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We derive the area theorem for light pulses interacting with an inhomogeneously broadened ensemble of
two-level atoms in a single-mode optical waveguide and present its analytical solution for Gaussian-type modes,
which demonstrates the significant difference from the formation of 2π pulses by plane waves. We generalize this
theorem to the description of photon echo and apply it to the two-pulse (primary) echo and the revival of silenced
echo (ROSE) protocol of photon echo quantum memory. We implemented ROSE protocol in a single-mode
laser-written waveguide made of an optically thin crystal Tm3+:Y3Al5O12 . The experimental data obtained
are satisfactorily explained by the developed theory. Finally, we discuss the obtained experimental results and
possible applications of the derived pulse-area approach.
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I. INTRODUCTION

The coherent interaction of a light pulse with resonant
atomic ensembles plays a significant role in modern optics
and quantum technologies [1–4]. These interactions often
pose nonlinear character, study of which is a difficult the-
oretical task. The pulse-area theorem [5] provides a simple
but powerful tool for general analysis of nonlinear coherent
light-atoms dynamics in self-induced transparency [5], optical
solitons [6], superradiance [7], photon echo in optically dense
media [8–10], to name a few. The approach was developed
for propagating plane light waves that interact with atoms in
free space. Recent progress in integrated quantum photon-
ics [11–14] motivates the study of the coherent interaction
between light pulses and resonant atomic ensembles in opti-
cal waveguides, where the development of waveguide optical
quantum memory (QM) attracts growing attention [15–20].

The goal of an optical QM is to store quantum states
of light for subsequent on-demand retrieval at an arbi-
trary time [21–26]. QM is a vital component for numerous
quantum technologies, such as long-distance quantum com-
munications [4,27,28], quantum state preparation [29], and a
synchronization unit for optical quantum processing [24].

Great promises are associated with the photon-echo-based
optical QM in crystals doped with rare-earth ions (REI) [23]
that have a long lifetime of quantum coherence at optical and
microwave transitions. Such optical QM has advantages in its
multiplexing capacity for storing a large number of temporary
light modes and demonstrates high efficiency in REI-doped
crystals, for example, 58% in the cavity assistant scheme [30]
and 69% in the free space [31], which are comparable to
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the 76% efficiency of single-mode storage achieved with QM
protocol based on electromagnetically induced transparency
in REI-doped crystal [32].

Currently, there is growing interest in the implementa-
tion of photon echo QM in optical waveguides [16,18,33–35]
doped by REIs which seem as a convenient platform for im-
plementation of on-chip QM. Quantum storage in REI-doped
waveguides was demonstrated in experiments on heralded
single-photon storage [36,37], on-demand qubit storage [19],
and frequency-multiplexed storage [38]. All of the above
experiments are based on the scheme of reversible photon
echo in an optically dense medium [39–41], realized for in-
homogeneous broadening in the form of a periodic narrow
atomic frequency combs that is called AFC protocol [42].
There is a particular interest in the revival of silenced echo
(ROSE) protocol [43,44] for implementation of optically con-
trolled on-demand QM with low quantum noise background
in atomic ensemble with naturally inhomogeneous broadening
and narrow homogeneous lines that is embedded in an optical
waveguide.

Recently the ROSE protocol was implemented in the
151Eu3+ : Y2SiO5 crystal with the type-II single-mode laser-
written waveguide [35]. This type of the waveguide supports
propagation of light modes with only one polarization. At the
same time, light modes of arbitrary polarization can propagate
in a type-III waveguide. Such type-III depressed cladding
single-mode waveguides were fabricated by femtosecond
laser writing technique in the crystal Tm3+:Y3Al5O12 [45].
Therefore, it is desirable to implement the ROSE protocol in
this waveguide, which is the subject of experimental studies
of this work.

The mentioned need for a highly efficient implementa-
tion of photon echo QMs and its integration with waveguide
schemes makes it relevant to develop a general theoretical
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FIG. 1. Spatial scheme of interaction of light pulses with an
ensemble of two-level atoms in a single-mode optical waveguide.
G(�/�in ) is an inhomogeneous broadening with linewidth �in, c
and vg are the speeds of light in free space and in the waveguide;
f (r⊥) is a membrane function of light field in the the single-mode
waveguide.

approach for describing the coherent interaction between light
and atoms in optical waveguides. The approach should prop-
erly simulate the application of intense control laser fields,
e.g., π pulses, that induce nonlinear dynamics in resonant
atoms.

Since the McCall-Hahn work [5], it was discovered that
the most general patterns of linear and nonlinear interaction
between light pulses and coherent two-level media can be de-
scribed by the area theorem [1,6,7]. The area theorem was also
applied to the description of photon echo in optically dense
media [8,9,46,47], in Fabry-Perot resonator [10], as well as it
was applied for studies of photon echo CRIB protocol in free
space [48] and for description of cavity assistant ROSE proto-
col [44]. It is worth noting that in recent experiments [44,47],
it has been found that in media with a symmetrical form of
inhomogeneous broadening, the behavior of the pulse area of
the echo signal almost flatly reproduces the behavior of the
amplitude of echo signals. It makes this approach universal for
describing linear and nonlinear behavior in various scenarios
of photon echo, as well as photon-echo-based QM protocols
in optically dense resonant media.

In this work, we derive the waveguide pulse area (WPA)
theorem for the resonant interaction between light pulse and
two-level atoms in a single-mode optical waveguide (see
Fig. 1). We found the analytical form of the WPA theorem,
demonstrating significant differences in a formation of stable
2π pulses compared to the well-known McCall-Hahn pulse
area theorem [5]. Then we generalize WPA theorem for the
echo signal emission and apply it for description of the two-
pulse (primary) photon echo and ROSE protocol of photon
echo QM. We present experimental results on ROSE protocol
in a laser-written waveguide of a Tm3+ crystal:Y3Al5O12.
Then we discuss the obtained experimental data using the
WPA theorem, focusing on the factors leading to a negative
impact on the efficiency of the QM protocol implementation
and outlining the possible applications of the developed theo-
retical approach to other problems.

II. WAVEGUIDE PULSE-AREA THEOREM

A. Maxwell-Bloch equations in single-mode waveguide
and pulse-area theorem

We derive the equations of motion by starting with the
Hamiltonian Ĥ0, which is composed of Hamiltonian of

noninteracting two-level atoms Ĥa with inhomogeneously
broadened resonant transition, Hamiltonian of waveguide
light modes Ĥf , and an interaction Hamiltonian between the
atoms and waveguide modes in dipole and rotating-wave ap-
proximations V̂f a:

Ĥ0 = Ĥa + Ĥf + V̂f a. (1)

We consider the free atomic Hamiltonian to contain several
types of two-level atoms with different dipole moments of
resonant transition dm. It is a typical case with rare-earth ions,
where active ions may substitute for host atoms at different
positions in a crystal, leading to several (M) groups of atoms
with different dipole moments [49]. The free atomic Hamilto-
nian is

Ĥa =
M∑

m=1

Nm∑
j=1

h̄

2
(ω0 + � j )σ

j
3;m, (2)

where Nm is a number of atoms within mth group, ω0 is
the carrier frequency of the light field coinciding with the
center of the line of the optical atomic transition (see Fig. 1),
σ

j
1,m, σ

j
2,m, σ

j
3,m are standard set of Pauli matrices related to

the jth two-level atom from mth group, � j is detuning of jth
atom from the carrier frequency.

The Hamiltonian of the waveguide light mode propagating
along the z direction is [50–52]

Ĥf = h̄
∫

dz a†(z)

[
ω0a(z) − ivg

∂

∂z
a(z)

]
, (3)

where vg = ∂ω0
∂β

is a group velocity (see Fig. 1), β =√
k2(ω0) − (2π/�)2, k(ω) = n(ω)ω/c, n(ω) = √

ε(ω), ε(ω)
is an electric permittivity of dielectric medium and � being
a critical waveguide wavelength [53], a(z) [a†(z)] is bosonic
annihilation (creation) operator of light field mode at given
coordinate z with commutation relation [â(z), â†(z′)] = δ(z −
z′). The operators are expressed with a help of their one-
dimensional Fourier image a(k):

â(z) = 1√
2π

∫
dk ei(k−β )za(k). (4)

The electric field of the waveguide mode [54], taking into
account their structure in an optical waveguide, has the form

Ê(r) = ieE0 f (r⊥)â(z)eiβz j + H.c., (5)

where E0 f (r⊥) is a single-photon electric field amplitude [2]
at the point r⊥ in the transverse plane of the single-mode
waveguide with reference frame being chosen as r j = r j

⊥ +
z jez. f (r⊥) is a membrane function of the light mode [53,55],
e is a polarization vector of the light field, E0

∼= ( h̄ω0
2ε0ε(ω0 )S )1/2,

h̄ is reduced Planck’s constant, S is the cross section of the
light beam, and ε0 is the electric permittivity of vacuum,
respectively [2]. We assume that permittivity of the dielectric
medium is constant and does not change over the bandwidth
of interest.

The interaction Hamiltonian between the atoms and the
waveguide mode in the rotating-wave approximation takes the
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form

V̂f a = − h̄

2

M∑
m=1

Nm∑
j=1

�0,m
(
r j
⊥
)
σ

j
−,mâ†(z j )e

−iβz j + H.c., (6)

where σ
j

±;m = 1
2 (σ j

1;m ± iσ2;m) are the isospin flip operators

for jth atom of mth group, �0,m(r j
⊥) = �m f (r j

⊥) is a cou-
pling constant between jth atom of mth group and waveguide
mode with �m = E0〈dm · e〉/h̄ being a single-photon Rabi
frequency of jth atom located at r j . The membrane function
f (r⊥) determines the dependence of the interaction constant
of an atom on its position r⊥ in the transverse plane of the
waveguide. For sake of simplicity but without losing general-
ity, we assume f (r⊥) to be a real-valued function.

We introduce slowly varied operators

âp(z, t ) = ieiω0t−iβzâ(z, t ), (7)

ˆ̃σ j
−,m(t ) = eiω0t−iβzσ̂

j
−,m(t ), (8)

ˆ̃σ j
+,m(t ) = e−iω0t+iβzσ̂

j
+,m(t ), (9)

with the same commutation relations as â(z, t ), σ̂
j

−,m(t ), and
ˆ̃σ j
+,m(t ), respectively. The index p in ap(z, t ) indicates name of

the studied pulse for further echo analysis, i.e., p = (s, 1, 2, e)
correspond to signal, first control, second control, and echo
pulses, respectively.

The resulted Heisenberg equations for the slowly varied
operators are(

∂

∂t
+vg

∂

∂z

)
âp(z, t )= i

2

M∑
m=1

Nm∑
j=1

�0,m(r j
⊥) ˆ̃σ j

−,m(t )δ(z − z j ),

(10)

∂ ˆ̃σ j
−,m

∂t
= −i� j ˆ̃σ j

−,m − i

2
�0,m(r j

⊥)âp(z j, t )σ j
3,m, (11)

∂ ˆ̃σ j
+,m

∂t
= i� j ˆ̃σ j

+,m + i

2
�0,m(r j

⊥)â†
p(z j, t )σ j

3,m, (12)

∂σ
j

3,m

∂t
= −i�0,m(r j

⊥)
[
â†

p(z j, t ) ˆ̃σ j
−,m − âp(z j, t ) ˆ̃σ j

+,m

]
. (13)

It is worth noting that at relatively large number of atoms with
negligible small change of the population [σ j

3,m(t ) ∼= σ
j

3,m(t0)],
the system of Eqs. (10)–(13) is linearized. Such conditions
are often used in different photon echo quantum memory
schemes [23,56,57], where their solutions can be found for
the arbitrary quantum states of lights.

The operators in Eqs. (10)–(13) can be simplified in
classical limit of light field into c-number equations on
average values of the operators by a proper splitting of two-
particle correlators. For an atomic ensemble with large Nm

and the waveguide mode being in coherent state we replace
the product of operator by a product of their mutual average
values [1,58]

〈â(†)
p (z j, t )

〈
σ

j
3,m(t )

〉 ∼= 〈â(†)
p (z j, t )〉〈σ j

3,m(t )
〉
, (14)〈

â(†)
p (z j, t )σ j

+(−),m(t )
〉 ∼= 〈â(†)

p (z j, t )〉〈σ j
+(−),m(t )

〉
. (15)

For further convenience we switch to real-value equations by
separating the constant phase shift φ0 and amplitude from
the averaged field operator 〈â0(z, t )〉 = a0(z, t )eiφ0 and in-
cluding the phase shift in the atomic operators σ

j
+,m(t ) =

e−iφ0σ
j

0;+,m(t ), σ
j

−,m(t ) = eiφ0σ
j

0;−,m(t ). Finally, by switching
to the components of Bloch vector for jm atom

v j
m(t ) = i

〈[
σ

j
0;−,m(t ) − σ

j
0;+,m(t )

]〉
, (16)

u j
m(t ) = 〈[

σ
j

0;−,m(t ) + σ
j

0;+,m(t )
]〉
, (17)

w j
m(t ) = 〈

σ
j

3,m(t )
〉
, (18)

we get the following system of equations:(
∂

∂t
+ γw

2
+ vg

∂

∂z

)
ap(z, t )

=
M∑

m=1

Nm∑
j=1

�0,m(r j
⊥)

4
v j

m(t )δ(z − z j ), (19)

∂u j
m(t )

∂t
= −γ

2
u j

m(t ) − � jv
j
m(t ), (20)

∂v
j
m(t )

∂t
= −γ

2
v j

m(t ) + � ju
j
m(t )

+ �0,m(r j
⊥)ap(z j, t )w j

m(t ), (21)

∂w
j
m(t )

∂t
= −�0,m(r j

⊥)ap(z j, t )v j
m, (22)

where we have added phenomenologically the decay constant
γw describing nonresonant losses of the waveguide modes and
the decay constant of atomic phase relaxation γ = 2/T2 (see
Appendix A, where the decay constants γw and γ are intro-
duced together with the related Langevin forces). Although
Eqs. (19)–(22) do not describe all the quantum properties
of light and atoms, they are sufficient for analyzing the effi-
ciency, coherence, and spectral properties of optical QM for
weak light fields.

Next, we derive a pulse-area theorem for general descrip-
tion of the nonlinear properties of coherent interaction of
light pulse with two-level medium in a single-mode optical
waveguide. The presence of several dipole moments makes it
difficult to define the total pulse area of the atomic ensemble.
Hence, instead of pulse area, we define envelope area of
the field that is agnostic to the presence of several dipole
moments

θp(z) =
∫ t�δt f

to

dt ap(z, t ). (23)

We assume that pulse duration of the light pulses δt f is sig-
nificantly shorter than the phase relaxation time of the atomic
transition (γ δt f 	 1). By integrating Eq. (19) over a duration
of the light pulse from its beginning t0 to its end similarly
to [1,5] and using formal solution r j

m(t ) = v
j
m(t ) + iu j

m(t ) of
Eqs. (20)–(22) with initial condition v

j
m(t0) = 0, w

j
m(t0) =
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w0, we get the equation for the envelope area(
∂

∂z
+ γw

2vg

)
θp(z) = Re

{
M∑

m=1

Nm∑
j=1

�0,m(r j
⊥)

4vg

∫ t�δt f

to

dt r j
m(t )

}
δ(z − z j )

= Re

{
M∑

m=1

Nm∑
j=1

�2
0,m(r j

⊥)

4vg

∫ t�δt f

to

dt
∫ t

to

dt ′e−(γ /2+i� j )(t−t ′ )ap(z j, t ′)w j
m(t ′)

}
δ(z − z j ). (24)

Taking into account that ap(z j, t � δt f ) = 0, we can extend the limits of integration over time from
∫ t�δt f

t0
dt . . . to

∫∞
t0

dt . . . .

By changing the order of integration further
∫∞

t0
dt
∫ t

t0
dt ′ . . . → ∫∞

t0
dt ′ ∫∞

t ′ dt . . . and performing integration over t we find

(
∂

∂z
+ γw

2vg

)
θp(z) = Re

⎧⎨
⎩

M∑
m=1

Nm∑
j=1

�2
0,m(r j

⊥)

4vg

1

γ /2 + i� j

∫ ∞

to

dt ′ap(z j, t ′)w j
m(t ′)

⎫⎬
⎭δ(z − z j )

=
M∑

m=1

Nm∑
j=1

1
2γ�2

0,m(r j
⊥)

4vg
(

1
4γ 2 + �2

j

) ∫ ∞

to

dt ′αp
(
z j

m, t ′)w j
m(t ′)δ(z − z j ). (25)

The coupling constant between an atom and light mode �0,m(r⊥) is contained in the equations for the components of the
Bloch vector (19), (21), (22) and in the equation for the envelope area (25). For further convenience the summation of an
arbitrary function Fm(r j

⊥, z j,� j, t ) over the atoms in continuous limit may be approximated as an integration

Nm∑
j=1

Fm(r j
⊥, z j,� j, t )δ(z − z j ) = ρm

∫
d� G

(
�

�in

)∫
S

dx dy Fm(r⊥, z,�, t ), (26)

where S is a cross section of the waveguide, ρm = Nm
LS is a density of mth atomic group with L being length the waveguide. For

sake of simplicity we assume the identical inhomogeneous broadening profiles G( �
�in

) for different atomic groups with linewidth
�in. Substituting Eq. (26) in (25) we get(

∂

∂z
+ γw

2vg

)
θp(z) =

M∑
m=1

πρm

4vg

∫
S

dx dy �0,m(r⊥)
∫

d�

1
2γ G

(
�
�in

)
π
(

1
4γ 2 + �2

)�0,m(r⊥)
∫ ∞

to

dt ′αp(z, t ′)wm(r⊥, z,�, t ′). (27)

For large enough inhomogeneous broadening (�in � γ ) single-atom spectral response is assumed to be delta function
γ

π (γ 2+�2 )
∼= δ(�). If there is not any initial coherence v

j
m(t0) = 0, the solution for resonant atomic coherence in Eqs. (21) and (22)

is

�0,m(r⊥)
∫ t�δt f

to

dt ′αp
(
z j

m, t ′)wm(r⊥, z,� = 0, t ′) = vm(r⊥, z,� = 0, t )|tt0 = w j
m(t0) sin[�m,p(r⊥, z)], (28)

where �m,p(r⊥, z) = �0,m(r⊥)θp(z) is a conventional pulse
area of mth atom located at a point with coordinates (r⊥, z).
Substituting the initial condition for population w

j
m(t0) = −1

and using δ(�) in Eq. (27), we get the following equation for
the envelope area θp(z):(

∂

∂z
+ γw

2vg

)
θp(z) = −�(θp), (29)

where

�(θp) =
M∑

m=1

ξm

2

∫
S

dx dy �0,m(r⊥) sin[�m,p(r⊥, z)]. (30)

The atomic function �(θp) describes the contribution of the
total polarization within the fiber cross section ξm = πG(0)ρm

2vg
,

where for large �in we can use G( �
�in

) = �in

π (�2
in+�2 )

. Equa-
tion (29) represents waveguide pulse-area (WPA) theorem,
which is an analog of the pulse-area theorem for two-level
atoms interacting in general waveguide mode. Below, we dis-

cuss several examples of the application of WPA theorem to
Gaussian and Gaussian-type profiles of the waveguide modes.

B. Gaussian mode

The solution of Eq. (29) strongly depends on the transverse
properties of the waveguide modes. In the simplest case of a
plane wave, where the field amplitude is spatially homoge-
neous in the cross section [ f (r⊥) = fh(r⊥) = 1], we get an
atomic function containing just the sum of the known terms
corresponding to various dipole moments (see also [59]):

�(θp) =
M∑

m=1

Sξm�m

2
sin(�mθp). (31)

For M = 1 the derived Eq. (30) is reduced to the well-known
McCall-Hahn pulse-area theorem for the light pulse propa-
gation in free space [1,5]. In the limit of large optical depth
the pulse area of the input pulse tends to �(κmz � 1) →
2nπ for the initial pulse area of (2n − 1)π < �(0) < (2n +
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FIG. 2. (a) Pulse area �p(z) of McCall-Hahn area theorem [5] versus optical depth κz for different input pulse areas [�p(0) : π ±
0.1, 3π ± 0.1, 5π ± 0.1]; (b) pulse area �p(z) of WPA theorem (39) versus optical depth κz for different input pulse areas [�p(0) :
2π − 0.2, 4π − 0.2, 6π − 0.2]; the optical densities of atomic ensembles in the waveguide and in free space are assumed to be equal.

1)π as it is shown in Fig. 2(a). Here, κm = πa2�2
mξm =

ρmω

4vgε0εh̄ |〈dm · e〉|2 is a resonant absorption coefficient of mth

atomic group and S = πa2 with a being a radius of the
waveguide.

For the transverse light mode with a Gaussian membrane
function

f (r⊥) = fg(r⊥) = exp

{
− (x2 + y2)

2a2

}
(32)

the integration over the cross section in Eq. (30) gives the
following equation on the envelope area:

(
∂

∂z
+ γw

2vg

)
θp = −

M∑
m=1

κm

�m

sin2 (�mθp/2)

�mθp/2
. (33)

For Gaussian mode WPA theorem shows that ∂
∂z θp(z) < 0 for

2nπ < �m,p < 2(n + 1)π with n ∈ {0, 1, 2, . . . } and �m,p =
�mθp being conventional pulse area of the mth resonant atoms
without spatial dependence as if the mth atoms were located in
the center of the waveguide. At the same time, ∂

∂z θp(z) = 0 for

�m,p = 2nπ and negligibly weak nonresonant losses ( γwL
2vg

	
1). In other words, if the initial pulse area �m,p(0) is less
than 2π , at the output the pulse area decreases to zero. This
fact distinguishes the WPA theorem from the McCall-Hahn
theorem [5], where 2π pulse is formed even if �m,p(0) > π .

Similarly as in the plane-wave case, in the limit of small
pulse area Eq. (33) is reduced to the linearized Lambert-Beer
equation

∂

∂z
θs(z) = −1

2

(
γw

vg
+

M∑
m=1

κm

)
θs(z), (34)

with exponential solution

θs(z) = θs(0)e−αz/2, (35)

where α = γw

vg
+∑M

m=1 κm is a total absorption coefficient.
In the case of only a single atomic type, i.e., M = 1 and

�m,p(z) = �p(z), Eq. (33) is simplified to(
∂

∂z
+ γw

2vg

)
�p = −κ1

sin2 (�p/2)

�p/2
. (36)

C. Gaussian-type modes

The other remarkable example is application of WPA the-
orem to the interaction of light pulse with two-level atoms in
a typical single-mode optical fiber. The membrane function
of a quasilinearly polarized mode in the single-mode fiber is
often described by a zero-order Bessel function [55]. Here, we
consider two possible cases for filling the fiber with two-level
atoms. In the first case [ f1(r⊥)], the atoms are evenly dis-
tributed inside the fiber core, and in the second case [ f2(r⊥)],
they are also located in the fiber cladding, filling the entire
fiber volume evenly. The membrane functions of light modes
in these two cases are

f1(r⊥) =
{

J0(ur⊥/a), r⊥ � a

0, r⊥ > a
(37)

f2(r⊥) =
{

J0(ur⊥/a), r⊥ � a
J0(u)
K0(w) K0(wr⊥/a), r⊥ > a

(38)

where J0(x) is Bessel function of the first kind, K0(x) is mod-
ified Bessel function of the second kind, u is the normalized
transverse phase constant, w is normalized transverse atten-
uation constant (propagation constant), and a is a fiber core
radius.

We compare properties of these Gaussian-type modes to
the derived Gaussian mode assuming presence of uniformly
distributed single atomic species. We numerically integrate
the right-hand side of Eq. (30) for f1,2(r⊥) and fg(r⊥). The
resulted functions �1

κ1
�g,1,2(θp) describe the contributions of

the total polarization in the equation for given envelope area
as it is in Fig. 3. The Gaussian and Bessel modes give very
similar results for their atomic functions �g(θp) and �2(θp),
which are greater than zero for any z. A significantly no-
ticeable difference between these two functions occurs only
starting from the second minimum at � = 4π , where the
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FIG. 3. The atomic functions �g,1,2(�) for Gaussian, Bessel, and
Bessel core membrane functions fg,1,2(r⊥).

function �2(θp) becomes nonzero. When atoms are uniformly
distributed only inside the fiber core, the function �1(θp)
has the form of a damped oscillatory function. Similarly to
the McCall-Hahn area theorem, the branching points of the
solution also appear at �p ≈ 1.25π , �p ≈ 3.75π ,..., where
the solution of pulse area �p(z) increases from the branching
points to the values of 2.5π and 4.5π . The similar quantitative
and qualitative behaviors of �g(θp) and �2(θp) allow to use
the analytical solution of the Gaussian mode for description
of the both cases at �p(0) < 4π .

D. Evolution in optically dense medium

We study the evolution of the pulse area in a waveguide
with Gaussian mode and optically dense medium. For a single
atomic group and negligibly weak nonresonant absorption
γwz
2vg

	 1, the exact analytical solution of Eq. (36) is

Tn(�p(z)) = Tn(�p(0)) − κ1

2
z, (39)

where Tn(�p) is given by

Tn(�p) = ln

[
sin

(
�p

2

)]
− �p

2
cot

�p

2
. (40)

Analytical solution of Eqs. (39) and (40) clearly reveals dis-
tinctive features of pulse-area evolution in the optically dense
single-mode optical waveguides. Figures 2(a) and 2(b) show
the behavior of the pulse areas for the McCall-Hahn area
theorem and for the WPA theorem, respectively. According
to McCall-Hahn theorem [5], 2π pulse are generated for ini-
tial pulse area π < �p(0) < 2π as shown in Figs. 2(a). In
contract, WPA theorem states that formation of 2π pulse in
the single-mode waveguide is possible only for �p(0) > 2πn
with n ∈ {1, 2, . . . }.

The former fact is simply explained by asymptotical behav-
ior of the pulse area. For the initial pulse area within a range
2nπ < �p(0) < 2(n + 1)π the derivative becomes negative
∂
∂z �p(z) < 0 that results in asymptote T0(�p(z � κ

−1
1 )) →

ln[�p(z)/2)]. According to Eq. (40), for n = 0 the pulse area
evolves asymptotically

�p
(
z � κ

−1
1

) ∼= eT0 (�p(0))−κ1z/2 → 0, (41)

while for n = 1, 2, . . . ,

�p
(
z � κ

−1
1

) ∼= 2πn

(
1 + 1

κ1z
2 − Tn(�p(0))

)
→ 2πn.

(42)

Remarkably, the asymptote of �p(z � κ
−1) for n �= 0

does not have an exponential character and slowly converges
compared to the solution �p(z � κ

−1
1 ) for n = 0. Similarly,

the formation of 2π pulse in the waveguide occurs at almost
10-fold larger optical depth than for plane wave as depicted in
Figs. 2(a) and 2(b). The formation of the second and subse-
quent 2π pulses in the waveguide is also shifted into region of
larger optical depth. One reason for that is the weaker interac-
tion between the waveguide mode and atoms away from the
center of the waveguide. In principle, this reduction may be
compensated by an effective increase of the coupling constant
via the decreased group velocity of the light modes vg 	 c
[see comments to (31)] and stronger mode confinement in the
waveguide.

For the pulse areas close to 2πn, attenuation will be caused
only by nonresonant losses with �(z) ≈ 2πn exp{− γwz

2vg
}.

Such pulses will persist the longest solitonlike propagation
for weak nonresonant losses ( γwz

2vg
	 1). However, at large

deviations of the signal pulse area from 2πn the contribution
of resonant interaction in bringing the pulse area to 2π (n − 1)
becomes dominant. Such an evolution is to be repeated until
the light field is completely absorbed.

The presence of several different dipole moments dm and,
accordingly, different pulse areas �m,p significantly change
the behavior of the pulse area. The formation of relatively
stable 2π pulses becomes possible, probably, only if the con-
dition �m,p = 2nπ is met for each atomic group m. A detailed
study of the implementation of such scenarios for the forma-
tion of 2π pulses is beyond the scope of the current analysis.

III. MULTIPULSE EXCITATION AND ECHO
SIGNAL EMISSION

A. Pulse-area theorem of echo signal in single-mode waveguide

Here we apply the WPA theorem to the description of the
photon echo in an ensemble of two-level atoms uniformly
distributed in the volume of a single-mode waveguide. We
assume that the signal pulse is launched at time t = 0 and its
interaction with two-level atoms is governed by WPA theorem
that is described in Sec. II. After signal an additional control
pulse with a delay of τ is applied to the medium. The delay
is assumed to be much longer than the signal pulse duration
(τ � δt).

The signal pulse affects on the initial atomic population
wm,s(r⊥, z) that changes the initial conditions in the equa-
tion for the envelope area of the control pulse. With the help
of Eqs. (19)–(22), Eq. (29) is modified accordingly to reflect
the initial atomic population

(
∂

∂z
+ γw

2vg

)
θ1 =

M∑
m=1

ξm

2

∫
S

dx dy �0,m(r⊥)wm,s(r⊥, z)

× sin[�m,1(r⊥, z)], (43)
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where wm,s(r⊥, z) = − cos [�m,s(r⊥, z)], �m,s(r⊥, z) =
�0,m(r⊥)θs(z) is the pulse area of the signal pulse for an
atom located at the point (r⊥, z). The pulse area of signal can
be expressed by previously derived (39) for Gaussian-type
membrane function.

Next, we derive an equation for the envelope area θe(z)
of the simple two-pulse (primary) echo. Following the same
procedure as with derivation of WPA theorem we integrate
the equation for the field amplitude over time. The echo is
expected at t = 2τ , thus, the integration is reasonable to start
from the moment of time before the echo at t = 3τ/2 and fin-
ish after echo irradiation t = 5τ/2: θe(z) = ∫ 5τ/2

3τ/2 dt ae(z, t ).
Since the echo signal is time separated from other light pulses,
we carry out the integration as in Sec. II and take into account
the initial atomic polarization that results in the following
equation for the envelope area θe of the echo pulse:(

∂

∂z
+ γw

2vg

)
θe

=
M∑

m=1

ξm

2

∫
S

dx dy �0,m(r⊥)

×
{

2�(r, τ, . . . )Pm(r⊥, z) cos2

(
1

2
�m,e(r⊥, z)

)

+ wm(r⊥, z) sin[�m,e(r⊥, z)]

}
, (44)

where �m,e(r⊥, z) = �0,m(r⊥)θe(z), Pm(r⊥, z) is the source
of the echo being the phasing part of the polarization of the
mth atomic ensemble taken at the central frequency, wm(r⊥, z)
is the nonoscillating part of the population of mth atomic
ensemble at the central frequency [9,46,47]. Note that in the
case of plane waves f (r⊥) = 1 and γw = 0, the analytical
solution of Eq. (44) for M = 1 is found using substitution
θe(z) = 2

�0
arctan u(z). This solution shows that the pulse area

of each echo signal �e = �0θe(z) does not exceed π and
decreases to zero at high optical depth [9].

The term �(r, τ, . . . ) describes the phase relaxation in the
interval between signal pulse and echo pulse. As previously,
the influence of phase relaxation during the relatively short
interaction time between light pulses and the polarization is
neglected for a simple integration [9]. At the same time, the
phase relaxation in the interval between the pulses and the
echo pulse is included. For sake of simplicity, the exponential
relaxation factors �(. . . ) = e−(2τ/TM )x

for primary echo and
e−(2τ/TM )x

for ROSE signal are used [60], where x is the fitting
power factor. It should be emphasized that various decoher-
ence mechanisms, particularly depending on the level of atom
excitation, may require specific study. One such mechanism is
the effect of instantaneous spectrum diffusion [61,62].

B. Pulse area of two-pulse (primary) photon echo
and all subsequent echoes

Below we analyze the solution of Eq. (44) for the two-pulse
(primary) echo and the pulse area of all subsequently induced
echoes in an optically dense two-level medium under the
assumption of weak phase relaxation [�(r, τ, TM ,�s,1, β ) =
1]. First, we consider the case of two copropagating pulses
as illustrated in Fig. 4(a). The initial conditions of the
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FIG. 4. Spatial schemes and temporal sequences of light pulses
in (a) the primary echo, (b) the revival of silenced echo (ROSE)
protocol.

envelope equation contain the components of atomic in-
version wm(r⊥, z) = w

pe
m (r⊥, z) and coherence Pm(r⊥, z) =

Ppe
m (r⊥, z), which are expressed as

wpe
m (r⊥, z) = − cos[�m,s(r⊥, z)] cos[�m,1(r⊥, z)],

Ppe
m (r⊥, z) = sin �m,s(r⊥, z) sin2

(
1
2�m,1(r⊥, z)

)
. (45)

The only difference between the expressions in Eqs. (45)
and similar solutions for a plane wave [9,46] is the depen-
dence of the pulse areas on the transverse coordinate r⊥. We
integrate the atomic response along the transverse plane of
the waveguide in the same way as in Eq. (33). The resulted
equation for the envelope area of echo pulse is

(
∂

∂z
+ γw

2vg

)
θe =

M∑
m=1

κm

�m

{
�(τ, TM , . . . )

2
Is,m(θs, θ1, θe)

− Sm(θe; θs; θ1)

}
, (46)

where

Is,m(θs, θ1, θe) = sin2 (�mθs/2)

�mθs/2
+ Sm(θs; θe)

− Sm(θs; θ1) − Sm(θs; θ1; θe), (47)

Sm(θp; θq) = 1

2

2∑
n=1

sin2
{
�m[θp + (−1)nθq]/2

}
�m[θp + (−1)nθq]/2

, (48)

Sm(θp; θq; θr )

= 1

4

2∑
n=1

2∑
l=1

sin2
{
�m[θp + (−1)nθq + (−1)lθr]/2

}
�m[θp + (−1)nθq + (−1)lθr]/2

.

(49)

For a single dipole moment type the resulted pulse areas of the
input signal pulses �s(z), control pulse �1(z), primary echo
�e(z), and the total pulse area of all echoes ��,e are depicted
in Fig. 5. As seen in Figs. 5(a) and 5(b), the pulse area of
the primary echo pulse �e(z) experiences growth reaching its
maximum and then decreasing to zero. The pulse area of the
all echoes ��,e(z) is defined as the difference between the
total pulse area �� (z) and individual pulse areas of the signal
and control pulses �s(z), �1(z) as in [8], where the evolution
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FIG. 5. Pulse areas for single atomic group M = 1 of signal pulse �s(z) (green dashed line), first control pulse �1(z) (black short dashed
line), primary echo �e(z) (red solid line), and all echo pulses ��,e(z) (blue dotted line). (a) �s(0) + �1(0) < 2π , (b) 2π < �s(0) + �1(0) <

4π . Inset conceptually illustrates formation of an 2π -echo sequence in the waveguide at some moment of time with total pulse area ��,e = 2π ,
where τ is a time interval between the two exciting pulses, ṽg is a group velocity weakened by the light interaction with two-level atoms.

of total pulse area �� (z) is described by Eq. (36) with initial
pulse area �� (0) = �s(0) + �1(0).

Figure 5(a) shows that if the initial total area �� (0) is less
than 2π , then the pulse area of all echo signals ��,e(z) tends
to zero at large optical depth z � 1/κ. In contrast, if �� (0) >

2π , then the pulse area of all echo signals ��,e(z � 1/κ)
tends to 2π , as it is seen in Fig. 5(b). This behavior does not
coincide with the prediction of McCall-Hahn area theorem,
where the threshold of the total area is π for the 2π pulse
formation [see Fig. 2(a)]. It is also seen in Figs. 5(a) and 5(b)
that in both the cases the primary echo amplitude increases
with the optical density approaching its maximum without
reaching to 2π . At large value of optical depth the primary
echo gradually decays to zero. The growth of the pulse area to
its maximum and its subsequent attenuation to zero is valid for
each of the subsequent echoes, which is a common property of
WPA theorem and free space theory [46,47]. The total pulse
area is the sum of the pulse areas of several echo signals
generated sequentially in a medium since total pulse area of
all pulses tends to 2π , if �� (0) > 2π . Thus, the sequence of
generated echoes in a single-mode waveguide behaves as a
single 2π pulse, as in case with plane waves [9] and we indi-
cate it in Fig. 5(b) as a 2π -echo sequence (see also discussion
in Appendix A about the 2π -pulse excitation in a single-mode
waveguide).

Following the approach [9,10] and using one-dimensional
Eq. (44) with corresponding expressions for the phasing po-
larization and initial atomic inversion, it is also possible to
get equations for an envelope area of an arbitrary echo signal,
which can be easily solved numerically. Below, we developed
photon echo WPA theorem to the photon echo in ROSE pro-
tocol [35,43,63].

IV. ROSE PROTOCOL IN A LASER-WRITTEN
WAVEGUIDE CRYSTAL

A. Waveguide pulse-area equation of ROSE signal

ROSE is echo protocol for quantum storage being closest
to the convectional two-pulse echo. If implemented properly,

it suppresses unwanted quantum noise that appears at primary
echo emission. The spatial and temporal schemes of ROSE
protocol are shown in Fig. 4(b). In ROSE protocol a two-level
medium is first excited by a weak signal pulse at time t = 0.
Two π pulses are applied to medium at t = τ and 3τ that
forms an echo at t = 4τ . The control pulses should propagate
in the opposite direction with respect to the direction of the
signal pulse to mitigate generation of the primary photon
echo.

For signal, echo, first, and second π pulses we use indices
(s, e, 1, 2), respectively. The pulse area after the weak signal
and first π pulse are described by Eqs. (39) and (40) (where
to make replacements: z → (L − z) and θ1(0) → θ1(L)), due
to negligibly small pulse area of the signal. Since the first
control pulse has a pulse area close to π it strongly affects
the propagation of the second control pulse (p = 2). In this
case, similarly to [8], we get the following equation for the
envelope area θ2 of the second control pulse:

(
− ∂

∂z
+ γw

2vg

)
θ2 = −

M∑
m=1

ξm

2

∫
S

dx dy �0,m(r⊥)

× cos[�m,1(r⊥, z)] sin[�m,2(r⊥, z)].
(50)

By using Gaussian membrane function in Eq. (50) and per-
forming the calculation similar to the derivation of Eqs. (33)
and (46), we get

(
− ∂

∂z
+ γw

2vg

)
θ2 = −

M∑
m=1

κm

�m
Sm(θ2; θ1), (51)

where Sm(θp; θq) is given in Eq. (49). For the particular case
of weak second control field (�mθ2 	 π ), Eq. (51) transforms
into the linear equation for θ2:

(
− ∂

∂z
+ γw

2vg

)
θ2(z) = −1

2

M∑
m=1

κm[�m,1(z)]θ2, (52)
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where κm(�m,1(z)) is a changed absorption coefficient of mth
atomic group [�m,1(z) = �mθ1(z)]:

κm[�m,1(z)] = κm

{
2

sin [�m,1(z)]

�m,1(z)
− sin2 [�m,1(z)/2]

[�m,1(z)/2]2

}
,

(53)

where κm(�m,1 → 0) = κm and κm(�m,1) < 0 for
tan(�m,1/2) > �m,1, i.e., for �m,1 > 2.3311. In this condition
the second control pulse is amplified, if nonresonant losses are
weak, γwL 	 1. If �2(0) < 2π , the amplification of second
pulse �2(z) is replaced by its attenuation to zero at large
optical depth z � 1/κ. As in the case of the primary echo,
the pulse area of ROSE protocol �e(z) experiences growth
to a maximum and decrease to zero at large value of optical
depth. The evolution of the envelope area θe(z) in ROSE
sequence is described by Eq. (44), where the initial atomic
population wm(r⊥, z) = wre

m (r⊥, z) and phasing coherence
Pm(r⊥, z) = Pre

m (r⊥, z) are [44]

wre
m (r⊥, z) = cos[�m,s(r⊥, z)]

2∏
p=1

cos[�m,p(r⊥, z)]

∼= − cos[�m,1(r⊥, z)] cos[�m,2(r⊥, z)],

Pre
m (r⊥, z) ∼= �0,m(r⊥)θs(0)e−αz/2

2∏
p=1

sin2

(
1

2
�m,p(r⊥, z)

)
,

(54)
where cos [�m,s(r⊥, z)] ∼= 1 and

sin �m,s(r⊥, z) ∼= �m,s(r⊥, z) = �0,m(r⊥)θs(0)e−αz/2, (55)

with pulse areas �m,p(r⊥, z) = �0,m(r⊥)θp(z) (p = 1, 2) be-
ing close to π for highly efficient quantum memory ROSE
protocol. In the studied counterpropagating geometry “ ∂

∂z ”
should be replaced by “− ∂

∂z ” in Eqs. (33) and (43), when
considering the second control pulse [see Eqs. (50), (51), and
(52)]. At the same time, the efficiency of echo signal retrieval
does not depend on the direction of its radiation due to the low
optical density.

We note that θs, θ1, θ2 in (44), (45), (54) can be found
according to Eqs. (33) and (43) for the forward and backward
propagation of the control pulses (with replacement “ ∂

∂z ” by
“ − ∂

∂z ”). Similar as with Eqs. (52) and (53), we find that
the absorption coefficients κm[�1(z); �2(z)] in (B6) can be
positive or negative, thereby leading to absorption or ampli-
fication of the echo signal. The last case is not suitable for
QM due to quantum noise in the echo signal. For generality,
in Appendix B, we provide equations for the pulse area of
ROSE echo signal for arbitrary intensities of the signal and
control fields in the waveguide with optically dense medium.

In our experiment, both control laser pulses have phase
and amplitude modulations [44] that provide a uniform spec-
tral and spatial excitation of atoms in the central part of the
waveguide cross section, allowing a significant increase in the
efficiency of the echo’s signal emission.

B. Experimental setup

We implement ROSE protocol in the waveguide that being
laser written in Tm3+:Y3Al5O12 crystal with Tm3+ doping

of 0.01% and dimensions 2 × 9 × 19.5 mm. The crystal is
one of the well-known crystals, convenient for testing and
development of optical QM protocols [44,64]. Simplified ex-
perimental setup is depicted in Fig. 6(a). Laser light from a
single-mode fiber is coupled into a single waveguide by an
objective (Edmund Optics ELWD 10× 59877) on one side
and an aspheric lens (Thorlabs A280TM-B) installed in a
cryostat from another side of the crystal with an efficiency
of 30%. Light is detected by an avalanche photodetector
(APD, Thorlabs APD120A/M) connected to an oscilloscope
(Tektronix DPO7104C) or a single-photon counting module
(SPCM, Excelitas SPCM-AQRH). The crystal is glued with
silver paste to a cold finger and placed in a closed-cycle
cryostat (Montana Instruments Corp.) with a temperature of
3.2 ± 0.1 K. Crystallographic axes of the crystal are oriented
with respect to crystal edges, as it is shown in the inset
of Fig. 6(a), where αE = 11.3◦, βE = 4.3◦, and γE = 0◦ are
conventional Euler rotation angles.

The type-III depressed cladding single-mode waveguides
were produced by a femtosecond laser writing technique in
Tm3+:Y3Al5O12 crystal [45]. Each waveguide is composed
of 18 elliptical tracks with axes of 2 and 8 µm around a
core with diameter of 18 µm. The femtosecond laser pulses
change the refractive index of the elliptical tracks by ∼10−3

that confines the light within the inner core. Propagation
losses for vertical polarization (parallel to 2 mm edge of the
crystal) is 0.66 dB/cm, for horizontal polarization (parallel to
9 mm edge) is 1.13 dB/cm. Totally 20 one type-III single-
mode waveguides have been written in the crystal along Z
axis. Since the exact difference in refractive index �n is
unknown, we perform finite-difference time-domain simula-
tion of the eigenmodes for different values of �n [65]. If
�n > 2 × 10−3 the waveguide supports symmetrical Gaus-
sian mode with half-width at half-maximum of ∼5.5 µm for
both axes as shown in Fig. 6(b). At lower values of �n the
mode becomes elliptical with the widths for orthogonal axes
being different more than two times. At the same time, the
experimentally measured modes have symmetrical Gaussian
character that witnesses the actual width of the waveguide
mode to be ∼5.5 µm. Hence, further on we assume the width
of a = 5.5 µm in membrane function fg(r⊥).

It should be noted that recent studies have conducted exper-
iments on the implementation of photon echo AFC protocol in
waveguides fabricated by the same technology [16,18,33–35].
Whereas the cited publications used type I, type II, and type
IV waveguides, we present type III waveguides in this work.
The advantage of type III waveguide is a support of arbitrary
polarization in a waveguide mode.

The continuous wave titan-sapphire laser (Tekhnoscan
TIS-SF-777) is tuned to 3H6(0) →3 H4(0) optical transition
of Tm3+ (λ ≈ 793.365 nm). Two acousto-optic modulators
(AOMs) are used to sample microsecond-scale pulses for per-
forming primary echo measurements and the ROSE protocol.
The outputs of AOMs are spatially filtered by single-mode
fibers and sent parallel to the long edge of the crystal
(19.5 mm) in counterpropagating geometry. The linearly po-
larized signal is routed via 50:50 beam splitter to the APD for
intensity monitoring as a reference and to the crystal, as shown
in Fig. 6(a). After passing through the quarter-wave plate the
beams are circularly polarized.
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FIG. 6. (a) Simplified experimental scheme, where IF is an interference filter, Obj is an objective, also there is one more objective installed
inside the cryostat on the left side of the crystal, D is a diaphragm, AOM is an acousto-optic modulator, BS is nonpolarizing beam splitter,
PBS is polarizing beam splitter, λ/4 is quarter-wave plate, λ/2 is half-wave plate, APD is an avalanche photodiode, SPAD is a single-photon
avalanche photodiode, αE = 11.3◦, βE = 4.3◦ are conventional Euler rotation angles. (b) Simulated full width at half-maximum a of the
laser-written waveguide eigenmode at different values of the refractive index contrast 10−4 < �n < 8 × 10−3 between the elliptical tracks and
the core. The red dashed and blue solid curves correspond to widths along two orthogonal axes x and y, respectively. Two inserts show the
color map of normalized spatial distribution of the eigenmode’s intensity for �n = 10−3 and �n = 4 × 10−3.

Tm3+ ions substitute yttrium ions in six (M = 6) crystallo-
graphically equivalent but orientationally inequivalent sites of
Y3Al5O12 crystal. The light beams with circular polarization
interact with all these sites. The Rabi frequency of optical
transition �m = E0〈dm · e〉/h̄ is larger for the third and fourth
sites. In order to make the pulse area of the control pulses to be
close to π for the atoms in wider spectral range, we use phase-
modulated control laser pulses. The theoretical modeling of
the control pulse Rabi frequencies and phase modulation is
given by the relations (see also Appendix B)

�m(τ, r⊥) = �m,1(τ − t1, r⊥) + �m,2(τ − t2, r⊥), (56)

where

�m,p(τ − t1, r⊥) = Ȧm,p(τ − t1, r⊥)e−iBp(τ−tp), (57)

Ȧm,p(t, r⊥) = χm,p(r⊥)

πδtp

e−iϕp

cosh(t/δtp)
, (58)

Ḃp(t ) = � + βp

πδtp
tanh(t/δtp), (59)

where τ = t + z/vg, χm,p(r⊥) = χ0;m,p fg(r⊥/a).
The parameters of the control pulses negligibly change in

an optically thin medium, so that we can approximate the Rabi
frequency of the control fields: �m;p(r, t ) = �0,m(r⊥)ap(t +
z/c) [where p = 1, 2, ap(t + z/vg) = 〈âp(z, t )〉 is a classical
value]. The maximum CW optical power of the control beam
before cryostat is 9 mW. The parameters βp and δtp are
responsible for the frequency sweep range and the pulse dura-
tion, respectively and are chosen in the range βp/π = 1–7 and
(2πδtp)−1 = 140–400 kHz. The input pulse, its transmitted
portion, and the ROSE signal are measured by APD/SPAD1
and APD/SPAD2, respectively, as shown in Fig. 6(a).

Figures 7(a) and 7(b) show the experimental data on the
storage of the weak input light pulse with the waveguided
ROSE protocol. Timing of the input signal, two control pulses,

and the echo is presented in Fig. 7(a). The input signal
light pulse with Gaussian waveform and full width at half-
maximum duration of 1 µs is launched at t = 0. The rephasing
pulses are shown at t = 7.5 µs and t = 22.5 µs measured
by a detector in the reference channel of rephasing beam.
The recovery efficiency 0.5% of the input pulse is achieved
for a storage time of 30 µs. It should be noted that for the
used geometry, the absorption value αL = 0.12 and the co-
herence time of the optical transition TM = 63 µs (x = 1.82),
the maximum efficiency of the ROSE pulse is limited by
ηmax = (αL)2e−αLe−2(4τ/TM )x

(with 4τ being the storage time),
bearing in mind two ideal control π light pulses. According
to this estimation, the maximum achievable efficiency in our
optically thin crystal is ηmax = 0.76%. Below we analyze
the experimental data obtained for the ROSE protocol in a
waveguide using (44), (54), and (55) taking into account the
experimental parameters of the medium, signal pulses, and
modeling the parameters of the control pulses by Eqs. (56)–
(59).

C. Theoretical discussion of experimental results

In our experiment, the inhomogeneous broadening of the
resonant optical transition is larger than the spectrum of the
control pulses (�in � δω1,2, see also Fig. 1), and the spectrum
width of the signal pulse was even smaller (δωs ≈ δt−1

s <

δω1,2). As depicted in Fig. 7(a), in this regime the temporal
shape of the echo signal reproduces the temporal shape of
the signal pulse. Hence, the realized protocol fulfills spec-
tral conditions for the efficient implementation of the photon
echo QM [41,66,67]. The reproduction of temporal profile
in the echo allows to apply the pulse-area approach with
Eqs. (44), (45), and (54) to describe the basic patterns of the
realized ROSE protocol.

For a negligibly weak pulse area of the input signal pulse
the probability of exciting the atoms P11 after the first chirped

043708-10



PULSE-AREA THEOREM IN A SINGLE-MODE WAVEGUIDE … PHYSICAL REVIEW A 107, 043708 (2023)

(b)

In
te

n
si

ty

time (μs)

Input pulse

Transmitted pulse

Rephasing pulses

ROSE x25

1.0

0.8

0.6

0.4

0.2

0.0

0 10 20 30

(a)

E
ff

ic
ie

n
c
y
 (

%
)

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12 14 16 18
I=I

1
=I

2
(arb.units)

40

45

50

55

60

65

70

T 2
(μ

s)

FIG. 7. (a) The signal of the revived silenced echo magnified by 25 is shown at time 30 µs (orange curve) obtained in the waveguide in
Tm3+:Y3Al5O12 crystal. The rephasing pulses are shown by the blue dotted curve. At t = 0, µs input pulse and transmitted part are shown by
black and red dashed curves, respectively. (b) The retrieval efficiency of input pulse (black squares) and effective coherence time T2 of optical
transition (red circles) of the waveguide optical memory versus intensity of two identical rephasing pulses I = I1 = I2. The theoretical fits with
Eq. (65) (black solid line) and plane-wave theory (blue dashed line) are presented.

pulse (p = 1) is calculated using the analytical solution [68]
(see also Appendix C):

sin2

(
1

2
�̃m,p(r⊥)

)
= sin2

(
1

2
�m,p(r⊥)

)
+ cos2

(
1

2
�m,p(r⊥)

)

× tanh2

(
β

2

)
, (60)

where �̃m,p(r⊥) is an effective pulse area of chirped pulse for
resonant atoms (� = 0), p = 1, 2, �m,p(r⊥) = [χ2

m,p(r⊥) −
β2]

1
2 with the same chirping being used for both control pulses

βp = β.
Assuming negligible change in the parameters of the con-

trol laser pulses in the optically thin medium, Eq. (44) is
adopted for the envelope area of the echo θe:(

∂

∂z
+ γw

2vg

)
θe =

M∑
m=1

ξm

2

∫
S

dx dy �0,m(r⊥)

× {2�(r, τ, TM ,�, β )Pm(r⊥, z)

+ wm(r⊥, z)�0,m(r⊥)θe}, (61)

where Pm(r⊥, z) and wm(r⊥, z) are given in Eqs. (54)
and (55) (see also Appendix C), �(r, τ, TM ,�, β ) =
e−(4τ/TM )x

exp{−2 τ
Ts (r⊥,�,β ) } characterizes the phase relaxation

of resonant atoms located in a cross section of the waveg-
uide with a coordinate r⊥; an additional phase relaxation
time Ts(r⊥,�, β ) is determined by the relaxation processes
depending on the location of the atom in the waveguide (pulse
areas � and β determine the degree of atomic excitation in all
atomic groups m = 1, . . . , M).

To study the echo pulse area with Eq. (61), it is neces-
sary to independently determine the phase relaxation factor
�(r, τ, TM ,�, β ). The properties of �(r, τ, TM ,�, β ) are ex-
tracted from experimentally measured dependence of the

ROSE signal decay at different intensity of the control pulses.
The obtained results show that the effective phase relaxation
time Ts of the ROSE signal depends on the intensity of the
control pulses, as depicted by the red circles in Fig. 7(b). We
fit the dependence of effective relaxation time Ts(I, β ) (red
dotted line in this figure) on the intensity I of the control
pulses at the given phase modulation β. The intensity of the
control pulses reduces the phase relaxation time of the optical
coherence by about 1.5 times (from 67 to 42 µs) for the
concentration of Tm3+ 0.01 at.%, which is an order of magni-
tude less than in the well-known experiments [62], where the
additional attenuation of the echo signal is explained by the
influence of the spectral diffusion effect observed earlier.

Taking into account the obtained experimental data, we
limit ourselves to the effective constant of phase relax-
ation 1/Ts(I, β ). Determination of the phase relaxation time
Ts(r⊥,�, β ) requires the a more detailed theory that takes into
account the features of phase relaxation in an optical waveg-
uide, the inhomogeneous distribution of the intensity of the
control fields and the additional experiments, which is beyond
the scope of this work and will be carried out somewhere else.
It is also worth noting that the created waveguides remain
imperfect and it will be necessary to take into account the
influence of the defects created in them. At the same time,
we note that the defects that appear in the waveguide do not
dramatically reduce the phase relaxation time [69], which
preserves the hope for further use of the waveguides under
study.

If the parameters of the two control laser pulses are identi-
cal �̃m,2(r⊥, z) = �̃m,1(r⊥, z), the solution of (61) is

θe(z, ξ , τ ) = 2
e−(4τ/TM )x

Aw(I,�, ξ, τ )θs(0)

(αw − α)

× (e− 1
2 αz − e− 1

2 αwz ), (62)
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where Aw(I,�, ξ, τ ) = ∑M
m=1 A0,m(I,�, ξ, τ ), αw = γw +∑M

m=1 κm,w is an absorption coefficient for echo pulse:

κm,w =ξm

2

∫
S

dx dy �2
0,m(r⊥) cos2[�̃m,1(r⊥)], (63)

A0,m(I,�, ξ, τ ) = ξm exp

{
− 2τ

Ts(I, β )

}∫
S

dx dy �2
0,m(r⊥)

× sin4

(
1

2
�̃m,1(r⊥)

)
, (64)

where A0,m(I,�, ξ, τ ) describes the averaged over the waveg-
uide cross-section response of mth atomic group, which con-
tributes to the amplitude of ROSE signal and Aw(I,�, ξ, τ )
gives a total response from all the atomic groups. Remarkably,
the observed averaged phase relaxation factor exp{− 2τ

Ts (I,β ) }
in Eq. (64) leads to nonexponential temporal decay. From
Eq. (62), we get for the envelope area θe at the crystal output
(z = L) in optically thin atomic ensemble (αL 	 1, αwL 	
1)

θe(L, I,�, ξ, τ ) = e−(4τ/TM )x
θs(0)Aw(I,�, ξ, τ )L. (65)

The function Aw(I,�, ξ, τ ) together with e−(4τ/TM )x
describes

the influence of the transverse structure of the waveguide light
modes, intensity, and chirping of control pulses, as well as the
intensity-dependent phase relaxation exp{− 2τ

Ts (I,β ) }.
The experimental dependence of the ROSE signal on the

intensity of two identical control laser pulses is presented in
Fig. 7(b). The experimental data are satisfactorily fitted by
|θe(L, I,�, β, τ, δtp)|2 from Eq. (65) with β/π = 7, τ = 8.5,
δtp = 3 and Gaussian membrane function with single type of
atomic dipole moment. The relatively large value of β/π = 7
is the best fit to the experimentally realized envelope of the
control pulses with their smaller central part of the pulses
compared to its fronts. A similar theory for plane waves, i.e.,
of the uniform intensity in the cross section, is presented in
Fig. 7(b). As it is seen from the comparison between the
two theoretical curves, the echo signal for the control fields
with a plane wave has sharper maximum. The echo signal
then decreases faster due to the influence of phase relaxation
that is proportional to the intensity of the control field. The
experimentally observed echo signal has a longer plateau in
the maximum region, which is consistent with the theoreti-
cal curve based on the WPA theorem. This behavior of the
echo is apparently due to the compensation of growing phase
relaxation by an increase in the number of atoms that are
excited by π pulses in the cross section of the waveguide at
larger intensities of the control pulses. The relatively small
difference in the theoretical curves is also due to the weak
phase relaxation.

We conclude that instantaneous spectral diffusion is mainly
responsible for the drop in the efficiency of the echo signal.
There is a slight difference between the experimental data and
the theoretical dependence of echo on intensity of the control
pulses. The difference may be attributed to a number of rea-
sons, including an approximate description of the dependence
of phase relaxation on the intensity of the control pulses. At
the same, the quadratic dependence of the echo signal on
intensity of the control pulses before the maximum indicates
presence of phase modulation in control laser pulses.

V. CONCLUSION

In this work, we derive the waveguide pulse area (WPA)
theorem for the interaction of light pulses with an inhomoge-
neously broadened two-level medium in a single-mode optical
waveguide. We present an analytical solution to this theorem
for a mode with a Gaussian intensity profile. Possibility of
2π -pulse formations for fundamental Gaussian and Gaussian-
type (Bessel) light modes was shown. The formation of these
2π pulses and their main properties is compared to prediction
of the McCall-Hahn area theorem [5]. The formation of 2π

pulses in a single-mode fiber raises the question of the spatial-
temporal structure of the resulting light pulses, which is the
topic of special research.

Next, we develop the WPA theorem for studies of photon
echo in the single-mode waveguide and apply it to analyze
the two-pulse (primary) photon echo and the full sequence of
generated echo signals after two-pulse excitation. It is possible
to form a sequence of echo signals with a total pulse area
of 2π . It coincides with the results obtained for the plane
waves [8,9]. However, the initial total pulse area of the two
exciting pulses should exceed 2π , and not π , as in the case
with plane wave.

We use the WPA theorem for the description of the ROSE
protocol in a single-mode waveguide and implement this pro-
tocol in an optically thin single-mode laser-written waveguide
in Tm3+:Y3Al5O12 crystal. The observed recovery efficiency
of input pulse for a storage time of 30 µs was 0.5% that
corresponds to 65.7% of maximum possible value at given
optical depth. In these experiments, we observed considerable
influence of the control laser pulse’s intensity on the phase
relaxation of ROSE signal in a crystal with the lowest con-
centration 0.01% of Tm3+ ions in a Tm3+:Y3Al5O12 crystal.
Despite the use of rephasing pulses with amplitude and fre-
quency modulation, the retrieval efficiency still decreases with
an increase in the control pulse’s intensity.

The theoretical analysis with WPA theorem allows to sat-
isfactorily explain the obtained experimental data. It was
experimentally shown that the waveguide nature of the inter-
action between light fields and atoms manifests itself in an
echo signal even for an optically thin atomic medium. The
decrease in the echo signal with a growth in the intensity
of the controlling laser pulses is explained by a decrease in
the phase relaxation time, which could be explained by the
effect of instantaneous spectral diffusion. In order to highly
suppress the negative effect of instantaneous spectral diffusion
for the implementation of QM on photon echo, one can use the
crystals with even lower concentration of the atoms, which
is necessary for the QM protocols in high-quality optical
resonators [70]. It is worth noting that not only the presence
of pure dephasing and instantaneous spectral diffusion [62,71]
limits the efficiency of the ROSE protocol in the waveguide,
but also the difficulties in achieving an ideal control laser π

pulse providing uniform distribution of working atoms in the
waveguide cross section. Fabrication of the waveguides with
the active atoms within close proximity of waveguide mode’s
center is of a great interest for subsequent research.

The performed studies demonstrate the convenience of
WPA theorem for describing nonlinear interaction, genera-
tion, and propagation of 2π pulses and the photon-echo-based
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QM protocols in single-mode optical waveguides. Moreover,
the developed approach may also be applied for studies of
these effects in other waveguides. It is worth noting that
practically all photon echo QM protocols can be implemented
in a three-level media, where new opportunities appear for
quantum processing with signal fields [72] and for developing
new methods for generating quantum states of light [57,73].
The derived WPA theorem could be a useful method for
accounting for nonlinear effects and related phenomena in
various photon echo QM protocols in waveguides with three-
level media, where the possibility of quantum storage on
long-lived electron-nuclear spin quantum transitions poses
new challenges.
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APPENDIX A: HEISENBERG-LANGEVIN EQUATIONS
OF LIGHT AND TWO-LEVEL ATOMS IN SINGLE-MODE

WAVEGUIDE

For a more general description of the interaction be-
tween a light pulse and two-level atomic ensemble in
a single waveguide, we will introduce the interaction of
waveguide modes with their environment, where the to-
tal Hamiltonian Ĥ0 in Eq. (1) is supplemented by two
members and takes the form Ĥ = Ĥ0 + Ĥb + V̂b f , where
Ĥb = h̄

∑Nw

n=1

∫
dωnωnb̂†(ωn)b̂(ωn) is the Hamiltonian of the

local spatial bath modes (Nw is its number) and V̂f b =
h̄
∑

n fnâ†(zn)e−iβzn B̂n + H.c. [where B̂n = ∫
dωnb̂(ωn), fn is

a coupling constant of field mode with bath modes at zn, below
we assume fn = f for simplicity] is interaction of bath modes
with the light field modes; interaction with local reservoir
modes leads to the irreversible attenuation of the light modes,
in particular, when they are scattered on the inhomogeneities
of waveguide walls.

Using Ĥ , we derive a Heisenberg-Langevin equation for
the field mode operator â0(z, t ) following the derivation
of Eq. (10) and use the well-known input-output formal-
ism [2,74] for calculating the relaxation terms and Langevin
forces:(

∂

∂t
+ γw

2
+ vg

∂

∂z

)
â0(z, t )

= i

2

M∑
m=1

Nm∑
j=1

�0,m(r j
⊥)σ̂ j

−,m(t )δ(z − z j ) + √
γwb̂in(z, t ),

(A1)

where Eq. (A1) differs from Eq. (10) by an appearance
of the relaxation term γw

2 â0(z, t ) and Langevin force

b̂in(z, t ) = −i
√

2π
γw

f ∗∑
n B̂n(t → −∞)e−i(ωn−ω0 )(t−to)δ(z −

zn) (where 〈b̂in(z, t )〉 = 0, [b̂in(z, t )b̂†
in(z′, t ′)] = δ(z − z′)

δ(t − t ′)), coupling constant �0,m(r j
⊥), and group velocity vg

are discussed after Eq. (1), γw = 2π2| f |2ρ is a loss rate of
waveguide modes related to the Langevin force (ρ = Nw/L,
L = length of the waveguide).

The local operators γw

2 â0(z, t ) and b̂in(z, t ) describe the
light decay in the waveguide and Langevin forces in the con-
tinuous medium, where b̂in(z, t ) is determined by the input
local fields b̂(ωn, t → −∞). Therefore, by introducing local
noise operators b̂out(z, t ) at t → ∞ similarly to the resonator
input-output approach [74], we get the following local rela-
tion:

b̂in(z, t ) − b̂out(z, t ) = √
γwâ0(z, t ). (A2)

The relation (A2) is useful for describing the absorption of
a light pulse and can be applied to consider echo signals
in waveguides where the absorbed signal is localized in the
excited (bath) modes of the medium (waveguide) and can be
recovered from them by controlled rephasing. Together with
field (A1), we similarly derive Heisenberg-Langevin equa-
tions for the resonant atoms [2], limiting ourselves only to
taking into account the influence of weak phase relaxation:

∂σ
j

−,m

∂t
= − (γ /2 + i� j )σ

j
−,m

− i

2
�0,m(r j

⊥)â0(z j, t )σ j
3,m + √

γ F̂j,m, (A3)

∂σ
j

+,m

∂t
= − (γ /2 − i� j )σ

j
+,m

+ i

2
�0,m(r j

⊥)â†
0(z j, t )σ j

3,m + √
γ F̂ †

j,m, (A4)

∂σ
j

3,m

∂t
= − i�0,m(r j

⊥)
[
â†

0(z j, t )σ j
−,m − â0(z j, t )σ j

+,m

]
. (A5)

Equations (A3)–(A5) of jth atom contain only pure dephasing
decay constant γ with related Langevin forces

√
γ F̂j,m(t ) and√

γ F̂ †
j,m(t ) [where 〈F̂j (t )F̂ †

j′ (t
′)〉 = δ j, j′δ(t − t ′)] that are as-

sumed to be identical for all the atoms, � j (t ) = � j + δ� j (t ),
� j and δ� j (t ) are the static and fluctuating frequency offsets
of jth atom, where � j are inhomogeneous broadened by
spectral distribution G( �

�in
), and �in is a linewidth [1].

Introducing the density operators of photon number
Îp(z, t ) = â†

p(z, t )âp(z, t ) and atomic inversion σ̂3(z, t ) =∑M
m=1

∑Nm
j=1

ˆ̃σ j
3,m(t )δ(z − z j ) and using Eqs. (A1) and (A5)

we get the following waveguide equation for these operators,
describing the behavior of the energy flow:

∂t
(
Îp + 1

2 σ̂3
)+ vg∂zÎp = −γw Îp + √

γwM̂p,b, (A6)

where the two-particle operator M̂p,b = â†
p(z, t )b̂in(z, t ) +

H.c., the quantum mechanical average of which is zero due
to the independent nature of the noise operator b̂in(z, t ) and
〈b̂in(z, t )〉 = 0. Equation (A6) is valid for arbitrary constants
of light-atom interaction, so it hides a specific dynamics under
study. In the case of spatially localized 2π excitation (2π -echo
sequence in Sec. III), the analytical solution of the field and
atomic operators takes the form Îp(z, t ) = Îp(ξ ), σ̂3(z, t ) =
σ̂3(ξ ), which satisfy the equation

σ̂3(ξ ) = σ̂3(−∞) + 2

(
vg

ṽg
− 1

)
[Îp(ξ ) − Îp(−∞)], (A7)
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under the conditions of negligible relaxation, where σ̂3(−∞)
and Îp(−∞) are the initial atomic and field operators, ξ =
t − z

ṽg
, ṽg is a group velocity of the light-atoms (polariton)

packet which is less than initial group velocity vg of light
without atomic medium and should be found as a result of
solving a system of Eqs. (10)–(13) [i.e., Eqs. (A1)–(A5) not
containing relaxation terms]. It is worth noting the exact ana-
lytical solution of the quantum Maxwell-Bloch Eqs. (10)–(13)
with the identical constants of the light-atom interaction [75],
demonstrating the possibility of quantum 2π solitons. How-
ever, Eqs. (A6) and (A7) also indicate the possibility of
propagation of light pulses at a constant group velocity even
in the presence of a spread of the constants of light-atom
interaction.

Equations (A1)–(A5) should be solved for the stages of
storage and retrieval of the fields in arbitrary quantum states.
In the main part of work we focus on the consideration
of the classical light fields, moving from the field oper-
ators âm(z, t ) to the c numbers ap(z, t ) = e−iφ〈âp(z, t )〉 =
eiφ〈â†

p(z, t )〉, p (s; 1; 2; e) index indicating signal, controls,
and echo pulses (see comments to Eq. (13) and omitting the
Langevin forces [〈b̂in(z, t )〉 = 0]). At the same time, it should
be noted that the semiclassical Maxwell-Bloch equations can
be applied to describe the coherent interaction between light
fields weakened to a single-photon level with atomic me-
dia [see also comments after Eq. (13)]. A number of basic
properties of optical quantum memory protocols, such as the
efficiency of signal pulse storage and the accuracy of its re-
trieval, can be also analyzed.

APPENDIX B: ROSE PROTOCOL IN OPTICALLY
DENSE WAVEGUIDE

Here we assume that the signal and control fields have
the same carrier frequency and do not have additional phase
modulation. Using wre

m (r⊥, z) and Pre
m (r⊥, z) in (44) together

with phase relaxation function �(r, τ, TM ,�1,2) we can per-
form general analysis of nonlinear pattern in ROSE-pulse area
behavior. In the simplest case of negligible spatial dependence
of phase relaxation [i.e., �(r, τ, T2,�1,2) = �(τ, T2, . . . )], we
can perform integration and subsequent analytical calculation
of (44) similar to (43) and to get the following equation for
the envelope area of ROSE pulse:

(
∂

∂z
+ γw

2vg

)
θe =

M∑
m=1

κm

�m

{
�(τ, TM , . . . )

4
Is,m(θs, θ1, θ2, θe)

− Sm(θe; θ1; θ2)

}
, (B1)

where a source of echo signal

Is,m(θs, θ1, θ2, θe)

= 1
2�mθs(z) + Sm(θs; θe) + Sm(θs; θ1; θ2)

− Sm(θs; θe; θ1) − Sm(θs; θe; θ2) + Sm(θs; θe; θ1; θ2),

(B2)

envelope areas θs,1,2,e(z) are all the functions of z, we
also have taken into account that the signal pulse is weak

�mθs(z) 	 π :

Sm(θ1; θ2; θ3)

= 1

4

2∑
n=1

2∑
m=1

sin2 (�m[θ1 + (−1)nθ2 + (−1)mθ3]/2)

�m(θ1 + (−1)nθ2 + (−1)mθ3)/2
,

Sm(θ1; θ2; θ3; θ4) = 1

8

2∑
n=1

2∑
m=1

2∑
p=1

× sin2 (�m[θ1 + (−1)nθ2 + (−1)mθ3 + (−1)pθ4]/2)

�m[θ1 + (−1)nθ2 + (−1)mθ3 + (−1)pθ4]/2
.

(B3)

Equation (B1) is still a nonlinear equation on θe. In the
case of atomic medium with limited optical density and
weak input signal pulse, this equation reduces to the lin-
ear equation where �mθe(z) 	 π . Neglecting the terms with
(�mθe)2 	 π in (B1), we get(

∂

∂z
+ γw

2vg

)
θe =

M∑
m=1

{
κm

4�m
�(τ, T2, . . . )Is,m(θs, θc1, θc2)

− 1

2
κm(θc1; θc2)θe

}
, (B4)

where Is,m(θs, θ1, θ2) ≡ Is,m(θs, θ1, θ2, 0):

Is,m(θs, θ1, θ2) = �mθs − Sm(θs; θ1)

− Sm(θs; θ2) + 2Sm(θs; θ1; θ2), (B5)

and the absorption coefficient for echo signal due to the inter-
action with mth atomic group is

κm(θ1; θ2) = κm

2∑
n=1

{
sin [�m(θ1 + (−1)nθ2)]

�m[θ1 + (−1)nθ2]

− sin2 [�m(θ1 + (−1)nθ2)/2]

2(�m(θ1 + (−1)nθ2)/2)2

}
. (B6)

Equation (B4) is used in the main text.

APPENDIX C: EXCITATION OF ATOMS
BY CONTROLLING CHIRPED PULSES

Here following the work [68], we consider the excitation
of two-level atoms by two chirped control pulses. In the in-
teraction picture, the equations for atomic amplitudes in the
ground C2(t ) and excited C1(t ) states are(

Ċ1(t )

Ċ2(t )

)
= i

2

(
0 �(t )

�∗(t ) 0

)(
C1(t )

C2(t )

)
, (C1)

with initial state C2(t → −∞) = 1, C1(t → −∞) = 0, where

�(t ) = �1(t − t1) + �2(t − t2)

= [Ȧ1(t )e−iB1(t ) + Ȧ2(t )e−iB2(t )]e−i�(t−t0 ), (C2)

Ȧp(t ) = χp

πτp

e−iϕp

cosh[(t − tp)/τp]
, (C3)

Ḃp(t ) = βp

πτp
tanh[(t − tp)/τp], (C4)
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where the index p = 1, 2 corresponds to the first and second
control pulse, and Ap(t ) is a Rabi frequency of the chirped
pulses. We assume that the Rabi frequency is also a function of
transverse coordinate r⊥: χp(r⊥) = χp,0 f (r⊥); ϕp is constant
phase; Bp(p) describes frequency modulation; � is an atomic
frequency offset, τp is a temporal duration of p control pulse,
χp and βp are the amplitude and frequency chirp of pth control
pulse, and f (r⊥) is a spatial shape in the cross section of
light beam. Below, we have taken into account a Gaussian
membrane function of the Rabi frequency for each control
field: χp(r⊥) = χp,0 fg(r⊥).

By taking into account that the chirped pulses are not
overlapped with each other (τ1,2 	 t1 − t0, t2 − t1), we can
solve Eqs. (C1) one by one. For each pulse the solution of (C1)
can be written in terms of hypergeometric functions where it
is convenient writing Cp(t ) via the variable

z1(t ) = 1
2 {1 + tanh[(t − t1)/τ1]}, (C5)

i.e., Cp(t ) = C̃p(z1) and determining the phase of the first light
pulse ϕ1 by setting B1(t ) = ∫ t

t0
dt ′Ḃ1(t ′). The atomic ampli-

tudes after the action of first control pulse (starting at t = t0)
are described by

C̃1(z1) = A(12)
1 z1−c1

1 F (1)
1 (z1), (C6)

C̃2(z1) = C2(t0)F (2)∗
1 (z1), (C7)

where we introduced an abbreviated notation for the hyperge-
ometric functions:

F (1)
p (zp) = F (ap + 1 − cp, bp + 1 − cp, 2 − cp, zp), (C8)

F (2)∗
p (zp) = F ∗(ap, bp, cp, zp) = F (a∗

p, b∗
p, c∗

p, zp), (C9)

A(12)
1 = iχ1e−iϕ1

2π (1 − c1)
C2(t0) exp

{
i

(
� − β1

πτ1

)
(t0 − t1)

}
.

(C10)

The values ap, bp, cp can be found in [68]:

ap = 1

2π

[(
χ2

p − β2
p

) 1
2 − iβp

]
, (C11)

bp = 1

2π

[− (
χ2

p − β2
p

) 1
2 − iβp

]
, (C12)

cp = 1

2

[
1 + i

π�τp − βp

π

]
. (C13)

Interaction with the first pulse ends for t − t1 � τ1 when
z1 → 1 and the amplitudes C̃1,2(z = 1) are set unchanged. The
probability to find atom in the excited state after the action of
the first pulse [for the initial state |C2(t0)| ∼= 1 in (C7)] is

P11(t1) ≡ P11(t � t1 + τ1) = |C̃1(1)|2 = sin2(�1/2),
(C14)

where

χ2
p

∣∣F (1)
p (1)

∣∣2
4π2|1 − cp|2 = sin2(�p/2)

= sin2(�p/2)Ch2(βp/2) + cos2(�p/2)Sh2(βp/2)

Ch
( βp+π�τp

2

)
Ch
( βp−π�τp

2

) ,

(C15)

where �p = (χ2
p − β2

p )
1
2 and (C14) and (C15) are also

used to define the nutation angle of two-level atom
�p=1 = �1(�,β1,�1) caused by the action of the first
pulse. By using (C15), we can easily calculate |F (2)

1 (1)|2
and the probability of atom to stay on the ground level
P2(t � t1 + τ1) = |C2(t � t1)|2 = |C̃2(1)|2 = |F (2)

1 (1)|2 =
1 − |C̃2(1)|2 = cos2(�1/2), so we get

C2(t � t1) = F (2)∗
1 (1)

= cos(�1/2) exp{−iζ1(�,χ1, β1, τ1)}, (C16)

where ζ1(�,χ1, β1, τ1) = −i ln{F (2)
1 (1)/ cos(�1/2)}.

Interaction with the second control pulse occurs at t2 with
sufficiently large time delay after the first control pulse t2 −
t1 � τ1. Let us choose a moment of time in the middle be-
tween the control pulses tm = t1+t2

2 . Using (C1) for t > tm and
moving to new amplitudes C2,0(t ) = C2(t ) exp{− i

2�(tm −
t0)}, C1,0(t ) = C1(t ) exp{ i

2�(tm − t0)}, we can describe the
interaction with the second pulse similarly to the interaction
with the first pulse. Here we get the following system of
equations for atomic amplitudes C1,0(t ) and C2,0(t ) (t > tm),
which takes into account the phase change of the second pulse
at the moment of the beginning of interaction with the atom:(

Ċ1,0(t )

Ċ2,0(t )

)
= i

2

(
0 �2(t − tm)

�∗
2(t − tm) 0

)(
C1,0(t )

C2,0(t )

)
,

(C17)
with initial amplitudes

C2,0(tm) = C̃2(1) exp

{
− i

2
�(tm − t0)

}
, (C18)

C1,0(tm) = C̃1(1) exp

{
i

2
�(tm − t0)

}
, (C19)

where �2(t − tm) is given in Eqs. (C2)–(C4), and the constant
phase of the second light pulse ϕ2.

Similarly to the interaction with the first pulse, we move
to the new time variable scale z2 = 1

2 (1 + tanh[(t − t2)/τ2])
and find solutions of Cp,0(t > tm) = C̃p,0(z2) for the initial
conditions C̃p,0(0) = Cp,0(tm):

C̃1,0(z2) = C1,0(tm)F (2)
2 (z2) + A(12)

2 z1−c2
2 F (1)

2 (z2), (C20)

C̃2,0(z2) = C2,0(tm)F (2∗)
2 (z2) + A(21)

2 z
1−c∗

2
2 F (1∗)

2 (z2), (C21)

where

A(12)
2 = iχ2e−iϕ2

2π (1 − c2)
C2,0(tm) exp

{
i

(
� − β2

πτ2

)
(tm − t2)

}
,

(C22)

A(21)
2 = iχ2eiϕ2

2π (1 − c∗
2 )

C1,0(tm) exp

{
−i

(
� − β2

πτ2

)
(tm − t2)

}
.

(C23)

The probability of the atomic excitation P11(t2) ≡ P11[t �
(t2 + τ2)] = |C̃1,0(z2 = 1)|2 after the interaction with two con-
trol pulses will be

P11(t2) = |C̃1,0(1)|2 = ∣∣C1,0(tm)F (2)
2 (1)

∣∣2
+ ∣∣A(12)

2 F (1)
2 (1)

∣∣2 + [δPcoh(t2) + c.c.], (C24)
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where we have∣∣C1,0(tm)F (2)
2 (1)

∣∣2 = sin2(�1/2) cos2(�2/2), (C25)∣∣A(12)
2 F (1)

2 (1)
∣∣2 = sin2(�2/2) cos2(�1/2), (C26)

and interference term

δPcoh(t2) = C1,0(tm)A(12)∗
2 F (2)

2 (1)

= exp{i[δϕ + ϕ̃2,1 + �(t2 − t1)]}

× χ1χ2F (1)
1 (1)F (1)∗

2 (1)

4π2(1 − c1)(1 − c∗
2 )
F (2)

1 (1)F (2)
2 (1), (C27)

where δϕ is a random phase that is acquired by an atom
during the time interval t2 − t1 of free evolution due to the
interaction with bath fields, ϕ̃2,1 = ϕ̃2 − ϕ̃1, ϕ̃p, and con-

stant phases of pth control pulses are defined by setting
B1,2(t ) = ∫ t

t0,tm
dt ′Ḃ2(t ′) as follows: ϕ̃1 = ϕ1 + β1

πτ1
(t0 − t1),

ϕ̃2 = ϕ2 + β2

πτ2
(tm − t2). In (C27) we also used C1,0(tm) =

C̃1(1) exp{ i
4�(tm − t0)}, C̃1(1) = A(12)

1 F (1)
1 (1), and C2,0(tm) =

C̃2(1) exp{− i
4�(tm − t0)}, C̃2(1) = F (2)∗

1 (1).
In the particular case of identical two control pulses (χ1 =

χ2, β1 = β2, τ1 = τ2, and �1 = �2, respectively), we get

P11(t2; �2 = �1)

= 1
2 sin2 �1{1 + cos [δϕ + 2ζ1 + �(t2 − t1)]}, (C28)

where ζ1 is given in Eq. (C16) and the durations of the control
pulses are defined by τ1,2 = δt1,2 in the main text.

[1] L. Allen and J. Eberly, Optical Resonance and Two-level Atoms,
Dover Books on Physics and Chemistry (Dover, New York,
1975), p. 256.

[2] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge
University Press, Cambridge, 1997).

[3] R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, New York,
2003).

[4] N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin,
Quantum repeaters based on atomic ensembles and linear op-
tics, Rev. Mod. Phys. 83, 33 (2011).

[5] S. L. McCall and E. L. Hahn, Self-induced transparency, Phys.
Rev. 183, 457 (1969).

[6] R. Gutiérrez-Cuevas and J. H. Eberly, Vector-soliton storage
and three-pulse-area theorem, Phys. Rev. A 94, 013820 (2016).

[7] C. Greiner, T. Wang, T. Loftus, and T. W. Mossberg, Instabil-
ity and Pulse Area Quantization in Accelerated Superradiant
Atom-Cavity Systems, Phys. Rev. Lett. 87, 253602 (2001).

[8] E. L. Hahn, N. S. Shiren, and S. L. McCall, Application of the
area theorem to phonon echoes, Phys. Lett. A 37, 265 (1971).

[9] S. A. Moiseev, M. Sabooni, and R. V. Urmancheev, Photon
echoes in optically dense media, Phys. Rev. Res. 2, 012026(R)
(2020).

[10] S. A. Moiseev and R. V. Urmancheev, Photon/spin echo in a
fabry–perot cavity, Opt. Lett. 47, 3812 (2022).

[11] J.-H. Kim, S. Aghaeimeibodi, J. Carolan, D. Englund, and E.
Waks, Hybrid integration methods for on-chip quantum pho-
tonics, Optica 7, 291 (2020).

[12] Y. Hibino, Silica-based planar lightwave circuits and their ap-
plications, MRS Bull. 28, 365 (2003).

[13] A. Rodenas and A. K. Kar, High-contrast step-index waveg-
uides in borate nonlinear laser crystals by 3D laser writing,
Opt. Express 19, 17820 (2011).

[14] A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J.
Mitchell, Depressed cladding, buried waveguide laser formed
in a YAG:Nd3+ crystal by femtosecond laser writing, Opt. Lett.
30, 2248 (2005).

[15] N. Sinclair, E. Saglamyurek, M. George, R. Ricken, C. L.
Mela, W. Sohler, and W. Tittel, Spectroscopic investigations of
a Ti:Tm:LiNbO3 waveguide for photon-echo quantum memory,
J. Lumin. 130, 1586 (2010).

[16] E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F.
Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel,
Broadband waveguide quantum memory for entangled photons,
Nature (London) 469, 512 (2011).

[17] S. Marzban, J. G. Bartholomew, S. Madden, K. Vu, and M. J.
Sellars, Observation of Photon Echoes From Evanescently Cou-
pled Rare-Earth Ions in a Planar Waveguide, Phys. Rev. Lett.
115, 013601 (2015).

[18] G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H.
de Riedmatten, Integrated Optical Memory Based on Laser-
Written Waveguides, Phys. Rev. Appl. 5, 054013 (2016).

[19] C. Liu, T.-X. Zhu, M.-X. Su, Y.-Z. Ma, Z.-Q. Zhou, C.-F. Li, and
G.-C. Guo, On-Demand Quantum Storage of Photonic Qubits in
an On-Chip Waveguide, Phys. Rev. Lett. 125, 260504 (2020).

[20] S. Wang, L. Yang, M. Shen, W. Fu, Y. Xu, R. L. Cone, C. W.
Thiel, and H. X. Tang, Er : LiNbO3 with High Optical Coher-
ence Enabling Optical Thickness Control, Phys. Rev. Appl. 18,
014069 (2022).

[21] A. I. Lvovsky, B. C. Sanders, and W. Tittel, Optical quantum
memory, Nat. Photonics 3, 706 (2009).

[22] K. Hammerer, A. S. Sørensen, and E. S. Polzik, Quantum inter-
face between light and atomic ensembles, Rev. Mod. Phys. 82,
1041 (2010).

[23] W. Tittel, M. Afzelius, T. Chaneliére, R. Cone, S. Kröll, S.
Moiseev, and M. Sellars, Photon-echo quantum memory in
solid state systems, Laser Photonics Rev. 4, 244 (2010).

[24] F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten,
C. Simon, and W. Tittel, Prospective applications of optical
quantum memories, J. Mod. Opt. 60, 1519 (2013).

[25] K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard,
V. M. Acosta, J. Nunn, and B. J. Sussman, Quantum memories:
emerging applications and recent advances, J. Mod. Opt. 63,
2005 (2016).

[26] T. Chanelière, G. Hétet, and N. Sangouard, Quantum optical
memory protocols in atomic ensembles, in Advances In Atomic,
Molecular, and Optical Physics, edited by E. Arimondo, L. F.
DiMauro, and S. F. Yelin (Academic, New York, 2018), Vol. 67,
Chap. 2, pp. 77–150.

[27] S. Wehner, D. Elkouss, and R. Hanson, Quantum internet: A
vision for the road ahead, Science 362, eaam9288 (2018).

043708-16

https://doi.org/10.1103/RevModPhys.83.33
https://doi.org/10.1103/PhysRev.183.457
https://doi.org/10.1103/PhysRevA.94.013820
https://doi.org/10.1103/PhysRevLett.87.253602
https://doi.org/10.1016/0375-9601(71)90493-2
https://doi.org/10.1103/PhysRevResearch.2.012026
https://doi.org/10.1364/OL.465434
https://doi.org/10.1364/OPTICA.384118
https://doi.org/10.1557/mrs2003.102
https://doi.org/10.1364/OE.19.017820
https://doi.org/10.1364/OL.30.002248
https://doi.org/10.1016/j.jlumin.2009.12.022
https://doi.org/10.1038/nature09719
https://doi.org/10.1103/PhysRevLett.115.013601
https://doi.org/10.1103/PhysRevApplied.5.054013
https://doi.org/10.1103/PhysRevLett.125.260504
https://doi.org/10.1103/PhysRevApplied.18.014069
https://doi.org/10.1038/nphoton.2009.231
https://doi.org/10.1103/RevModPhys.82.1041
https://doi.org/10.1002/lpor.200810056
https://doi.org/10.1080/09500340.2013.856482
https://doi.org/10.1080/09500340.2016.1148212
https://doi.org/10.1126/science.aam9288


PULSE-AREA THEOREM IN A SINGLE-MODE WAVEGUIDE … PHYSICAL REVIEW A 107, 043708 (2023)

[28] J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, Inte-
grated photonic quantum technologies, Nat. Photonics 14, 273
(2020).

[29] F. Kaneda, F. Xu, J. Chapman, and P. G. Kwiat, Quantum-
memory-assisted multi-photon generation for efficient quantum
information processing, Optica 4, 1034 (2017).

[30] M. Sabooni, Q. Li, S. Kröll, and L. Rippe, Efficient Quantum
Memory using a Weakly Absorbing Sample, Phys. Rev. Lett.
110, 133604 (2013).

[31] M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, Effi-
cient quantum memory for light, Nature (London) 465, 1052
(2010).

[32] D. Schraft, M. Hain, N. Lorenz, and T. Halfmann, Stopped
Light at High Storage Efficiency in a Pr3+ : Y2SiO5 Crystal,
Phys. Rev. Lett. 116, 073602 (2016).

[33] C. W. Thiel, Y. Sun, R. M. Macfarlane, T. Böttger, and
R. L. Cone, Rare-earth-doped LiNbO3 and KTiOPO4(KTP) for
waveguide quantum memories, J. Phys. B: At., Mol. Opt. Phys.
45, 124013 (2012).

[34] E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili,
S. W. Nam, D. Oblak, and W. Tittel, Quantum storage of entan-
gled telecom-wavelength photons in an erbium-doped optical
fibre, Nat. Photonics 9, 83 (2015).

[35] C. Liu, Z.-Q. Zhou, T.-X. Zhu, L. Zheng, M. Jin, X. Liu, P.-Y.
Li, J.-Y. Huang, Y. Ma, T. Tu, T.-S. Yang, C.-F. Li, and G.-C.
Guo, Reliable coherent optical memory based on a laser-written
waveguide, Optica 7, 192 (2020).

[36] A. Seri, G. Corrielli, D. Lago-Rivera, A. Lenhard, H. de
Riedmatten, R. Osellame, and M. Mazzera, Laser-written inte-
grated platform for quantum storage of heralded single photons,
Optica 5, 934 (2018).

[37] M. F. Askarani, M. G. Puigibert, T. Lutz, V. B. Verma, M. D.
Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, Storage
and Reemission of Heralded Telecommunication-Wavelength
Photons using a Crystal Waveguide, Phys. Rev. Appl. 11,
054056 (2019).

[38] A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame,
M. Mazzera, and H. de Riedmatten, Quantum Storage of
Frequency-Multiplexed Heralded Single Photons, Phys. Rev.
Lett. 123, 080502 (2019).

[39] S. A. Moiseev and S. Kröll, Complete Reconstruction of the
Quantum State of a Single-Photon Wave Packet Absorbed by
a Doppler-Broadened Transition, Phys. Rev. Lett. 87, 173601
(2001).

[40] S. A. Moiseev, V. F. Tarasov, and B. S. Ham, Quantum mem-
ory photon echo-like techniques in solids, J. Opt. B: Quantum
Semiclassical Opt. 5, S497 (2003).

[41] B. Kraus, W. Tittel, N. Gisin, M. Nilsson, S. Kröll, and J. I.
Cirac, Quantum memory for nonstationary light fields based on
controlled reversible inhomogeneous broadening, Phys. Rev. A
73, 020302(R) (2006).

[42] M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, Mul-
timode quantum memory based on atomic frequency combs,
Phys. Rev. A 79, 052329 (2009).

[43] V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière,
and J.-L. L. Gouët, Revival of silenced echo and quantum
memory for light, New J. Phys. 13, 093031 (2011).

[44] M. M. Minnegaliev, K. I. Gerasimov, R. V. Urmancheev,
A. M. Zheltikov, and S. A. Moiseev, Linear stark effect in

Y3Al5O12:Tm3+ crystal and its application in the addressable
quantum memory protocol, Phys. Rev. B 103, 174110 (2021).

[45] N. Skryabin, A. Kalinkin, I. Dyakonov, and S. Kulik, Femtosec-
ond laser written depressed-cladding waveguide 2 × 2, 1 ×
2 and 3 × 3 directional couplers in Tm3 + :YAG crystal,
Micromachines 11, 1 (2020).

[46] S. A. Moiseev, Some general nonlinear properties of photon-
echo radiation in optically dense media, Optika i Spek-
troskopiya 62, 302 (1987) [Opt. Spectrosc. 62, 180 (1987)].

[47] R. Urmancheev, K. Gerasimov, M. Minnegaliev, T. Chanelière,
A. Louchet-Chauvet, and S. Moiseev, Two-pulse photon echo
area theorem in an optically dense medium, Opt. Express 27,
28983 (2019).

[48] S. A. Moiseev, Quantum memory for intense light fields in the
photon echo technique, Izv. Ross. Akad. Nauk, Ser. Fiz. 68,
1260 (2004) [Bull. Russ. Acad. Sci. Phys. 68, 1408 (2004)].

[49] P. Goldner, A. Ferrier, and O. Guillot-Noel, Rare Earth-doped
Crystals for Quantum Information Processing (Elsevier, Ams-
terdam, 2015), pp. 1–78.

[50] J.-T. Shen and S. Fan, Theory of single-photon transport in a
single-mode waveguide. I. coupling to a cavity containing a
two-level atom, Phys. Rev. A 79, 023837 (2009).

[51] S. A. Moiseev and W. Tittel, Temporal compression of
quantum-information-carrying photons using a photon-echo
quantum memory approach, Phys. Rev. A 82, 012309
(2010).

[52] D. Roy, C. M. Wilson, and O. Firstenberg, Colloquium:
Strongly interacting photons in one-dimensional continuum,
Rev. Mod. Phys. 89, 021001 (2017).

[53] H. Kogelnik, Theory of Optical Waveguides, in Guided-Wave
Optoelectronics (Springer, Berlin, 1988).

[54] B. Huttner and S. M. Barnett, Quantization of the electromag-
netic field in dielectrics, Phys. Rev. A 46, 4306 (1992).

[55] K. Okamoto, Fundamentals of Optical Waveguides (Elsevier,
Amsterdam, 2021).

[56] E. S. Moiseev and S. A. Moiseev, Scalable time reversal of ra-
man echo quantum memory and quantum waveform conversion
of light pulse, New J. Phys. 15, 105005 (2013).

[57] E. S. Moiseev, A. Tashchilina, S. A. Moiseev, and A. I.
Lvovsky, Darkness of two-mode squeezed light in lambda-type
atomic system, New J. Phys. 22, 013014 (2020).

[58] F. Haake, H. King, G. Schröder, J. Haus, and R. Glauber,
Fluctuations in superfluorescence, Phys. Rev. A 20, 2047
(1979).

[59] G. L. Lamb, Analytical descriptions of ultrashort optical pulse
propagation in a resonant medium, Rev. Mod. Phys. 43, 99
(1971).

[60] W. B. Mims, Phase memory in electron spin echoes, lattice
relaxation effects in CaWO4: Er, Ce, Mn, Phys. Rev. 168, 370
(1968).

[61] R. L. Cone and G. K. Liu, Power-dependent photon echo decay
due to instantaneous diffusion’ in Tb3+ : LiYF4, Bull. Am.
Phys. Soc. 33, 676 (1988).

[62] C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair,
W. Tittel, and R. L. Cone, Measuring and analyzing excitation-
induced decoherence in rare-earth-doped optical materials,
Laser Phys. 24, 106002 (2014).

[63] M. M. Minnegaliev, K. I. Gerasimov, T. N. Sabirov, R. V.
Urmancheev, and S. A. Moiseev, Implementation of an

043708-17

https://doi.org/10.1038/s41566-019-0532-1
https://doi.org/10.1364/OPTICA.4.001034
https://doi.org/10.1103/PhysRevLett.110.133604
https://doi.org/10.1038/nature09081
https://doi.org/10.1103/PhysRevLett.116.073602
https://doi.org/10.1088/0953-4075/45/12/124013
https://doi.org/10.1038/nphoton.2014.311
https://doi.org/10.1364/OPTICA.379166
https://doi.org/10.1364/OPTICA.5.000934
https://doi.org/10.1103/PhysRevApplied.11.054056
https://doi.org/10.1103/PhysRevLett.123.080502
https://doi.org/10.1103/PhysRevLett.87.173601
https://doi.org/10.1088/1464-4266/5/4/356
https://doi.org/10.1103/PhysRevA.73.020302
https://doi.org/10.1103/PhysRevA.79.052329
https://doi.org/10.1088/1367-2630/13/9/093031
https://doi.org/10.1103/PhysRevB.103.174110
https://doi.org/10.3390/mi11010001
https://doi.org/10.1364/OE.27.028983
https://doi.org/10.1103/PhysRevA.79.023837
https://doi.org/10.1103/PhysRevA.82.012309
https://doi.org/10.1103/RevModPhys.89.021001
https://doi.org/10.1103/PhysRevA.46.4306
https://doi.org/10.1088/1367-2630/15/10/105005
https://doi.org/10.1088/1367-2630/ab5fac
https://doi.org/10.1103/PhysRevA.20.2047
https://doi.org/10.1103/RevModPhys.43.99
https://doi.org/10.1103/PhysRev.168.370
https://doi.org/10.1088/1054-660X/24/10/106002


S. A. MOISEEV et al. PHYSICAL REVIEW A 107, 043708 (2023)

optical quantum memory protocol in the 167Er3+ : Y2SiO5 crys-
tal, JETP Lett. 115, 720 (2022).

[64] T. Chanelière, M. Bonarota, V. Damon, R. Lauro, J. Ruggiero,
I. Lorgere, and J.-L. L. Gouët, Light storage protocols in
Tm:YAG, J. Lumin. 130, 1572 (2010), special Issue based on
the Proceedings of the Tenth International Meeting on Hole
Burning, Single Molecule, and Related Spectroscopies: Science
and Applications (HBSM 2009), issue dedicated to Ivan Lorg-
ere and Oliver Guillot-Noel.

[65] See code and simulation details at https://github.com/
Eugene91/YAG-waveguide.

[66] S. A. Moiseev and M. I. Noskov, The possibilities of the quan-
tum memory realization for short pulses of light in the photon
echo technique, Laser Phys. Lett. 1, 303 (2004).

[67] N. Sangouard, C. Simon, M. Afzelius, and N. Gisin, Analysis of
a quantum memory for photons based on controlled reversible
inhomogeneous broadening, Phys. Rev. A 75, 032327 (2007).

[68] F. T. Hioe, Solution of bloch equations involving amplitude and
frequency modulations, Phys. Rev. A 30, 2100 (1984).

[69] M. M. Minnegaliev, I. V. Dyakonov, K. I. Gerasimov, A. A.
Kalinkin, S. P. Kulik, S. A. Moiseev, M. Y. Saygin, and R. V.
Urmancheev, Observation and investigation of narrow optical

transitions of 167Er3+ ions in femtosecond laser printed waveg-
uides in 7LiYF4 crystal, Laser Phys. Lett. 15, 045207 (2018).

[70] E. S. Moiseev, A. Tashchilina, S. A. Moiseev, and B. C.
Sanders, Broadband quantum memory in a cavity via zero spec-
tral dispersion, New J. Phys. 23, 063071 (2021).

[71] J. Dajczgewand, R. Ahlefeldt, T. Böttger, A. Louchet-Chauvet,
J.-L. Le Gouët, and T. Chanelière, Optical memory bandwidth
and multiplexing capacity in the erbium telecommunication
window, New J. Phys. 17, 023031 (2015).

[72] G. T. Campbell, O. Pinel, M. Hosseini, T. C. Ralph, B. C.
Buchler, and P. K. Lam, Configurable Unitary Transformations
and Linear Logic Gates using Quantum Memories, Phys. Rev.
Lett. 113, 063601 (2014).

[73] S. E. Beavan, M. P. Hedges, and M. J. Sellars, Demonstration of
Photon-Echo Rephasing of Spontaneous Emission, Phys. Rev.
Lett. 109, 093603 (2012).

[74] D. Walls and G. Milburn, Quantum Optics (Springer, Berling,
2008).

[75] V. I. Rupasov, Contribution to the dicke superradiance theory.
exact solution of the quasi-one-dimensional quantum model,
Zh. Eksp. Teor. Fiz. 83, 1711 (1982) [Sov. Phys.–JETP 56, 989
(1982)].

043708-18

https://doi.org/10.1134/S0021364022800049
https://doi.org/10.1016/j.jlumin.2009.12.025
https://github.com/Eugene91/YAG-waveguide
https://doi.org/10.1002/lapl.200310071
https://doi.org/10.1103/PhysRevA.75.032327
https://doi.org/10.1103/PhysRevA.30.2100
https://doi.org/10.1088/1612-202X/aaa6a6
https://doi.org/10.1088/1367-2630/ac0754
https://doi.org/10.1088/1367-2630/17/2/023031
https://doi.org/10.1103/PhysRevLett.113.063601
https://doi.org/10.1103/PhysRevLett.109.093603

