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Gain-compensated cavities for the dynamic control of light-matter interactions
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We propose an efficient approach for actively controlling the Rabi oscillations in nanophotonic emitter-cavity
analogs based on the presence of an element with optical gain. Inspired by recent developments in parity-time
(PT )-symmetry photonics, we show that nano- or microcavities where intrinsic losses are partially or fully
compensated by an externally controllable amount of gain offer unique capabilities for manipulating the
dynamics of extended (collective) excitonic emitter systems. In particular, we discuss how one can drastically
modify the dynamics of the system, increase the overall occupation numbers, enhance the longevity of the
Rabi oscillations, and even decelerate them to the point where their experimental observation becomes less
challenging. Furthermore, we show that there is a specific gain value that leads to an exceptional point,
where both the emitter and cavity occupation oscillate practically in phase, with occupation numbers that
can significantly exceed unity. By revisiting a recently introduced Rabi-visibility measure, we provide robust
guidelines for quantifying the coupling strength and achieving strong-coupling with adaptable Rabi frequency
via loss compensation.
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I. INTRODUCTION

The possibility to control the emission of light from nat-
ural or artificial light sources at the nanoscale has attracted
considerable interest [1–7] ever since Purcell showed that
the dynamics of an emitter is strongly affected by its envi-
ronment [8]. The tremendous opportunities that such control
enables have kept inspiring novel designs for efficient cavities,
appropriately tailored depending on the emitters under consid-
eration. Mirror cavities, the prototypical templates in cavity
quantum electrodynamics [9,10], have long been employed
as the most straightforward choice when considering atoms
[11], while Bragg reflectors and photonic crystals constitute
a natural option for artificial emitters such as quantum wells
and dots [12,13]. More recently, excitons in molecular aggre-
gates or transition-metal dichalcogenides (TMDs) [14] have
been introduced as emitters with strong, collective (i.e., ef-
fective) dipole moments, leading to the emergence of, among
others, plasmonic [15–20] and Mie-resonant [21–24] nanos-
tructures as suitable effective cavities. What really determines
the appropriateness of the cavity in all these endeavors is the
linewidth of the emitter: the optical mode must be chosen
to have a comparable linewidth, and the coupling strength
must exceed the damping rates of the individual components
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[1]. Nevertheless, in addition to this fundamental requirement,
various other optical properties that might characterize the
cavity can readily open new routes for the manipulation of
the strong-coupling response [25–28].

A major boost in the quest for photonic templates with
novel, possibly “exotic,” optical properties was recently pro-
vided by the adoption of the concept of non-Hermiticity [29].
While initially introduced in the context of nuclear physics,
non-Hermitian Hamiltonians eventually found a fertile play-
ground in photonics [30], especially after the realization that
they can still have real eigenvalues, as long as they commute
with the parity-time (PT ) operator [31]. Their appeal in pho-
tonics is due to the fact that PT -symmetric potentials can be
achieved by incorporating a gain element—widely available
in optics since the development of lasers—that compensates
the intrinsic loss of the system [32,33]. Explorations of PT
symmetry have often revealed surprising responses and in-
triguing novel designs, including unidirectional propagation
[34–37] and cloaking [38,39], lasers [40–42], gyroscopes
[43], nanoantennas [44], and potentially powerful sensors
operating at the exceptional point (EP) [45–49], i.e., the condi-
tion under which the eigenstates of the Hamiltonian coalesce
and the corresponding eigenvalues are equal.

Inspired by these developments and the richness of optical
phenomena that can benefit from loss-gain combinations, we
explore here the possibility of designing optical cavities in
which the emergence and time evolution of strong coupling
can be dynamically controlled through the externally provided
gain. We theoretically show that by increasing the amount
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FIG. 1. Schematic of the explored strong-coupling cavities: a
typical cavity formed by two mirrors, supporting a single optical
mode with frequency ωc and damping rate γc. Gain is provided to
it externally, at a rate γg. A QE system with a composite-bosonic
character, formed by collective excitonic resonances in extended sys-
tems such as TMDs (as shown in the zoom-in sketch), with transition
frequency ωx and damping rate γx, is placed between the mirrors and
couples to the cavity mode with coupling constant g.

of gain it is possible to drive the exciton-cavity system to
increase the number of Rabi oscillations that can be measured
before damping prevails and the system completely loses its
coherence. We revisit a recently introduced visibility measure
[22] and provide a detailed gain-coupling map that quantifies
the different coupling regimes; based on this, one can manip-
ulate the dynamics of the system and accelerate or decelerate
the Rabi oscillations to render their period more easily re-
solvable in experiments. Backtracking the visibility map, one
can then extrapolate to infer the properties of the coupled
system in the absence of gain. Finally, we show that by further
increasing the gain along specific paths, one can reach an
EP, where the dynamics of the system is completely altered,
and the occupations of both emitter-cavity polariton modes
significantly exceed unity and oscillate nearly in phase. This
set of different behaviors indicates that inclusion of gain can
open new ways for tailoring the dynamics of coupled emitter-
cavity architectures, with both fundamental understanding and
practical applications in mind. Analogous phenomena have
already been observed for optical [50] and magnonic [51]
waveguides operating at the EP, but here, we generalize the
treatment for any kind of collective polaritonic system. We
anticipate that related experiments can readily benefit from the
techniques developed in the context of PT symmetry [30].

II. HAMILTONIAN DESCRIPTION

We focus on extended, collective excitonic states like those
encountered in J aggregates, individual organic molecules,
and TMDs coupled to a (possibly open) micro- or nanocavity
such as a distributed Bragg reflector, a metallic nanoparticle,
or simply a pair of mirrors, as suggested by the schematic
in Fig. 1. Expressing all the interactions in terms of the ac-
tual Hamiltonian of the system thus becomes cumbersome
since one should include interaction among excitons [52],
together with the appropriate Lindblad operators to account
for both loss and gain [53]. We therefore restrict ourselves
to a toy-model description that essentially follows classical
coupled-mode theory [54]. We thus formulate the coupling
problem in terms of a (semiclassical) interaction Hamiltonian.

To make the description as widely applicable as possible,
we consider a generic excitonic material, modeled by a sim-
ple Lorentzian permittivity, with transition frequency ωx and
intrinsic linewidth γx, coupled to a cavity with resonance
frequency ωc and damping rate γc. Within this description, the
dynamics is then governed by the Schrödinger-like equation⎛
⎝ωc − i

γc

2
+ i

γg

2
g

g ωx − i
γx

2

⎞
⎠

⎛
⎝a(t )

b(t )

⎞
⎠ = i

∂

∂t

⎛
⎝a(t )

b(t )

⎞
⎠, (1)

where g is the coupling constant and γg is a possible gain rate
added to the cavity. What we aim to explore here is whether,
and to what extent, the latter can be used as a means for
loss compensation that would eventually enhance the visi-
bility of Rabi-like oscillations in the strong-coupling regime.
A schematic of a typical cavity composed of two mirrors is
shown in Fig. 1. A quantum emitter (QE), sketched in the
figure as a generic bosonic [55] system that could correspond
to the TMD shown in the zoom, characterized by an overall
effective emitter dipole moment, is placed between the two
resonators and couples to a single cavity mode when the
detuning ωx − ωc is sufficiently small. In addition to the usual
characteristics of such cavities, as encountered in quantum
optics, a gain element is also included here (Fig. 1), e.g.,
by the inclusion of an active material that does not interact
with the QE or via asymmetric pumping [61]. While, for our
purposes, it is sufficient to accept that some gain mechanism
can exist, it should be acknowledged that precise control of
the gain rate is, in practice, a challenging task which re-
quires carefully designed experiments appropriately adapted
to the gain medium of choice, which, ideally, should have a
linewidth comparable to those of the emitter and the cavity.
Possibilities include electrochemical doping for quantum dots
[62] and TMDs [63], spatial modulation [64], state-resolved
optical pumping [65], and host-guest chemistry [66].

To describe the dynamics of the coupled system, we first
assume, for simplicity, a perfect frequency alignment between
the cavity and the exciton; this zero detuning is what most
experiments try to achieve to better evaluate the coupling
properties [67–69]. Without loss of generality, we can then
measure all energies with respect to this frequency, i.e., set
ωc = ωx = 0. We focus on time-harmonic solutions of the
form e−iωt and introduce frequencies and times normalized
to the linewidth of the exciton system: � ≡ 2ω/γx and τ ≡
γxt/2. Likewise, we introduce the normalized coupling G ≡
2g/γx and the normalized damping rate � ≡ (γg − γc)/γx. In
what follows, we will explore the dynamics as � varies from
−1 (e.g., a cavity in the absence of gain with a linewidth
matching that of the QE) to +1 (i.e., where the gain not
only compensates the cavity losses but also exactly balances
the broadening of the exciton), thus producing long-lived
Rabi-like oscillations. The time-harmonic solutions are now
governed by the dimensionless eigenvalue problem(

i� G
G −i

)(
a(τ )
b(τ )

)
±

= �±

(
a(τ )
b(τ )

)
±
, (2)

whose diagonalization yields the eigenfrequencies

�± = − i

2
(1 − �) ± 1

2

√
4G2 − (1 + �)2. (3)
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FIG. 2. Rabi-oscillation visibility quality factor QR as a function of the relative gain � and relative coupling G. Partial loss compensation
occurs whenever � > −1, with � = 0 corresponding to the case of a gain-balanced cavity (γg = γc) and � = 1 corresponding to the case
of fully gain-compensated exciton-cavity system (i.e., γg = γc + γx). When 2G = |� + 1| (blue dashed lines), the two solutions of Eq. (2)
coalesce and give rise to EPs; the one at � = G = 1 is particularly important, and all QR isocontours cross it. The blue shaded region (OD) is
characterized by critical damping, while the red shaded region (AMP) exhibits amplification. The weak-coupling regime (WC, green shaded
region) and the strong-coupling regime (SC, white region) are separated by the QR = 1 curve. Black curves indicate isocontours corresponding
to different QR, as indicated by the labels in black; red dotted curves indicate isofrequency contours (constant �R), with the (normalized) values
of the frequencies labeled in red. Open circles, blue triangles, and red squares correspond to specific G and � combinations discussed in the
text.

In these dimensionless parameters, the Rabi-like frequency
�R = �+ − �− becomes

�R =
√

4G2 − (1 + �)2, (4)

which is a generalization of the familiar result �R = 2G (for
only � = −1). However, the introduction of gain also opens
the possibility for an EP, the condition being � = ±2G − 1
(which corresponds to γg = ±4g + γc − γx). This condition
dictates the transition between an oscillating system and an
overdamped (OD) system, shown by the blue dashed line in
the coupling map in Fig. 2. When this is fulfilled, the square
root vanishes, leading to vanishing splitting �R = 0. In fact,
the fulfillment of the aforementioned condition, i.e., 2G =
|� + 1|, corresponds to a manifold of exceptional points,
where the PT symmetry leads to coalescent eigenstates with
entirely real eigenvalues �± = 0. Hereafter, in our analysis
we focus on one such EP, namely, that defined by G = � = 1,
which is henceforth denoted EP∗ and corresponds to a sce-
nario where the gain exactly balances the combined losses
associated with the linewidths of the cavity and emitter. As
we shall see below, this point has intriguing consequences
for the dynamics of the ensuing light-matter interaction. Fi-
nally, based on Eq. (3), we can define the amplification region
through Im�± > 0. One such amplification region, for which
� < 1 and (1 + �)2 > 4G2, is highlighted in light red in the

top left corner of Fig. 2; nevertheless, it still lies in the OD
regime.

III. VISIBILITY MEASURE

Before considering specific values of the normalized
gain and exploring how they affect the QE-cavity cou-
pling, it is useful to introduce a visibility measure
for the Rabi oscillations in terms of the quality fac-
tor QR = Re[�− − �+]/Im[�− + �+]. Such quality factors
have already been introduced in the literature to deal with
gainless strongly coupled systems [22,70], but here, we gener-
alize their applicability to the case of cavities with gain. From
Eq. (3), we straightforwardly obtain (while also assuming
2G � |1 + �|)

QR =
√

4G2 − (1 + �)2

1 − �
=

√
(4g)2 − (γx + γg − γc)2

γx − γg + γc
. (5)

In the spirit of ring-down spectroscopy [71], this quality factor
quantifies the number of “round trips,” i.e., the number of
resolvable oscillations of light between the cavity and the
emitter. In passing, we emphasize how the linewidths are
naturally added up in accordance with Matthiessen’s rule for
the addition of scattering rates [72]. Introduction of this mea-
sure for the visibility of Rabi-like oscillations allows us to
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TABLE I. Strong-coupling experiments sorted by increasing QR. The similarity sign (∼) is used when the data listed here are not mentioned
explicitly by the authors of the corresponding reference but are roughly estimated in this paper. In all of these experiments, γg = 0, and thus,
� = −γc/γx.

Ref. Cavity Quantum emitter g (meV) γx (meV) γc (meV) G � QR

[73] Localized plasmon resonance TMD exciton 45 50 110 1.80 −2.2 1.1
[69] Localized plasmon resonance TMD exciton 64 28 170 4.57 −6.07 1.1
[17] Localized plasmon resonance J-aggregate exciton 81 100 109 1.62 −1.09 1.6
[74] Bragg mirror Halide perovskite 48 90 25 1.06 −0.28 1.6
[68] Plasmon-lattice resonance J-aggregate exciton 137.5 80 200 3.44 −2.50 1.9
[75] Semiconductor microcavity Organic semiconductor 80 90 22 1.77 −0.24 2.8

exciton
[19] Localized plasmon resonance Dye-molecule exciton 152.5 85 122 3.59 −1.44 2.9
[15] Surface-plasmon resonance J-aggregate exciton 90 50 70 3.6 −1.4 3.0
[67] Localized plasmon resonance J-aggregate exciton 200 100 150 4 −1.5 3.2
[16] Surface-plasmon resonance J-aggregate exciton 125 ∼0.66 ∼140 380 −213 3.4
[76] Plasmon-lattice resonance J-aggregate exciton ∼350 ∼20 ∼200 37.5 −10 4
[77] Terahertz metamaterial 2DEG cyclotron ∼4.1 ∼0.41 ∼0.12 20 −0.29 31

transition
[78] Semiconductor microcavity 2DEG intersubband 7 5 15 5.6 −3 45

transition
[79] Superconducting microcavity Atomic beam 2.9 × 10−8 2.1 × 10−9 1.7 × 10−12 28 −8.0 × 10−4 56
[80] Superconducting microcavity Circular Rydberg atoms 1.0 × 10−7 2.1 × 10−11 3.0 × 10−9 1.0 × 104 −145 137
[81] Mirror cavity Bose-Einstein condensate 1.3 × 10−3 1.2 × 10−5 5.4 × 10−6 213 −0.4 298

rigorously discuss the weak-coupling (WC) versus strong-
coupling regimes. Strong coupling occurs for QR > 1, corre-
sponding to G >

√
(1 + �2)/2 (white region in Fig. 2), which

is perfectly in line with the more common definition that the
splitting should exceed the linewidth [1]. On the other hand,
for QR < 1 the dynamics will have all the characteristics as-
sociated with the WC regime (light-green area in the left part
of Fig. 2); as QR approaches zero, the system enters either an
OD regime (blue triangular regions on the left in Fig. 2) or the
regime with net amplification, depending on the relative gain.
This is summarized in the parameter phase space of Fig. 2,
which provides a direct and intuitive guide for manipulating
the coupling via application of gain. The black curves cor-
respond to isocontours of QR (values given with numbers in
black), while the dotted red curves are isofrequency contours
for the �R values given at the bottom of each curve in red.

To evaluate the usefulness of QR, it is insightful to examine
how state-of-the-art experiments from the literature classify
according to this measure. Such a comparison is done in
Table I for a variety of QEs and cavities, most of which
employ surface plasmons or localized plasmon resonances
in nanoparticles as cavities, except for a one-dimensional
photonic crystal in Ref. [75] and quantum optical systems in
Refs. [79–81]. None of the experiments listed in Table I used
gain, meaning that the listed � corresponds to the normalized
damping rate of the cavity alone (i.e., � = −γc/γx). Using this
� together with γx, one can then straightforwardly estimate
whether the usual strong-coupling criterion

�R >
γx + γc

2
(6)

holds. This criterion is not normalized to any intrinsic prop-
erty of the system, and it is therefore difficult to use it to
compare different types of strong-coupling configurations,
whereas QR is properly normalized and can then be applied

to a wide variety of systems. Hence, the predictions of Eq. (6)
do not strictly follow the computed QR appearing in Table I.

Inspecting Table I, it appears that the highest QR (�3)
for nanophotonic systems are still achieved by architec-
tures employing J aggregates coupled to plasmonic systems
[15,16,67]. This excellent performance is related to the high
out-of-plane dipole moments of the J-aggregated molecules
and the intense near fields provided by the plasmonic cav-
ities. TMD-based systems, on the other hand, seem to be
the most poorly performing at the moment. This has to do
both with the fact that such activities have only recently
emerged, leaving considerable room for improvement, and
with the fact that the effective dipole moment associated
with excitons in these two-dimensional (2D) materials lie
predominantly in plane, making the coupling with any out-
of-plane cavity mode less efficient. In this respect, 2D halide
perovskites, with their dipole moments oriented out of plane
[82], might provide an efficient alternative for 2D polari-
tonics in the future [74,83]. Similarly, high-quality factors
are also obtained for emitters based on 2D electron gases
(2DEGs) in the case of either intersubband transitions [78]
or cyclotron transitions [77]. Nevertheless, despite the re-
cent advances in nanophotonics, the highest performance in
terms of QR lies still in the quantum-optical domain, in-
volving ultrahigh-finesse (e.g., superconducting) cavities or
Rydberg atoms. This is to be expected since in those plat-
forms the linewidths of both cavities and QEs can be very
small, and all the experiments in Refs. [79–81] have been
carried out at cryogenic temperatures. Of course, the require-
ment for such conditions and the costs that accompany them
were one of the main motivations for shifting attention to-
wards room-temperature nanophotonics in the first place. One
should thus always keep in mind the specific purpose that
any new strong-coupling configuration would serve and find
the best balance between performance and cost. In passing,
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we should also mention that the values of relative � that
we obtain by analyzing the data reported in Refs. [79–81]
are rather unconventional and unexpected (according to our
previous definition, values below −1 are expected for sys-
tems that are not externally pumped, while values between
−1 and 0 correspond to the presence of some kind of gain);
these experiments typically involved single atoms and/or
photons, and adoption of our QR measure should be done
more judiciously.

IV. TIME EVOLUTION

In order to further substantiate the usefulness of the above
visibility measure—also in the time domain—and to clearly
display that the parameter space in Fig. 2 indeed quantifies
the weak- versus strong-coupling regimes and the visibility
of Rabi oscillations in the latter case, we next consider the
time evolution of the cavity and emitter occupation numbers
(herein not normalized due to the semiclassical incorporation
of gain). Starting with Eq. (1), the time evolution can be
solved straightforwardly (see the Appendix). For the initial
conditions of an empty cavity and an excited emitter, i.e.,
a(0) = 0 and b(0) = 1, we find

|a(τ )|2 = 4G2

�2
R

e− �Rτ

QR sin2

(
1

2
�Rτ

)

= 2G2

�2
R

e− �Rτ

QR [1 − cos(�Rτ )], (7a)

|b(τ )|2 = e− �Rτ

QR

[
cos(�Rτ ) − (1 + �)

�R
sin(�Rτ )

]
+ |a(τ )|2.

(7b)

From these exact analytic expressions, it is unambiguously
clear that the occupation numbers oscillate with a period
governed solely by �R, while only a number of QR oscilla-
tions are visible, as a consequence of the overall exponential

decay factor e− �Rτ

QR . Thus, our introduction of QR is more
than a convenient parametrization—it is the unique measure
that emerges from a systematic dimensionless formulation of
the problem. We emphasize that, while, initially, |a(0)|2 +
|b(0)|2 = 1, there is no such conservation after a finite time.
This is always anticipated in realistic systems due to the
dispersive and lossy nature of the cavity and the QE, but in
our case, because of the presence of gain, the sum of the two
occupation numbers can and, indeed, does exceed unity. In
what follows we will explore the dynamics of Eqs. (7) for
different limits of the parameter space depicted in Fig. 2 and
discuss how the presence of gain can drastically affect the
dynamics of the problem.

A. Weak-coupling dynamics

In the weak-coupling regime, with QR � 1, the general
solution of Eq. (7) can be significantly simplified. This is the
Weisskopf-Wigner regime [84], where the cavity exhibits an
initial quadratic rise,

|a(τ )|2 ≈ (Gτ )2e− �Rτ

QR , (8a)

where G naturally determines the rate of growth, while the
accompanying initial dynamics of the QE is characterized by

(a) (b) (c)

(d) (e) (f )
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Γ = -1
R

Q  = 1

Γ = -0.35
R
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Γ = 0.35
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Γ = -1
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Q  = 5

Γ = -0.189
R

Q  = 7.3

Γ = 0.2
R

G  = 0.75

G  = 3

z

z

FIG. 3. Top: dynamics of the occupation numbers |b(τ )|2 (red
dashed curves) and |a(τ )|2 (blue solid curves), with initial condi-
tions |b(0)|2 = 1 and |a(0)|2 = 0, for three cases with G = 0.75
(weak-coupling regime) and (a) � = −1.0, (b) � = −√

2/4, and
(c) � = √

2/4 (see open circles in Fig. 2). Bottom: similar dynamics
for the strong-coupling regime with G = 3 and (d) � = −1, (e) � =
−0.189, and (f) � = 0.2 (see red squares in Fig. 2). Black curves
in the bottom three panels show the exponential decay envelope of
Eqs. (9).

an exponential decay,

|b(τ )|2 ≈ e− �Rτ

QR = e−(1−�)τ . (8b)

In Figs. 3(a)–3(c) we show this dynamics for three values
of � along the G = 0.75 line in Fig. 2 (open circles). In
Fig. 3(a), gain is completely absent (� = −1), and the system
is entirely characterized by its intrinsic loss, leading to the
anticipated exponential decay. Figure 3(b) corresponds to � =
−√

2/4 � −0.35, which, according to Eq. (5) translates into
the first of the two points with QR = 1, the one still dominated
by loss (i.e., with � < 0). The emergence of the first oscilla-
tion in |b(τ )|2 is, indeed, (hardly) discernible in the red dashed
curve. Finally, Fig. 3(c) corresponds to � = √

2/4 � 0.35,
i.e., the second condition for which QR = 1 in Fig. 2; the
external gain has now started driving the system, so that a
full oscillation in |b(τ )|2 can be observed before its eventual
decay. According to Fig. 2, it is feasible to drive the system
into the strong-coupling regime, just between these two points
(before the QR = 1 curve bends back again for higher gain).
On the other hand, keeping G constant, say, at 0.75, and
moving vertically in Fig. 2 provide a recipe for tailoring the
Purcell factor in the weak-coupling regime. The Purcell factor
expresses the acceleration of the spontaneous emission rate
in a cavity; the rate itself is essentially proportional to the
square of the coupling strength and inversely proportional to
the damping of the cavity [85]. Consequently, for a fixed G,
Fig. 2 suggests that the spontaneous emission rate increases,
leading to a larger Purcell factor. Finally, it is also important
to observe that the period of the oscillations has increased (in
accordance with the shape of the isofrequency contours in this
region) and the two populations are more in phase; this will
become relevant again in the subsequent analysis.
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B. Strong-coupling dynamics

Deep into the strong-coupling regime, where G 	 1,
Eqs. (7) simplify to

|a(τ )|2 � e− �Rτ

QR sin2
(

1
2�Rτ

)
, (9a)

|b(τ )|2 � e− �Rτ

QR cos2
(

1
2�Rτ

)
. (9b)

Here, we clearly see how the two occupation numbers evolve
fully out of phase; that is, energy bounces back and forth
between the excitonic component and the cavity while, of
course, still being exponentially damped over time. In turn,

these expressions imply that |a(τ )|2 + |b(τ )|2 � e− �Rτ

QR . This
is the common strong-coupling dynamics [84]. Here, it is
immediately evident that QR quantifies the number of oscilla-
tions before reaching full relaxation: what the addition of gain
achieves is to increase the number of oscillations that are vis-
ible before complete decay. Corresponding results are shown
in Figs. 3(d)–3(f) for G = 3 (red squares in Fig. 2). When the
system is not compensated [� = −1; Fig. 3(d)], three oscilla-
tions are observable in the dynamics (the third is only just visi-
ble). By increasing the amount of gain provided to the system,
one can increase the longevity of the Rabi oscillations and
move vertically in the map of Fig. 2 (red squares), leading to
more oscillations (still dominated by the same Rabi frequency,
unlike in the previous case, as one can anticipate by observing
the corresponding isofrequency contour, which is nearly ver-
tical) that can be observed. The anticipated exponential decay
is demonstrated in all three cases by the black curves.

C. Coalescing dynamics

A less explored special case that becomes relevant only in
the kind of cavities with gain that we study here concerns the
dynamics in the vicinity of an EP associated with PT symme-
try. Looking at Eqs. (7), we notice that, while |a(τ )|2 ∝ �−2

R ,
the |b(τ )|2 part contains terms scaling as �0

R, �−1
R , and �−2

R .
Approaching EP∗ (i.e., the EP for which G = � = 1), where
�R → 0, the �−2

R contribution dominates, and consequently,
|b(τ )|2 → |a(τ )|2. This implies an intriguing in-phase time
evolution of the occupation numbers, which is a remarkable
consequence of PT symmetry and the coalescing eigenstates
at EPs.

To see how the dynamics changes as EP∗ is approached,
we follow in Fig. 4 the QR = 2 curve for increasing � (see
blue triangles in Fig. 2). In Figs. 4(a)–4(c), the composite
cavity is still lossy overall. In all cases, two oscillations are
observed (the second is one barely observed), as expected,
but their period increases as the provided gain increases, in
accordance with the behavior of the weakly coupled system in
Fig. 3. This behavior could be immediately anticipated based
on the isofrequency contours in Fig. 2: following the QR = 2
line means crossing several of the dotted red contours, with
the frequency decreasing as gain increases. In Figs. 4(d)–4(f)
the system is practically externally driven by the gain. As the
gain increases and EP∗ is approached, the Rabi oscillations
decelerate further, both populations increase beyond the initial
condition of unity, and their phase difference becomes ever
smaller. Near EP∗ (which cannot be reached exactly, so we
can approach it only adiabatically), both populations oscillate
practically in phase and coincide in their maximum values;

(a) (b) (c)

(d) (e) (f )

Q =2
R

Γ = -1 Γ = -0.5 Γ = 0

Γ = 0.5 Γ = 0.75 Γ = 0.99

z

z
Q =2

R

FIG. 4. Dynamics of the occupation numbers |b(τ )|2 (red dashed
curve) and |a(τ )|2 (blue solid curve), with initial conditions |b(0)|2 =
1 and |a(0)|2 = 0, for six cases on the QR = 2 contour with (a) � =
−1, (b) � = −0.5, (c) � = 0, (d) � = 0.5, (e) � = 0.75, and (f) � =
0.99; see blue triangles in Fig. 2.

the system is driven externally and has approached the net
amplification regime.

V. RABI-OSCILLATION RETRIEVAL

The gain-induced changes in the dynamics discussed above
suggest that one might be able to use gain to characterize the
time evolution of the system even if its initial Rabi oscillations
are too fast to be experimentally traceable (e.g., as in typical
plasmon-exciton coupling systems where �R can be substan-
tial, even though the corresponding QR are often modest due
to the sizable γc). To this end, we plot in Fig. 5 the period of
the oscillations as a function of the externally provided gain
for couplings ranging from G = 1 to 2.5. As the relative gain
increases, one moves vertically along Fig. 2, meaning that QR

is expected to increase rapidly, especially for relatively small
G, for which the isofrequency contours are more curved. At
the same time, following the previous discussion, the period
of the oscillations is also expected to increase since it is
just T = 2π/�R, with �R given by Eq. (4). This is, indeed,
shown in Fig. 5(a) for four cases of relatively small (but larger
than unity) G. One immediately observes that the weaker the
coupling is, the more it can be affected by the exertion of
gain, again in agreement with the isofrequency contours in
Fig. 2. Three typical examples of the dynamics are shown in
Figs. 5(b)–5(d) for G = 2 (along the vertical green dashed line
in the middle of Fig. 2), where the relative gain increases from
� = −1.0 (no gain) to � = 0 (fully compensated cavity) and
� = 0.99 (gain-dominated cavity). As discussed above, not
only does the number of observable Rabi oscillations increase,
but they also decelerate (i.e., their period increases), while,
eventually, the populations exceed unity, as expected.

What one can immediately observe in the dynamics of
Fig. 5(a) is that the period of the oscillations follows an
inverse-square dependence on �, as expected from Eq. (4) and
as one can retrieve by calculating specific examples of dynam-
ics. This suggests a way to deduce the period of Rabi oscilla-
tions in ultrafast QE-cavity systems, where the oscillations,
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(b) (c) (d)

(a) G = 1

z

z

G = 1.5
G = 2
G = 2.5

G = 2

FIG. 5. (a) Normalized period of the Rabi oscillations for a
QE-cavity system with G equal to 1 (solid red line), 1.5 (dashed
green line), 2 (dotted light-blue line), and 2.5 (dash-dotted blue
line) as a function of the externally provided normalized gain �.
The period clearly follows an inverse square-root law, in agreement
with Eq. (4). Time dynamics of the occupation numbers |b(τ )|2 (red
dashed curves) and |a(τ )|2 (blue solid curves), with initial conditions
|b(0)|2 = 1 and |a(0)|2 = 0, for G = 2 and (b) � = −1, (c) � = 0,
and (d) � = 0.99.

with periods of a few femtoseconds, cannot be resolved with
current instruments. But in a loss-compensated cavity, where
the gain is externally controlled, one can increase the period
of the oscillations to the point where the instrument resolution
allows clear observation of the dynamics and then extrapolate
to the expected value in the absence of gain. Gain-dominated
cavities thus provide the means to not only manipulate the
dynamics of the QE-cavity system but also potentially char-
acterize it through gradual modification of the provided gain.

VI. CONCLUSION

We have analyzed the dynamics of QEs coupled to optical
cavities that can be controlled via externally provided gain.
Based on a general Rabi-visibility criterion that quantifies the
number of oscillations that one should expect to observe in an
experiment, we established three different coupling regimes,
namely, weak, strong, and coalescing. We showed that the
provided gain affects these three regimes differently. When
the coupling strength G is large, the dynamics (particularly
the period of Rabi oscillations) is not considerably affected
by gain, and only the populations of the ground and excited
states change, being allowed to exceed unity. On the other
hand, for weak and intermediate coupling strengths, externally
pumping the system eventually governs the dynamics, and the
period of the Rabi oscillations increases, suggesting that one
could use gain to resolve ultrafast dynamics by controllably
and reversibly accelerating and decelerating the oscillations.
Finally, in the coalescing regime, near the EP of the result-
ing PT -symmetric cavity, all system dynamics is completely

governed by gain, both populations oscillate nearly in phase,
and they are allowed to dramatically exceed unity. Such
dynamics opens up new possibilities for the design of dynam-
ically controlled cavities for strong-coupling realizations.
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APPENDIX: DETAILS ON TIME EVOLUTION

The dynamics of the coupled QE-cavity system are gov-
erned by the linear system typified by Eq. (1). Under the
conditions considered in the main text (i.e., ωc = ωx = 0) and
using the dimensionless quantities introduced there, we have

∂

∂τ

(
a(τ )
b(τ )

)
=

(
� −iG

−iG −1

)(
a(τ )
b(τ )

)
, (A1a)

which we write compactly as

ẋ(τ ) = A x(τ ). (A1b)

The determination of the time evolution of the state vector
x(τ ) can be straightforwardly calculated once we are in pos-
session of the eigenvalues λ± and eigenvectors v± of A, which
read

λ± = � − 1

2
± 1

2

√
(� + 1)2 − 4G2 = i�± (A2a)

and

v± = N±

(
i
� + 1 ±

√
(� + 1)2 − 4G2

2G
, 1

)T

, (A2b)

respectively; here, N± are normalization constants.
With the eigenvalues and eigenvectors of A [see Eqs. (A1)

and (A2)], the time evolution of the system follows from

x(τ ) ≡
(

a(τ )
b(τ )

)
= C1 eλ−τ v− + C2 eλ+τ v+, (A3)

that is,

a(τ ) = C1eλ−τN−

(
i
� + 1 − η

2G

)

+C2eλ+τN+

(
i
� + 1 + η

2G

)
, (A4a)

b(τ ) = C1eλ−τN− + C2eλ+τN+, (A4b)

where we have introduced η =
√

(� + 1)2 − 4G2 for short-
hand notation. The constants C1,2 are determined by the initial
conditions; hereafter, we assume that the emitter-cavity sys-
tem is initially in the state x0 ≡ x(τ0 = 0) = (a(0), b(0))T =
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(0, 1)T, corresponding to an empty cavity, and that all the pop-
ulation is in the emitter. The choice of these initial conditions
implies that

C1 = � + 1 + η

2ηN−
, C2 = −� + 1 − η

2ηN+
. (A5)

Then, substituting Eqs. (A5) into Eqs. (A4) yields

a(τ ) = iG

η
[eλ−τ − eλ+τ ], (A6a)

b(τ ) = � + 1

2η
[eλ−τ − eλ+τ ] + 1

2
[eλ−τ + eλ+τ ]. (A6b)

Moreover, noting that λ± = i�±, η = i�R, and 1 − � =
�R/QR, Eqs. (A6) can be written as

a(τ ) = −2iG

�R
sin

(
�R

2
τ

)
e− �Rτ

2QR , (A7a)

b(τ ) =
{
−� + 1

�R
sin

(
�R

2
τ

)
+ cos

(
�R

2
τ

)}
e− �Rτ

2QR ,

(A7b)

which are the sought-after amplitudes governing the time evo-
lution of the coupled QE-cavity system [see Eqs. (7)].
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