ phase is treated as
a compact or noncompact variable, as shown in Appendix A;
we here treat the JJ phase as a noncompact one defined in
(−∞,∞) for simplicity. Then the operators satisfy the fol-
lowing commutation relations:

[ϕ̂, N̂] = i, [âk, â†
k′ ] = δk,k′ . (3)

The environmental frequency of mode k = mπ/L (m =
1, 2, . . . , M) is given by ωk = vk and Wc = vMπ/L is the
frequency cutoff. The constants v and L represent the wave
velocity and the length of the transmission line, respectively.
The coupling strength is characterized by the dimensionless
parameter γ = RQ/R with the quantum of resistance RQ =
h/(4e2) and the waveguide impedance R. The charging energy
is denoted by EC, and the potential V (ϕ̂) represents any phase-
dependent terms such as Josephson energy −EJ cos(ϕ̂) and/or
inductive energy ELϕ̂2/2. While our formalism developed in
this section can be applied to a generic potential, we will later
focus on two important cases, namely, double-well and cosine
potentials, which are directly relevant to cQED experiments.

A. Path-integral formalism

The path-integral representation of the partition function
[99] is useful to describe the formalism of FRG. For the
sake of completeness, we here briefly explain how the cQED
system described by the Hamiltonian (1) can be represented in
the path-integral formalism. We then derive its effective action
by integrating out the environmental degrees of freedom.

To this end, we start from the partition function at temper-
ature T ,

Z =
∑

i

〈i | e−βĤ | i〉, (4)

where {|i〉} are the eigenstates of Ĥ and β = 1/T . To switch
to the path-integral representation, we first decompose the
operator e−βĤ into N pieces of operator K̂N = exp(−δxĤ )
with δx = β/N :

Z =
∑

i

〈i | K̂N K̂N · · · K̂N︸ ︷︷ ︸
N

| i〉. (5)
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We next insert the following identity operator after each K̂N :

1̂ =
∫

dϕ(n)dN (n)

2π

∏
k

∫ (
da(n)

k da∗(n)
k

π

)
e

2π i
�0

ϕ(n)N (n)−∑k a∗(n)
k a(n)

k |N (n), a(n)〉〈ϕ(n), a(n)| (n = 1, . . . ,N ). (6)

Here, we have introduced

|N (n), a(n)〉 = |N (n)〉 ⊗ |a(n)〉, |ϕ(n), a(n)〉 = |ϕ(n)〉 ⊗ |a(n)〉,
where |ϕ(n)〉 (|N (n)〉) is an eigenstate of ϕ̂ (N̂), and |a(n)〉 is an unnormalized coherent state of the bosons, i.e., they satisfy

ϕ̂|ϕ(n)〉 = ϕ(n)|ϕ(n)〉, N̂ |N (n)〉 = N (n)|N (n)〉, âk|a(n)〉 = a(n)
k |a(n)〉.

The identity (6) is obtained from the following completeness relations on the Hilbert spaces of the Josephson phase and the
bosonic environment [100]:

1̂ϕ =
∫

dϕ(n)|ϕ(n)〉〈ϕ(n)| =
∫

dϕ(n)
∫

dN (n)

2π
〈N (n) | ϕ(n)〉〈ϕ(n)| =

∫
dϕ(n)dN (n)

2π
eiϕ(n)N (n) |N (n)〉〈ϕ(n)|,

1̂env =
∏

k

∫ (
da(n)

k da∗(n)
k

π

)
e−∑k a∗(n)

k a(n)
k |a(n)〉〈a(n)|.

Then the partition function Z is rewritten as

Z =
∫

DϕN

∫
DNN

∫
D(a, a∗)N e

∑N
n=1 iϕ(n)N (n)−∑N

n=1

∑
k a∗(n)

k a(n)
k

×
∑

i

〈i | K̂N | N (N ), a(N )〉
(N−1∏

n=1

KN (ϕ(n+1), N (n), a∗(n+1), a(n) )

)
〈ϕ(1), a(1) | i〉

=
∫

DϕN

∫
DNN

∫
D(a, a∗)N

N∏
n=1

(eiϕ(n)N (n)−∑k a∗(n)
k a(n)

k KN (ϕ(n+1), N (n), a∗(n+1), a(n) )), (7)

where we have introduced the boundary conditions

ϕ(N+1) = ϕ(1), N (N+1) = N (1), a(N+1) = a(1), a∗(N+1) = a∗(1), (8)

and adopted the following notation:

KN (ϕ, N, a∗, a) = 〈ϕ, a | K̂N | N, a〉, (9)

∫
DϕN

∫
DNN

∫
D(a, a∗)N =

( N∏
n=1

∫
dϕ(n)

)( N∏
n=1

∫
dN (n)

2π

)( N∏
n=1

∏
k

∫
da(n)

k da∗(n)
k

π

)
. (10)

To derive Eq. (7), we have used
∑

i |i〉〈i| = 1. For small δx, KN (ϕ, N, a∗, a) can be evaluated as

KN (ϕ, N, a∗, a) = 〈ϕ, a | (1 − δxĤ ) | N, a〉 + O(δx2). (11)

The right-hand side of Eq. (11) can straightforwardly be evaluated after rewriting the Hamiltonian (1) such that âk and â†
k

satisfy the normal ordering. While the quadratic term ECn̂2
r , which appears when the first term on the right-hand side of Eq. (1)

is expanded, does not satisfy the normal ordering, the difference to the normal-ordered one is only a constant part and thus
physically irrelevant; we ignore it hereafter. Then we have

KN (ϕ, N, a∗, a) = (1 − δxH (ϕ, N, a, a∗))〈ϕ, a | N, a〉 + O(δx2), (12)

where

H (ϕ, N, a, a∗) = EC(N − nr )2 + V (ϕ) +
∑

0<k�Wc/v

ωka∗
k ak, (13)

nr =
√

γ

2π

∑
0<k�Wc/v

√
2π

kL
(a∗

k + ak ), (14)

with a (a∗) being the shorthand of {ak}k ({a∗
k}k). By using 〈ϕ, a | N, a〉 = 〈ϕ | N〉〈a | a〉 = e−iϕN+∑k a∗

k ak , Eq. (12) is rewritten as

KN (ϕ, N, a∗, a) = e−iϕN+∑k a∗
k ak−δxH (ϕ,N,a,a∗ ) + O(δx2). (15)
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Plugging this into Eq. (7), we obtain

Z =
∫

DϕNDNN

∫
D(a, a∗)N

× exp

(
−δx

N∑
n=1

[
iN (n) ϕ

(n+1) − ϕ(n)

δx
+
∑

k

a∗(n+1)
k

a(n+1)
k − a(n)

k

δx
+ H (ϕ(n+1), N (n), a∗(n+1), a(n) )

])
+ O(δx). (16)

Replacing the index n with the imaginary time x = nδx = (n/N )β and taking the limit N → ∞, we finally arrive at the path
integral representation:

Z =
∫

DϕDN
∫

D(a, a∗)e−Sall[ϕ,N,a,a∗], (17)

where
∫
DϕDN

∫
D(a, a∗) = limN→∞

∫
DϕNDNN

∫
D(a, a∗)N , and the action Sall is given by

Sall[ϕ, N, a, a∗] =
∫ β

0
dx

[
iN (x)∂xϕ(x) +

∑
k

a∗
k (x)∂xak (x) + H (ϕ(x), N (x), a(x), a∗(x))

]
, (18)

which is a functional of ϕ(x), N (x), a(x), and a∗(x). Note that the integral variables satisfy the following boundary conditions:

ϕ(β ) = ϕ(0), N (β ) = N (0), a(β ) = a(0), a∗(β ) = a∗(0), (19)

which follow from Eqs. (8).

We can significantly simplify the expression (17) by per-
forming the integrals with respect to N , a, and a∗, which are
the Gaussian integrals. The result is

Z =
∫

DϕDN
∫

D(a, a∗)e−Sall[ϕ,N,a,a∗]

≡
∫

Dϕ e−S[ϕ], (20)

where the action S[ϕ] only contains ϕ and is given by

S[ϕ] = 1

β

∑
n

⎛
⎝ p2

n

4EC
+ γ v

2πL

∑
k

1

1 + (ωk
pn

)2
⎞
⎠ϕ̃nϕ̃−n

+
∫ β

0
dxV (ϕ(x)), (21)

as shown in Appendix B. Here, we have introduced the Fourier
components

ϕ̃n =
∫ β

0
dxe−ipnxϕ(x) (22)

with the Matsubara frequency pn = 2π
β

n (n ∈ Z). For the sake
of simplicity, hereafter we take the thermodynamic and wide-
band limits, L → ∞ and Wc → ∞, in Eq. (21), which allows
us to arrive at the familiar expression:

S[ϕ] = 1

2β

∑
n

(
p2

n

2EC
+ γ |pn|

2π

)
ϕ̃nϕ̃−n +

∫ β

0
dxV (ϕ(x)).

(23)

Nevertheless, we note that the formalism developed below is
equally applicable to the exact cQED action (21) with a finite
cutoff Wc and size L of the environment. Indeed, recent studies
have revealed that, when a cutoff or size of the transmission
line is finite and small, the ground-state phase diagram can be
qualitatively modified (see, e.g., Refs. [76,77]).

B. Effective action

Previous studies often resort to a simplified analysis that is
perturbative with respect to the coupling γ and/or neglects the
capacitance term [the term proportional to 1/EC in Eq. (23)],
as it is expected to be irrelevant from the scaling dimensional
analysis. Another common simplification is to replace the
JJ by a two-level system as done in the spin-boson model.
However, the validity of these simplifications needs to be care-
fully examined in nonperturbative regimes that have recently
become accessible in experiments. To accurately determine
the equilibrium properties of the cQED system (23) in such
strong coupling regimes, we thus choose to employ a nonper-
turbative approach known as FRG without relying on those
approximations. For readers from the cQED community, we
give a brief review on FRG approach below.

We first need to introduce the effective action 
[ϕ] that
plays a central role in FRG. To this end, we start from the
partition function in the presence of an external field J coupled
to ϕ:

Z[J] =
∫

Dϕ e−S[ϕ]+∫ β

0 dxJ (x)ϕ(x). (24)

We note that Z[J] is a generating functional of all the
imaginary-time correlation functions,

〈ϕ(x1)ϕ(x2) · · · ϕ(xn)〉 = 1

Z[0]

δnZ

δJ (x1) · · · δJ (xn)
[0], (25)

with

〈O〉 = 1

Z[0]

∫
Dϕ O e−S[ϕ]. (26)

The following Legendre transform then defines the effective
action:


[ϕ] = sup
J

(∫ β

0
dxJ (x)ϕ(x) − W [J]

)
, (27)
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where W [J] = ln Z[J] is the generating functional of con-
nected correlation functions, i.e., the n-point connected
correlation function (i.e., cumulant) G(n)(x1, . . . , xn) is given
by

G(n)(x1, . . . , xn) = δnW

δJ (x1) · · · δJ (xn)
[0]. (28)

As a nature of the Legendre transformation, 
[ϕ] satisfies
convexity.

One of the essential properties of 
[ϕ] is that it satisfies
the variational principle. From Eq. (27), the derivative of 
[ϕ]
with respect to ϕ(x) is given by

δ
[ϕ]

δϕ(x)
=Jsup[ϕ](x), (29)

where Jsup[ϕ](x) satisfies

ϕ(x) = δW

δJ (x)
[Jsup[ϕ]] = 〈ϕ(x)〉Jsup[ϕ], (30)

with

〈O〉J = 1

Z[J]

∫
Dϕ′ O e−S[ϕ′]+∫ β

0 dx′J (x′ )ϕ′(x′ ). (31)

In particular, we have ϕ(x) = 〈ϕ(x)〉 in the case of
Jsup[ϕ](x) = 0. This fact together with Eq. (30) means that the
quantum average ϕ(x) = 〈ϕ(x)〉 is obtained by the variational
equation:

δ
[ϕ]

δϕ(x)
= 0. (32)

The effective action 
[ϕ] plays the role of generating func-
tional of one-particle irreducible (1PI) correlation functions
[101]. In other words, the nth derivative


(n)[ϕ](x1, . . . , xn) = δn
[ϕ]

δϕ(x1) · · · δϕ(xn)

is the n-point 1PI correlation function, which is given by
a sum of diagrams that cannot be separated by eliminating
one internal propagator. In particular, the second derivative of

[ϕ] gives the inverse of G(2)(x1, x2); to see this, we first use
Eq. (29) to obtain


(2)[ϕ](x1, x2) = δJsup[ϕ](x1)

δϕ(x2)
, (33)

while we note that the derivative of Eq. (30) with respect to
ϕ(x′) is

δ(x − x′) =
∫ β

0
dx′′ δJsup[ϕ](x′′)

δϕ(x′)
G(2)[Jsup[ϕ]](x′′, x), (34)

where G(2)[J](x′′, x) = δ2W
δJ (x′′ )δJ (x) [J] is the two-point correla-

tion function in the presence of the external field J:

G(2)[J](x, x′) = 〈ϕ(x)ϕ(x′)〉J − 〈ϕ(x)〉J〈ϕ(x′)〉J .

Equations (33) and (34) then give the following relation:

G(2)[Jsup[ϕ]](x, x′) = 
(2)−1[ϕ](x, x′), (35)

where 
(2)−1[ϕ](x, x′) is the functional inverse of

(2)[ϕ](x, x′), i.e., it satisfies∫ β

0
dx′′
(2)−1[ϕ](x, x′′)
(2)[ϕ](x′′, x′) = δ(x − x′). (36)

FIG. 2. Schematic of RG Flow of 
�[ϕ] in the functional space.

Importantly, when ϕ(x) = 〈ϕ(x)〉, Eq. (35) shows that the
inverse of the second derivative, 
(2)−1[ϕ](x, x′), is equal
to the two-point connected correlation function G(2)(x, x′) =
G(2)[0](x, x′).

C. Flow equation

Following the FRG formalism of Wetterich [102], we de-
rive an exact renormalization group (RG) equation of the
effective action. To describe the RG flow, we introduce the
effective average action 
�[ϕ], which depends on the energy
scale parameter � and interpolates the bare action S[ϕ] and
the effective action 
[ϕ],


�0 [ϕ] = S[ϕ] + const, 
0[ϕ] = 
[ϕ], (37)

with a large UV scale �0 as illustrated in Fig. 2. The definition
of 
�[ϕ] is given by


�[ϕ] = sup
J

(∫ β

0
dxJ (x)ϕ(x) − W�[J]

)
− �S�[ϕ]

=
∫ β

0
dxJsup,�[ϕ](x)ϕ(x) − W�[Jsup,�[ϕ]]−�S�[ϕ],

(38)

where we have introduced the scale-dependent generating
functionals

Z�[J] = eW�[J] =
∫

Dϕ e−S[ϕ]−�S�[ϕ]+∫ β

0 dxJ (x)ϕ(x), (39)

and Jsup,�[ϕ](x) satisfying

δ

δJ (x)

(∫ β

0
dxJ (x)ϕ(x) − W�[J]

)∣∣∣∣∣
J=Jsup,�[ϕ]

= 0. (40)

The regulator term �S�[ϕ], which is a key quantity to realize
the RG flow, has the following form:

�S�[ϕ] = 1

2

∫ β

0
dx
∫ β

0
dx′R�(x − x′)ϕ(x)ϕ(x′). (41)

043709-5



YOKOTA, MASUKI, AND ASHIDA PHYSICAL REVIEW A 107, 043709 (2023)

Here, the coefficient R�(x − x′) is called a regulator function.
To attain the RG procedure in Eq. (37), the regulator R�(x −
x′) should satisfy the following conditions:

(a) lim�2/p2
n→0 R̃�(pn) = 0,

(b) limp2
n/�

2→0 R̃�(pn) = ∞,
where R̃�(pn) is the Fourier coefficient of R�(x) and pn

is the Matsubara frequency. It is obvious that the condition
(a) realizes 
0[ϕ] = 
[ϕ] since we have �S�→0[ϕ] → 0 and
then Eq. (38) at � → 0 becomes equivalent to Eq. (27). The
condition (b) justifies the use of the saddle-point approxima-
tion to evaluate the path integral in Eq. (39) at � = �0 → ∞:

W�0 [J] ≈ − S[ϕ0[J]] − �S�0 [ϕ0[J]]

+
∫ β

0
dxJ (x)ϕ0[J] + const, (42)

where ϕ0[J] satisfies the saddle-point equation:

J (x) = δ

δϕ(x)
(S[ϕ] + �S�0 [ϕ])

∣∣∣∣
ϕ=ϕ0[J]

. (43)

Plugging Eq. (42) into Eq. (38), we obtain


�0 [ϕ] = S[ϕ] + const. (44)

Here, we use Eqs. (40), (43), and the relation ϕ(x) =
ϕ0[Jsup,�[ϕ]](x).

Now we derive the RG flow equation of 
�[ϕ]. By use
of Eq. (40), the derivative of Eq. (38) with respect to � is
written as

∂�
�[ϕ] = −(∂�W�)[Jsup,�[ϕ]] − ∂��S�[ϕ]. (45)

Using Eq. (39), the first term on the right-hand side is evalu-
ated as

(∂�W�)[Jsup,�[ϕ]] = − 1

Z�[Jsup,�[ϕ]]

∫
Dϕ ∂��S�[ϕ]e−S[ϕ]−�S�[ϕ]+∫ β

0 dxJsup,�[ϕ](x)ϕ(x)

= − 1

2

∫ β

0
dx
∫ β

0
dx′∂�R�(x − x′)〈ϕ(x)ϕ(x′)〉�

= − 1

2

∫ β

0
dx
∫ β

0
dx′∂�R�(x − x′)

[
G(2)

� (x, x′) + 〈ϕ(x)〉�〈ϕ(x′)〉�
]
, (46)

where G(2)
� (x, x′) is the two-point correlation function

G(2)
� (x, x′) = δ2W�

δJ (x)δJ (x′)
[Jsup,�[ϕ]] (47)

and the average 〈O〉� is defined by

〈O〉� = 1

Z�[Jsup,�[ϕ]]

×
∫

Dϕ O e−S[ϕ]−�S�[ϕ]+∫ β

0 dxJsup,�[ϕ](x)ϕ(x).

By use of Eqs. (46) and (41) together with ϕ(x) = 〈ϕ(x)〉�,
which is obtained in the same manner as Eq. (30), Eq. (45)
can be rewritten as

∂�
�[ϕ] = 1

2

∫ β

0
dx
∫ β

0
dx′∂�R�(x − x′)G(2)

� (x, x′). (48)

In the similar manner as in Eq. (35), the two-point correla-
tion function G(2)

� (x, x′) can be related to the second-order
derivative of 
�[ϕ]; evaluating the second-order derivative of
Eq. (38) with respect to ϕ, we obtain

δJsup,�[ϕ](x)

δϕ(x′)
= δ2
�[ϕ]

δϕ(x)δϕ(x′)
+ R�(x − x′). (49)

By use of Eq. (47) and

ϕ(x) = δW�

δJ (x)
[Jsup,�[ϕ]], (50)

which is derived from Eq. (40), we also have

G(2)
� (x, x′) = δϕ(x)

δJsup,�[ϕ](x′)
. (51)

Equations (49) and (51) lead to the following relation:

G(2)
� (x, x′) =

[
1



(2)
� [ϕ] + R�

]
(x, x′), (52)

where the right-hand side is the functional inverse of



(2)
� [ϕ](x, x′) + R�(x − x′). Plugging Eq. (52) into Eq. (48),

we finally obtain the RG equation in the form of a functional
derivative equation of 
�[ϕ]:

∂�
�[ϕ] = 1

2

∫ β

0
dx
∫ β

0
dx′

×
[
∂�R�(x − x′)

1



(2)
� [ϕ] + R�

(x, x′)
]
, (53)

which is known as the Wetterich equation [102]. This equa-
tion has a one-loop structure and can be diagrammatically

FIG. 3. Diagrammatic representation of the Wetterich equation.
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FIG. 4. Double-well potential. The potential depth is denoted by
V . The oscillation frequency ω, which is assumed to be the same for
both wells, characterizes the level intervals in each well. The two-
level approximation, which truncates energy states higher than the
two lowest levels, can be justified when V  ω.

represented as in Fig. 3, where [
(2)
� [ϕ] + R�]−1 is regarded

as a dressed propagator including nonperturbative effects.
While Eq. (53) is an exact equation, it is a functional

equation and hard to solve without any approximations. A
conventional way is to rewrite Eq. (53) as infinite series of
hierarchical equations by expanding 
�[ϕ] and truncate the
series at certain order. Perturbation theory can be reproduced
in the current formalism by expanding 
�[ϕ] with respect to
the Plank constant h̄, i.e., applying the loop expansion. The
powerfulness of Eq. (53) is that nonperturbative analysis can
be performed by introducing other expansion methods. Such
expansions include a functional Taylor expansion around ϕ of
interest, which is called the vertex expansion, or the derivative
expansion, which is an expansion with respect to ∂x. In the
remaining parts of this paper, we shall show several case
studies using the latter expansion.

III. DOUBLE-WELL POTENTIAL

To be concrete, we first consider the case of a double-well
potential in the cQED setup described by Eq. (23). Such po-
tential profile is routinely realized in, e.g., flux qubits, where
one combines a flux-tunable Josephson energy −EJ cos(ϕ −
ϕext ) with an inductive energy ELϕ2/2. A common simpli-
fication is to take into account only the two lowest energy
levels of JJ (corresponding to the minima of both wells) and
then reduce the original Hamiltonian to the spin-boson model.
On the one hand, it is well-established that the localization-
delocalization phase transition is predicted to occur in the
spin-boson model. On the other hand, however, we empha-
size that this two-level treatment can be justified only if the
following condition is satisfied [80]:

V  ω, (54)

where V and ω are the potential depth and the excitation fre-
quency in each well, respectively, as illustrated in Fig. 4. The
condition (54) ensures that the level interval between the two
lowest states determined by the tunneling rate is exponentially
small compared to ω, which should allow one to truncate
high-lying levels. Nevertheless, as demonstrated below, the
condition (54) is in general violated especially in nonpertur-
bative regimes due to strong renormalizations caused by the

environment, indicating the need of a more comprehensive
analysis beyond the spin-boson description.

This section aims to carefully reexamine this fundamen-
tal problem without relying on the two-level approximation.
Specifically, we analyze the cQED action (23) with the
double-well potential on the basis of our FRG formalism.
We find that the localization-delocalization transition is still
present, but surprisingly the obtained phase diagram is qual-
itatively modified from the one expected in the spin-boson
model [80,92]. As detailed below, this is because the renor-
malized potential barrier V� and excitation frequency ω�

are strongly modified during FRG flows, and the condition
(54) eventually breaks down in most of the regions in the
flow diagram. Figure 5(a) illustrates the flow diagram on the
(α,�/�) plane obtained in the spin-boson model, where �

is the tunneling rate between the wells and the dimensionless
coupling strength α is defined by

α = γ

(
ϕ1 − ϕ2

2π

)2

, (55)

with ϕ1,2 being the positions of the two wells (cf. Fig. 4). As
shown in Fig. 5(a), the system always flows to the delocalized
phase in α < 1, while it flows to the localized phase at smaller
values of �/� in α > 1. In contrast, the present FRG analysis
suggests that the localized phase is extended to the regions in
α < 1 as shown in Fig. 5(b), where the flow diagram on α and
�/V is illustrated.

We now describe in detail how our FRG approach can be
applied to the present case of the double-well potential. The
equilibrium phase diagram is determined by the minimum
point of the effective potential

V�(ϕs) = 1∫
dx


�[ϕs], (56)

where ϕs stands for ϕ independent of x, as its minimum
determines the equilibrium value of ϕ. We calculate V�(ϕs)
by employing the local potential approximation (LPA):


�[ϕ] ≈ 
LPA
� [ϕ] = 1

2

∫ ∞

−∞

d p

2π

(
p2

2EC
+ γ |p|

2π

)
ϕ̃(p)ϕ̃(−p)

+
∫ ∞

0
dxV�(ϕ(x)). (57)

Here, we note that the evolution of higher-order terms in the
derivative expansion is ignored:


�[ϕ] = 
LPA
� [ϕ] + O(∂x ).

Plugging this ansatz into Eq. (53), we obtain the flow equa-
tion of V�(ϕ(x)):

∂

∂�
V�(ϕ) = 1

2

∫ ∞

−∞

d p

2π
∂�R̃�(p)G�(ϕ; p), (58)

with the regulated propagator

G�(ϕ; p) = 1
1

2EC
p2 + γ |p|

2π
+ ∂2

ϕV�(ϕ) + R̃�(p)
. (59)

We can further simplify the flow equation by using the
Taylor expansion. Specifically, we assume that the potential
is symmetric under ϕ ↔ −ϕ and denote the positions of the
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FIG. 5. Schematic figures illustrating the flow diagrams obtained from (a) the perturbative analysis of the spin-boson model and (b) the
FRG analysis of the exact cQED action (23) without the two-level approximation. The origin of the discrepancy between (a) and (b) is traced
to strong renormalizations of the potential barrier V and excitation frequency ω in nonperturbative regimes, which invalidates the necessary
condition (54) for the two-level approximation.

potential minima as ϕ1 = −ϕ2 = ϕ�. In this case, the poten-
tial becomes a function of ρ = 1

2ϕ2 as V�(ϕ) = V�(ρ). Then
the Taylor expansion around ρ� = 1

2ϕ2
� with respect to ρ is

described by

V�(ρ) =
{

1
2 a�(ρ − ρ�)2 + O((ρ − ρ�)3) (ρ� > 0)

c�ρ + 1
2 a�ρ2 + O(ρ3) (ρ� = 0),

(60)

up to the second order without the constant terms. Here, a�

and c� are the nonnegative Taylor coefficients. Note that the
first-order term in the case of the localized phase ρ� > 0
vanishes due to ∂

∂ϕ
V (ϕ�) = 0. For the sake of convenience,

we introduce the dimensionless parameters ρ� and V̂� defined
by

ρ� =
{

ρ� (ρ� > 0)

−c�/a� (ρ� = 0)
, V̂� = ρ2

�a�

2�
. (61)

Then our expansion is concisely reparametrized as

V�(ρ) = �V̂�

(
1 − ρ

ρ�

)2

+ O((ρ − ρ�)3) (62)

up to a constant. Note that a positive (negative) value of ρ�

corresponds to the localized (delocalized) phase, as one can
see from Eq. (61). In addition, V̂� can be regarded as the
dimensionless potential depth in the case of ρ� > 0 since we
have

V̂� = V�(0) − V�(ρ�)

�

within the accuracy of the expansion. Then the flow equa-
tion reduces to those of V̂� and ρ�, which are obtained from
the first and second derivatives of Eq. (58) with respect to ϕ,

∂

∂l
ρ� = − 3

2
I2,� − 18

V̂�

|ρ�|θ (−ρ�)I3,�, (63)

∂

∂l
V̂� = V̂�

(
1 − 3

ρ�

I2,� − 18
V̂�

ρ2
�

θ (ρ�)I3,�

)
, (64)

where l = ln(�0/�) is a logarithmic RG scale with an ultra-
violet scale �0 and we introduce the dimensionless quantities

In,� =
∫ ∞

−∞

d (p/�)

2π
∂�R̃�(p)[�G�(ϕ�; p)]n (n = 2, 3).

(65)

We note that when ρ� � 0, Eq. (63) describes the RG flow of
the dimensionless coupling strength α:

∂

∂l
α� = − 3γ

π2
I2,�, (66)

with

α� = 2γ

π2
ρ�. (67)

We choose to use a simple regulator R̃� = �, which allows us
to evaluate Eq. (65) analytically,

In,� = (−1)n−1

(n − 1)!

dn−1

drn−1
I�(1),

where we define

I�(r) =

⎧⎪⎪⎨
⎪⎪⎩

2
γ

π−2 arctan
(

1√
y−1

)
√

y−1
(y � 1)

2
γ

1√
1−y

ln

(
1+√

1−y
1−√

1−y

)
(1 > y > 0),

y = 16π2

γ 2εC,�

[
2(3θ (ρ�) − 1) V̂�

ρ�
+ 1
]
,

and εC,� = EC/�.
Before showing our numerical results, we describe how the

condition (54) is represented in our formalism. The excitation
frequency within both wells ω� can be related to the curvature
of the potential as follows:

ω� =
√

2EC
d2

dϕ2
V (ϕ�) = 2

√
EC�V̂�

ρ�

, (68)

where we have used Eq. (62) to obtain the last equality for
ρ� > 0. Thus, from Eq. (54), the criterion to justify the two-
level approximation can be understood as

V�

ω�

=
√

ρ�V̂�

4εC,�

 1, (69)
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FIG. 6. (a) Flow diagram of 1/V̂� and α�. Each curve is the result with the initial condition 1/V̂�0 = 0.008, 40, 160, 176.62, 184, 800
from below. The blue and red curves denote the cases of the localized state (ρ0 > 0) and the delocalized state (ρ0 < 0), respectively. For
other quantities, we have set γ = 20, ρ�0

= 0.5 and εC,�0 = 1, which corresponds to α�0 = 2.026 [cf. Eq. (67)]. In the inset, the curves with
1/V̂�0 = 0.004, 0.008, 0.04 are shown. The region where V�  ω� is satisfied, i.e., the two-level approximation can be justified, is restricted
to a right-bottom part of the diagram and indicated as the green-shaded region. (b) γ dependence of χ near the critical point γc = 20 in the
delocalized phase. We fix 1/V̂�0 = 176.62. The red points are the results of FRG. Linear regression gives the black line.

where we recall that V� = �V̂� is the dimensionful potential
depth.

Figure 6(a) shows the numerical result of the RG flow of
1/V̂� and α� with the initial conditions ρ�0

= 0.5, εC,�0 = 1,
γ = 20 [corresponding to α�0 = 2.026, see Eq. (67)], and
varying 1/V̂�0 . The fixed point is identified from the renor-
malized value of α� at infrared scale. As shown in Fig. 6(a),
the critical point of the localization-delocalization transition
is 1/V̂�0 = 176.62 at α�0 � 2; for larger (smaller) values
of 1/V̂�0 , the system flows to the delocalized (localized)
phase. The corresponding schematic flow diagram is shown in
Fig. 5(b). Surprisingly, the results demonstrate that the local-
ized phase is extended to the regions in α < 1, thus indicating
that the ground-state phase diagram must be qualitatively
modified from the one expected in the spin-boson model. The
origin of this striking discrepancy is traced to strong renormal-
izations of V� and ω� during the RG flows in nonperturbative
regimes, which eventually invalidates the two-level approxi-
mation. Indeed, we numerically observe that, except for the
narrow area indicated by the green-shaded region in the inset
of Fig. 6(a), the condition (69) is not satisfied. Thus, the spin-
boson description, which is supposed to be an effective model
of cQED systems, can in general be invalid due to nonpertur-
bative effects when the deep IR scale is reached. Since finite
size or temperature effectively sets an IR cutoff in RG flows,
this fact indicates that a nonperturbative analysis is essential
when the waveguide is sufficiently long and the temperature is
low enough as being relevant to recent experiments. We note
that the qualitative feature of the RG flow does not depend on
the choice of R̃�(p). In particular, the direction of the flow in
1/V̂� � 1 is independent of R̃�(p) as described by ∂lρ� ≈ 0
and ∂l V̂� ≈ V̂� from Eqs. (63) and (64).

Finally, we also analyze the critical exponent associated
with this new type of the localization-delocalization transi-

tion. The critical point is characterized by the divergence of
the localization susceptibility defined by

χ =
(

d2

dϕ2
V0(ϕ0)

)−1

. (70)

We introduce the critical exponent κ associated with the di-
vergence when γ approaches the critical value γc with a fixed
V̂�0 :

χ ∼ 1

|γ − γc|κ . (71)

Figure 6(b) shows the divergent behavior of χ when γ ap-
proaches γc = 20 from the delocalized phase with 1/V̂�0 =
176.62. The result of the linear fitting of the numerical data
is also shown as the solid black line, which suggests κ ≈
0.865862. We note that this value is much smaller than those
predicted in Refs. [103,104], where a different type of regula-
tor is used.

IV. COSINE POTENTIAL

We next apply our general formalism to yet another fun-
damental problem, namely, the resistively shunted JJ, which
corresponds to the case of a cosine potential

V (ϕ) = −EJ cos(ϕ). (72)

Early studies [96,97,105,106] have neglected the perturba-
tively irrelevant 1/EC term in Eq. (23) and simplified the
theory to the boundary sine-Gordon model. In this case,
the ground state is expected to exhibit the superconducting
phase in α > 1 and the insulator phase in α < 1 regardless
of the value of EJ/EC . Here, we note that α is defined in the
same manner as in Eq. (55) and satisfies α = γ = RQ/R since
the distance between the nearest-neighbor potential minima
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is 2π . However, a qualitatively new theoretical understanding
has recently been revealed by nonperturbative analyses [77].
Specifically, the previously overlooked 1/EC term is found to
turn into relevant at low energy due to nonperturbative effects,
which leads to the suppression of the insulator phase into the
deep charge regime EJ/EC � 1 [107,108].

The aim of this section is to provide further examinations
of this nonperturbative picture on the basis of an advanced
FRG approach developed here. To this end, we introduce the
following LPA’ ansatz, where the evolution of not only the
lowest-order term but also terms up to the second order in the
derivative expansion are taken into account:


�[ϕ] ≈1

2

∫ ∞

−∞

d p

2π

(
τ�

�
p2 + γ |p|

2π

)
ϕ̃(p)ϕ̃(−p)

+
∫ ∞

0
dxV�(ϕ(x)), (73)

where V�(ϕ) is an effective potential and τ� is a dimension-
less coefficient. These quantities satisfy

V�0 (ϕ) =V (ϕ), (74)

τ�0 = �0

2EC
, (75)

at the initial UV scale � = �0. Because of the periodicity,
V�(ϕ) can be expanded as

V�(ϕ) = �

∞∑
n=1

ε
(n)
J,� cos(nϕ), (76)

where ε
(n)
J,� is the dimensionless Fourier coefficient of order

n. We here go beyond the analysis given in Ref. [77] by
including the higher components with n � 2. As shown be-
low, the most important conclusion drawn from our analysis
is that the perturbatively irrelevant term proportional to τ�

can exhibit nonmonotonic RG flows due to nonperturbative
corrections and qualitatively modify the phase diagram from
the celebrated Schmid-Bulgadaev diagram.

The flow equation of the effective potential is obtained in
the same manner as in Eq. (58),

∂�V�(ϕ) = 1

2

∫ ∞

−∞

d p

2π
∂�R̃�(p)G�(p), (77)

where

G�(p) = 1
γ

2π
|p| + τ�

p2

�
+ V ′′

� (ϕ) + R̃�(p)
. (78)

In addition, plugging Eq. (73) into the second derivative of
Eq. (53) and extracting the zeroth-order Fourier component,
we obtain

∂�

[
γ

2π
|p| + τ�

p2

�

]
=
∫ 2π

0

dϕ

2π
V (3)

� (ϕ)2
∫ ∞

−∞

d p′

2π
∂�R̃�(p′)G�(p′)2G�(p + p′). (79)

To derive the flow equation of τ�, we expand the right-hand side of Eq. (79) with respect to p. The first-order term vanishes
because limp→0 ∂pG�(p + p′) is an odd function of p′ and thus the momentum integral is evaluated as zero. This means that
γ = α is not renormalized, which is consistent with previous analyses. From the second order of the expansion with respect to
p, we obtain

∂�

τ�

�
=1

2

∫ 2π

0

dϕ

2π
V (3)

� (ϕ)2
∫ ∞

−∞

d p′

2π
∂�R̃�(p′)G�(p′)2 lim

p→0
∂2

pG�(p + p′). (80)

By introducing l = ln(�0/�) and rewriting Eqs. (77) and (80), our flow equations are summarized as

∂lV �(ϕ) = V �(ϕ) − 1

2

∫ ∞

−∞

d (p/�)

2π
∂�R̃�(p)G�(p), (81)

∂lτ� = −τ� − 1

2

∫ 2π

0

dϕ

2π
V

(3)
� (ϕ)2

∫ ∞

−∞

d (p′/�)

2π
∂�R̃�(p′)G�(p′)2 lim

p→0
∂2

pG�(p + p′), (82)

where G�(p) = �G�(p) and V �(ϕ) = V�(ϕ)/� are dimensionless.

In previous studies, the contribution of τ� is often ne-
glected, as this term is expected to be irrelevant in perturbative
regimes, as inferred from the minus sign in the first term
of the right-hand side of Eq. (82). However, we find that
nonperturbative corrections can make τ� grow at low-energy
scale, which drastically changes the phase diagram. To see this
explicitly, when |V ′′

�(ϕ)| � 1, we can use Eq. (81) to simplify
the flow equation of ε

(n)
J,� in τ�  1 and τ� → 0 as follows:

∂l ln ε
(n)
J,� ≈

{
1 (τ�  1)

1 − n2

α
(τ� → 0).

(83)

The derivation is given in Appendix C. On the one hand,
the latter indicates the phase transition at α = 1, which is
consistent with previous perturbative studies, suggesting that
all the Fourier components are irrelevant in α < 1 while ε

(1)
J,�

is relevant in α > 1. On the other hand, the former indicates
that all the Fourier components can, in fact, be relevant, which
suggests the favoring of the superconducting phase even in
α < 1. We remark that these features for |V ′′

�(ϕ)| � 1 are
independent of the choice of the regulator.

We determine the fixed point which the RG flow ap-
proaches by solving Eqs. (81) and (82). For the purpose of
including the higher-order Fourier components of V �(ϕ), we
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FIG. 7. RG flow of τ� and ε
(1,2,3)
J,� at α = 0.5 and α = 1.5 with EC/�0 = 1/20. In the case of α = 0.5, the flow approaches the fixed point

of the insulating phase when EJ/�0 = 0.002 and 0.0055 (blue curves) or the superconducting phase when EJ/�0 = 0.006, 0.01, and 0.05
(red curves). The results with EJ/�0 = 0.002, 0.006, 0.01, and 0.05 are shown in the case of α = 1.5, where the system always flows to the
superconducting fixed point.

use the grid method, where V �(ϕ) is evaluated on grid points
in ϕ ∈ [0, π ]. Our calculation is carried out on 128 grid points
with equal intervals. We set the regulator as R̃�(p) = �. Fig-
ure 7 shows the RG flow of τ� and ε

(n�3)
J,� at α = 0.5 and

α = 1.5 with different EJ/�0. One observes that the super-
conducting phase is present not only in α > 1, but also in
α < 1 with relatively large EJ/�0, while the insulator phase
appears in α < 1 with small EJ/�0. In particular, at small
ε

(n)
J,�, the region of the insulator phase spreads as τ� decreases,

which is consistent with the behavior expected from Eq. (83).
Locating the critical value of EJ/�0, we determine the

phase boundary on the (α, EJ/EC ) plane. In Fig. 8, the FRG

FIG. 8. Phase diagram on the (α, EJ/EC ) plane. The red points
(blue circles) are the results of FRG (NRG). In the FRG analysis, we
fix EC/�0 = 1/20 and vary EJ/�0 to find the transition points.

results at several values of α, for which the calculation was
performed without numerical instability, are shown as the red
points. We also show the results obtained by the numerical
renormalization group (NRG) analysis as the blue circles [77].
One can see the qualitative (and even nearly quantitative)
agreement between the NRG and FRG results; both of them
indicate that there exists the phase transition at finite values
of EJ/EC in α < 1 and the insulator phase shrinks as α ap-
proaches α = 1, while the superconducting phase appears at
arbitrary EJ/EC in α > 1. This makes a sharp contrast to what
has been expected from the previous perturbative analyses,
where the system was predicted to exhibit the insulator phase
in α < 1 regardless of the value of EJ/EC.

V. CONCLUSION

We developed a general framework to analyze super-
conducting circuits coupled to quantized electromagnetic
continuum in nonperturbative regimes that have recently be-
come accessible in cQED experiments. Our approach is based
on the nonperturbative RG method, namely, FRG, and puts
no limitations on the coupling strengths, enabling us to sys-
tematically explore the whole range of circuit parameters.
In particular, the present FRG formalism provided the com-
plete pictures of two representative cases that were previously
supposed to be described by such effective models as the
spin-boson model and the boundary sine-Gordon model.

Specifically, we first applied the framework to the case of
double-well potential in which the superconducting circuit has
long been supposed to be well-approximated by a two-level
system. Surprisingly, in contrast to the prediction from the
spin-boson model, we found that the localized phase can
be extended to the regions with a coupling strength α < 1
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(Fig. 5). The origin of this discrepancy was traced to strong
renormalizations of both potential barrier and excitation
frequency due to nonperturbative effects, which eventually
invalidates the two-level description during RG flows.

We next analyze the case of cosine potential that is also
known as the resistively shunted JJ. In contrast to conven-
tional perturbative analyses, our FRG approach now fully
retained the previously overlooked capacitance term and led
to the phase diagram that was strikingly different from the
Schmid-Bulgadaev diagram (Fig. 8). We again identified non-
perturbative effects as the origin of the failure of conventional
understandings, where the nonmonotonic renormalization of
the charging energy was found. All in all, our results clearly
indicate that a nonperturbative analysis is essential to develop
an accurate understanding of recent cQED architectures real-
izing long high-impedance transmission lines.

Several further questions remain for future studies. First,
while we focused on zero-frequency quantities relevant to
dc measurements, it is intriguing to study what are finite-
frequency signatures expected from the modified phase
diagrams predicted in the present study. This consideration
should have direct experimental relevance in light of re-
cent developments in measuring finite-frequency response of
cQED systems [57–60,62,63]. Second, it merits further study
to figure out how finite temperature and finite size of the
transmission line can affect the present results. While these
effects are expected to introduce effective IR cutoffs, one can
address this question in a concrete manner on the basis of our
FRG framework. In particular, one can start from the action
(21) at finite size or temperature, and then follow the FRG
procedure presented in this paper. Third, it is also interesting
to explore how decoherence or loss of microwave photons in
a transmission line can lead to physical phenomena beyond
the present findings. We envision that one can address this
problem by combining our FRG framework with a method
of Markovian open quantum systems [109]. Fourth, analysis
of excited states is important from experimental viewpoints.
We expect that this is realized by FRG techniques to calculate
real-time correlation functions developed recently [110–115].
Finally, while we focused on the Ohmic dissipation as ap-
propriate for usual transmission lines, an extension of our
analysis to the case of sub- or super-Ohmic dissipations merits
further study [116,117].

FIG. 9. A generic JJ circuit with arbitrary Josephson energy EJ

and charging energy EC capacitively coupled to the transmission
line. The transmission line is characterized by the wave velocity
v = 1/

√
lc, the impedance R = √

l/c, and the length L = Nx. The
circuit in Fig. 1 with EL = 0 is reproduced in the limit CC → ∞.
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APPENDIX A: THE CASE OF THE JJ PHASE TREATED
AS A COMPACT VARIABLE

For a periodic potential V (ϕ̂) with a period ϕp, one may
wonder if the JJ phase should be treated as a compact variable
defined in [0, ϕp) or a noncompact one defined in (−∞,∞),
and the results differ between these cases or not. In this Ap-
pendix, we show that in our setup the same results are obtained
for both cases. We focus on the case of EL = 0, where the
potential becomes periodic: V (ϕ̂) = −EJ cos(ϕ̂). For this pur-
pose, we consider a generic lumped-element circuit in Fig. 9
and analyze the large-capacitance limit CC → ∞, where the
EL = 0 case of the circuit in the main text (Fig. 1) is re-
produced. The transmission line is characterized by length
L = Nx with an integer N . The capacitance c and inductance
l per unit length of the transmission line give the propagation
speed v = 1/

√
lc and impedance R = √

l/c.
The total Lagrangian of the circuit in Fig. 9 reads

L = CJ

2

(
d�

dt

)2

+ EJ cos

(
2e

h̄
�

)
+ CC

2

(
d�1

dt
− d�

dt

)2

+
N∑

i=2

cx

2

(
d�i

dt

)2

−
N∑

i=2

(�i − �i−1)2

2lx
. (A1)

Here, �(t ) is a flux at the node A, which is related to the JJ phase ϕ in the main text as ϕ = (2e/h̄)�, and �i(t ) = ∫ t
−∞ dt ′Vi(t ′) is

the flux given by the integral of the voltage at the i-th node. In the thermodynamic limit N → ∞ with CC → ∞, the Hamiltonian
(1) is derived from this Lagrangian; see the supplementary materials of Ref. [77] for details.

Since the Lagrangian (A1) has the periodicity � → � + π h̄/e, one may regard � as a compact variable, i.e., � and � + π h̄/e
are indistinguishable. Let us consider the compact case and introduce the path integral for the compact variable (see, e.g.,
Ref. [98]). The partition function of the Lagrangian (A1) at inverse temperature β is given by

Z =
∞∑

w=−∞

∫
w

D�

∫
0
D�1 · · ·

∫
0
D�N e−Scirc , (A2)

043709-12



FUNCTIONAL-RENORMALIZATION-GROUP APPROACH TO … PHYSICAL REVIEW A 107, 043709 (2023)

where

Scirc =
∫ β

0
dτ

[
CJ

2

(
d�

dτ

)2

− EJ cos

(
2e

h̄
�

)
+ CC

2

(
d�1

dτ
− d�

dτ

)2

+
N∑

i=2

cx

2

(
d�i

dτ

)2

+
N∑

i=2

(�i − �i−1)2

2lx

]
(A3)

is the action in the imaginary-time formalism and
∫
w
D� stands for the path integral with the boundary condition �(β ) =

�(0) + (π h̄/e)w. In Eq. (A2), any winding number w ∈ Z is allowed for the path of �(τ ), which is a result of the indistin-
guishability of � and � + π h̄/e. This is in contrast to the noncompact case, where only the w = 0 sector is allowed. The other
variables �i(τ ) are noncompact and thus satisfy �i(β ) = �i(0).

We are interested in the limit CC → ∞, where we have

e−Scirc ∝
∏
τ

δ

(
d�1

dτ
− d�

dτ

)
(A4)

from Eq. (A3). This means that the paths contributing to the path integral satisfy

d�1

dτ
= d�

dτ
. (A5)

Integrating this with respect to τ and using �1(β ) = �1(0), we obtain the following constraint:

�(β ) = �(0). (A6)

This result shows that only the w = 0 sector in Eq. (A2) contributes to the path integral:

Z =
∫

0
D�

∫
0
D�1 · · ·

∫
0
D�N e−Scirc , (A7)

which is nothing but the partition function obtained for � treated as a non-compact variable. Consequently, there is no difference
whether the JJ phase is treated as a compact or noncompact variable.

APPENDIX B: DERIVATION OF EQ. (21)

We present the derivation of Eq. (21) by evaluating the path integral in Eq. (20). First, we shift the integral variable as
N (x) → N ′(x) + nr (x) − i∂xϕ(x)/(2EC ) with

nr (x) =
√

γ

2π

∑
0<k�Wc/v

√
2π

kL
(a∗

k (x) + ak (x)) (B1)

and rewrite Sall as

Sall[ϕ, N, a, a∗] =
∫ β

0
dx

⎡
⎣inr (x)∂xϕ(x) +

∑
0<k�Wc/v

a∗
k (x)(∂x + ωk )ak (x) + V (ϕ(x)) + (∂xϕ(x))2

4EC
+ ECN ′(x)2

⎤
⎦. (B2)

To perform the integral with respect to ak (x) and a∗
k (x), we introduce the Fourier transform:

ϕ̃(pn) =
∫ β

0
dxeipnxϕ(x), ãk (pn) =

∫ β

0
dxeipnxak (x), ã∗

k (pn) =
∫ β

0
dxeipnxa∗

k (x).

Plugging these expressions into Eq. (B2) and shifting the variables as

ãk (pn) → ã′
k (pn) +

√
γ

2πkL

pnϕ̃(pn)

ipn + ωk
, ã∗

k (pn) → ã′∗
k (pn) +

√
γ

2πkL

pnϕ̃(pn)

−ipn + ωk
,

Sall is rewritten as

Sall[ϕ, N, a, a∗] = 1

β

∑
n

ϕ̃(−pn)

⎛
⎝ ω2

n

4EC
+

∑
0<k�Wc/v

γ

2πkL

p2
n(ωk − ipn)

p2
n + ω2

k

⎞
⎠ϕ̃(pn) +

∫ β

0
dxV (ϕ(x))

+
∑

0<k�Wc/v

1

β

∑
n

(ipn + ωk )ã′∗
k (−pn)ã′

k (pn) + EC

∫ β

0
dxN ′(x)2. (B3)

In this expression, the imaginary part of the first term on the right-hand side vanishes since it is an odd function of pn. Plugging
this into Eq. (20), integrating ã′, ã′∗, and N ′(x) out, and using ωk = vk, we obtain Eq. (21) up to a constant term.

043709-13



YOKOTA, MASUKI, AND ASHIDA PHYSICAL REVIEW A 107, 043709 (2023)

APPENDIX C: DERIVATION OF EQ. (83)

We show the derivation of Eq. (83). Projecting Eq. (81) onto the cos(nϕ) component, we obtain the flow equation for ε
(n)
J,�:

∂lε
(n)
J,� =ε

(n)
J,� −

∫ 2π

0

dϕ

2π
cos(nϕ)

∫ ∞

−∞

d (p/�)

2π

∂�R̃�(p)
α

2π
| p̂| + τl p̂2 + V

′′
�(ϕ) + R̃�(p)

�

, (C1)

where G�(p) = �G�(p), γ = α, and Eq. (78) have been used. For |V ′′
�(ϕ)| � 1, this equation is evaluated as

∂l ln ε
(n)
J,� ≈1 − n2

2

∫ ∞

−∞

d (p/�)

2π

∂�R̃�(p)(
α

2π
| p̂| + τl p̂2 + R̃�(p)

�

)2 , (C2)

under the expansion with respect to V
′′
�(ϕ). From this, one immediately obtains the τl  ∞ case of Eq. (83): ∂lε

(n)
J,� ≈ 1.

To discuss the limit τl → 0, we rewrite Eq. (C2) as

∂l ln ε
(n)
J,l =1 − n2

∫ ∞

0

d p̂

2π

d

d p̂

(
p̂

α
2π

p̂ + τl p̂2 + r( p̂)

)
− n2

∫ ∞

0

d p̂

2π

τl p̂2(
α

2π
p̂ + τl p̂2 + r( p̂)

)2 , (C3)

with p̂ = p/� and a dimensionless function r( p̂) = R̃�(p)/�. We assume r(0) > 0 and r(∞) < ∞, which are required by the
conditions discussed below Eq. (41). Then the second term in the right-hand side of Eq. (C3) vanishes. To evaluate the third
term, we divide the interval of integration as∫ ∞

0

d p̂

2π

τl p̂2(
α

2π
p̂ + τl p̂2 + r( p̂)

)2 =
∫ c(α)

0

d p̂

2π

τl p̂2(
α

2π
p̂ + τl p̂2 + r( p̂)

)2 +
∫ ∞

c(α)

d p̂

2π

τl p̂2(
α

2π
p̂ + τl p̂2 + r( p̂)

)2 , (C4)

where c(α) is determined so as to satisfy maxc(α)�p̂ r( p̂) < ∞ and α p̂/(2π ) � r( p̂) for p̂ � c(α), and its existence is guaranteed
by r(∞) < ∞. The second integral can be rewritten as∫ ∞

c(α)

d p̂

2π

τl p̂2(
α

2π
p̂ + τl p̂2 + r( p̂)

)2 =
∫ ∞

c(α)

d p̂

2π

τl p̂2(
α

2π
p̂ + τl p̂2

)2 − I = 1

α + 2πτl c(α)
− I, (C5)

where

I = 2
∫ ∞

c(α)

d p̂

2π

τl p̂2r( p̂)
(

α
2π

p̂ + τl p̂2 + r( p̂)
2

)
(

α
2π

p̂ + τl p̂2
)2( α

2π
p̂ + τl p̂2 + r( p̂)

)2 . (C6)

By using r( p̂) � α
2π

p̂ + τl p̂2 for p̂ � c(α), we obtain the following inequality:

0 � I � 3
∫ ∞

c(α)

d p̂

2π

τl p̂2r( p̂)(
α

2π
p̂ + τl p̂2

)(
α

2π
p̂ + τl p̂2 + r( p̂)

)2
� 3( max

c(α)�p̂
r( p̂))

∫ ∞

c(α)

d p̂

2π

τl p̂2(
α

2π
p̂ + τl p̂2

)3
= 12π2

α3
( max
c(α)�p̂

r( p̂))

(
τl ln

(
1 + α

2πc(α)τl

)
− τl

2
(
1 + 2πc(α)τl

α

)2 − τl

1 + 2πc(α)τl

α

)
, (C7)

which gives limτl →0 I = 0. Thus, in the limit of τl → 0, the second integral in Eq. (C4) converges to 1/α as obtained from
Eq. (C5), while the first integral vanishes. These results together with Eq. (C3) lead to the τl → 0 case of Eq. (83).
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