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We systematically analyze the various phase transitions of the anisotropic Dicke model that is endowed with
both rotating and counterrotating light-matter couplings. In addition to the ground-state quantum phase transition
(QPT) from the normal to the superradiant phase, the anisotropic Dicke model also exhibits other transitions,
namely, the excited state quantum phase transition (ESQPT), ergodic to nonergodic transition (ENET), and the
temperature-dependent phase transition. We show that these phase transitions are profitably studied not only
with the standard consecutive level spacing ratio, but also with the aid of various eigenvector quantities such as
von Neumann entanglement entropy, the participation ratio, multifractal dimension, and mutual information. For
ENET, both the statics and dynamics of the participation ratio offer a consistent and useful picture. An exciting
finding from our work is that the ESQPT and the ENET are closely related to each other. We show this with the
aid of two characteristic energies in the spectrum corresponding to jumps in von Neumann entropy.
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I. INTRODUCTION

The Dicke model [1–4], which is paradigmatic within the
field of cavity quantum electrodynamics, describes the in-
teraction between N atoms and a single-mode bosonic field
via a dipole coupling strength. In the thermodynamic limit
(N → ∞), the model shows a quantum phase transition from
the normal phase (NP) to the superradiant phase (SP) [1,5–10]
at some critical coupling strength. Along with this quantum
phase transition (QPT), the Dicke model also exhibits two
other distinct phase transitions [11], namely, the excited-state
quantum phase transition (ESQPT) [6,12–16] and the thermal
phase transition (TPT) [17–20]. While the first occurs at finite
energy when the coupling strength is sufficiently large, the
second, on the other hand, occurs at a finite temperature [18].
Some of these quantum phase transitions were observed ex-
perimentally in Bose-Einstein condensates [21] and quantum
cavity systems [22]. The physics of systems with light-matter
interactions has enjoyed a great deal of interest in recent times,
triggered by a number of experimental works [23–25].

A generalized version of the Dicke model, namely, the
anisotropic Dicke model [16,26–35] (ADM), where the
coupling strengths corresponding to the rotating and coun-
terrotating terms are different, has gained traction in recent
times. While a huge body of literature has been built around
the Dicke model [8,36–40], the anisotropic model has re-
ceived relatively less attention. The asymmetry in the coupling
brings some novel features in addition to the existing prop-
erties of the Dicke model. One such novel feature that has
generated considerable excitement is that the ADM not only
exhibits the normal to superradiant quantum phase transi-
tion, but also an ergodic-to-nonergodic transition (ENET)
[31,35]. The model is integrable in the limit where either one
of the couplings is zero. Moreover, while the ground-state
properties show the normal-to-superradiant phase transition,
the excited states show signatures of nonergodicity [35]. It

was also argued that the transition from the normal to the
superradiant phase is quite different in comparison to the
ergodic-to-nonergodic transition [31]. In the present work,
focusing on eigenvector properties, we show that the normal-
to-superradiant phase transition corresponds to the ground
state undergoing a localized-to-multifractal transition. On the
other hand, the ergodic-to-nonergodic transition corresponds
to the middle excited state undergoing a delocalized-to-
multifractal transition.

Phase transitions are often characterized by quantum in-
formation tools such as entanglement entropy [2,41–44],
mutual information [45–48], and so on. These quantities have
proven useful not only to mark a variety of phase transitions
[41–44,49–51], but in diverse other contexts [52–54] where
quantum correlations have an important role. Moreover, some
of these quantities are directly related to experimentally mea-
surable observables and have proven to be useful markers of
the phase transitions of the Dicke model [40]. Thus, a study
of these quantities in the context of phase transitions is of the-
oretical interest with potential to connect with experimental
work.

In this work, we explore the various phase transitions of
the anisotropic Dicke model and their dependence on the
asymmetric coupling strengths. First, we study the behavior of
the well-known quantum phase transition of the ADM using
quantum information measures. With the aid of the ground-
state energy, average photon number, inverse participation
ratio, and its scaling with the Hilbert-space dimension, we
highlight that the normal-to-superradiant phase transition is
reminiscent of a localization to multifractal phase transition.
Next, we highlight the emergence of the excited-state quan-
tum phase transition and the temperature-dependent phase
transition and their dependence on the coupling parame-
ters. While these transitions have been studied extensively
for the Dicke model [10,12,18,38,40,55], they are also
prominently present in the ADM [31,35]. We study the
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temperature-dependent phase transition as a function of the
rotating and counterrotating coupling strengths with the aid
of an old analytical result [26] for the transition temperature.
Similar to the Dicke model [10], we find that mutual informa-
tion between two spins offers a clear signature of the thermal
phase transition, which is benchmarked against the analytical
expression for the critical temperature which has already been
worked out in the literature [26,30].

Our main result is to show that the ESQPT is profitably
studied with the help of von Neumann entanglement entropy
between the bosons and the spins, the average level spacing
ratio, and two characteristic energies that define a central band
in the superradiant phase. With the help of the participation
ratio and multifractal dimension, we show that the middle
excited state exhibits multifractal behavior in the nonergodic
phase. Thus the middle excited state behaves in stark contrast
to the ground state, which shows a change from localized
to multifractal behavior as one goes from the normal to the
superradiant phase. The correspondence between the multi-
fractal nature of the middle excited state and the nonergodic
phase is also captured dynamically when we study the partici-
pation ratio in a quench dynamical protocol. Another exciting
finding of our work is that the excited-state quantum phase
transition and the nonergodic-to-ergodic transition are closely
related. Specifically, we find that the phase diagram obtained
by keeping track of the size of the jumps in von Neumann
entropy for the different eigenstates of the system (which
carry signatures of the ESQPT), closely resembles the ENET
phase diagram. While the ESQPT in the anisotropic Dicke
model was explored in Ref. [16], it is mainly focused on the
properties of the eigenvalues. The authors of Ref. [32] studied
the atom-field and atom-atom entanglement in the anisotropic
Dicke model in which the couplings are restricted to g1 � g2.
Our work considers a more general parameter regime with
arbitrary nonnegative g1 and g2 like in Buijsman et al. [31].

The organization of the paper is as follows. In the Sec. II,
we introduce the model Hamiltonian. Next we discuss the var-
ious phase transitions (QPT, ESQPT, ENET, TPT) exhibited
by the anisotropic Dicke model and their characterization via
tools from quantum information theory. While the QPT, ES-
QPT, and ENET are covered in Sec. III, Sec. IV is dedicated
to the TPT. Finally in Sec. V we summarize the main results.

II. MODEL HAMILTONIAN

The Hamiltonian consists of a single-mode bosonic field
coupled to N atoms with anisotropic couplings of the rotating
and counterrotating terms

H = ωa†a + ω0Jz + g1√
2 j

(a†J− + aJ+)

+ g2√
2 j

(a†J+ + aJ−). (1)

Here the operators a and a† are bosonic annihilation and
creation operators, respectively, and J±,z = ∑2 j

i=1
1
2σ

(i)
±,z are

angular momentum operators of a pseudospin with length
j, composed of N = 2 j spin- 1

2 atoms described by Pauli
matrices σ

(i)
±,z acting on site i. The commutation relations

(in units where h̄ = 1) between the various operators are as

follows:

[a, a†] = 1, [Jz, J±] = ±J±, [J+, J−] = 2Jz. (2)

The basis of the full Hilbert space of the system is {|n〉 ⊗
| j, m〉} where |n〉 are the number states of the field satisfy-
ing a†a|n〉 = n|n〉 and | j, m〉 are the Dicke states satisfying
J±| j, m〉 = √

j( j + 1) − m(m ± 1)| j, m ± 1〉. ω is the single-
mode frequency of the bosonic field while ω0 is the level
splitting of the atoms. g1 and g2 are the time-independent
coupling strengths corresponding to the rotating and counter-
rotating light-matter interaction terms. In the thermodynamic
limit, the system shows a second-order quantum phase tran-
sition from normal-to-superradiant phase at g1 + g2 = 1. For
g1 + g2 < 1, the system is in the normal phase with 〈a†a〉/ j ≈
0 (the bosonic mode is microscopically excited) and for
g1 + g2 > 1, it is in the superradiant phase with a positive
value of 〈a†a〉/ j (bosonic mode of the system is macroscop-
ically excited). Here the expectation value is calculated with
respect to the ground state of the system Hamiltonian. The
ADM possesses a parity symmetry [H,�] = 0 with � =
exp(iπ [a†a + Jz + j]) having eigenvalues ±1 [31]. Here, we
restrict ourselves to the +1 eigenvalue and an even atom
number N and the symmetric subspace where j = N

2 . Hence
the (N + 1) values that m can take are (−N

2 , . . . , 0, . . . , N
2 ).

For our numerics we truncate the boson number to take the
values n = 0, 1, . . . , nmax. Thus the total Hilbert space di-
mension for the truncated model is ND = (nmax + 1)(N + 1).
We checked that all our numerical results (for the specified
nmax) are robust against further increase in nmax, thus the trun-
cation is carried out in such a way that our numerical results
are reliable. Furthermore, we fix ω0 = 1 as the dimension of
energy and the other observables are calculated in units of ω0.

In the thermodynamic limit (when the number of atoms
N → ∞) the model is analytically solvable using the
Holstein-Primakoff representation [56,57] of the angular mo-
mentum operators Jz = (b†b − j), J+ = b†

√
2 j − b†b, J− =

J†
+. Here b and b† are bosonic operators that convert the

system Hamiltonian into a two-mode bosonic problem. This
allows us to obtain effective Hamiltonians that are exact in the
thermodynamic limit by neglecting terms from expansions of
the Holstein-Primakoff square roots [3]. In the normal phase
g1 + g2 <

√
ωω0, the square roots can be expanded directly

and the effective Hamiltonian is

H(1) = ωa†a + ω0(b†b − j) + g1(a†b + ab†)

+ g2(a†b† + ab), (3)

which is bilinear in the bosonic operators. In this representa-
tion, the parity operator � becomes � = exp (iπ [a†a + b†b]).
In the superradiant phase g1 + g2 >

√
ωω0, both the field and

the atomic ensemble acquire macroscopic occupations and for
that one needs to displace the bosonic modes

a† → c† + √
α, b† → d† −

√
β,

where the undetermined parameters α and β are of order O( j).
Now considering the thermodynamic limit, the Hamiltonian
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FIG. 1. (a) Ground-state energy of ADM shows NP to SP QPT. (b) Average number of boson (which is scaled by the pseudospin length j)
is close to zero for NP (g1 + g2 < 1) and nonzero for SP (g1 + g2 > 1). (c) The ground-state IPR is one in NP (localized) and close to zero in
the SP (delocalized). (d) Scaling of ground-state PR with the full Hilbert space dimension ND at some point g1 = 1.2, g2 = 0.8, in the SP for
ADM for nmax = 600 and changing the atom number: N ∈ [20, 40]. PRgs scales as

√
ND. Here ND = (nmax + 1)(N + 1) is increasing due to

increase of atom number N . In the inset we consider four nmax values: nmax = 200 (blue solid circles), 300 (purple stars), 400 (green triangles),
600 (red squares) and changing the atom number: N ∈ [20, 40]. PRgs scales as

√
N . For each fixed nmax dashed lines indicate the fitting with√

N . The four sets of Pgs values overlap. For (a)–(c) the parameters are ω = ω0 = 1, N = 40. The bosonic cutoff is set to be nmax = 200, and
this is shown to be large enough. Energy is calculated in units of ω0 and we fix ω0 = 1 throughout this paper.

can be written as

H(2) = ωc†c +
⎡
⎣ω0 + (g1 + g2)

k

√
αβk

2 j

⎤
⎦d†d −

[
(g1 + g2)

βk

2 j
− ω

√
α

]
(c† + c) +

⎡
⎣2(g1 + g2)

k

√
αk

2 j
( j − β ) − ω0

√
β

⎤
⎦

× (d† + d ) + (g1 + g2)

4k2

√
αβk

2 j
(2k + β )(d† + d )2 + (g1 + g2)β

2k

√
k

2 j
(c† + c)(d† + d ) +

√
k

2 j
[g1(c†d + cd†)

+ g2(c†d† + cd )] +
[
ω0(β − j) + ωα − 2

(g1 + g2)

k

√
αβk

2 j

]
, (4)

where k ≡ 2 j − β. This effective Hamiltonian in SP is also
bilinear in the bosonic operators. The global symmetry � is
broken at the phase transition and two new local symmetries

appear corresponding to the operator �(2) = exp (iπ [c†c +
d†d]) [3].

III. QPT, ESQPT, AND ENET

In this section we discuss three types of transitions in
the anisotropic Dicke model: QPT, ESQPT, and ENET, in
separate subsections. To do the numerics we perform exact
diagonalization of the system Hamiltonian. Due to the bosonic
mode, the Hilbert space dimension of the ADM is infinite
dimensional, however, for numerics one has to truncate the
Hilbert space by cutting off the bosonic mode at some finite
nmax. We checked that our results remain robust on increasing
nmax (see the Appendix).

A. Quantum phase transition

In Fig. 1(a) we show the ground-state energy density
(energy scaled by the atom number, Egs/N) of the system
Hamiltonian as a function of g1 and g2. While in the normal
phase, the energy is almost constant close to = −0.5 (which is
very similar to the value seen for the isotropic Dicke model),
the superradiant phase has a broad energy spectrum with the

density ranging from −4.5 � Egs

N � −0.5. This clearly dis-
tinguishes the normal and superradiant phases. Furthermore,
the mean photon number given by the operator 〈a†a〉/ j [3]
is almost zero in the normal phase, while in the superradiant
phase it has a nonzero value with a continuous change across
the transition line g1 + g2 = 1 [Fig. 1(b)] and indicates a
second-order phase transition.

Finally, we study the ground-state properties by looking
at the degree of localization using the (inverse) participation
ratio. The participation ratio [58,59] (PR) of an eigenstate
|ψ〉 = ∑ND

j ψ j | j〉 (where ND is the Hilbert space dimension)
is defined as

P = 1∑ND
j=1 |ψ j |4

. (5)

The inverse of the participation ratio, called the inverse par-
ticipation ratio (IPR = 1/PR) is often a useful measure in
its own right. From the inset of Fig. 1(c), it is clear that,
in the normal phase, IPR is close to unity suggesting that
the ground state is localized. On the other hand, a careful
study of the scaling of PR in the superradiant phase with the
Hilbert-space dimension ND reveals interesting features. The
PR scales as PR ∼√

ND and suggests that the ground state
in the superradiant phase exhibits multifractal behavior [see
Fig. 1(d)].
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In Fig. 1(d) we fix the parameters to be g1 = 1.2, g2 = 0.8
to show a representative example in the SP. While the bosonic
cutoff is fixed at nmax = 600 we vary the atom number N and
hence the total Hilbert space dimension ND of the truncated
model also varies. The change in ND is entirely due to the
change in atom number N since nmax remains fixed. In this
figure the red squares are the data for Pgs whereas the red
dashed line denotes the fit to the functional form N0.5

D . In
the inset of Fig. 1(d) we choose four different nmax values
nmax = 200 (blue solid circles), 300 (purple stars), 400 (green
triangles), 600 (red squares) and for each fixed nmax we show
data as the atom number N (and hence the total Hilbert space
dimension ND) varies exactly like in the main figure. The four
sets of data corresponding to different nmax exactly overlap
with each other. The dashed lines denote the data fitting
of Pgs with N0.5. Hence we can conclude that for a fixed
atom number N , Pgs is independent of nmax and only depends
on N .

B. Excited state quantum phase transition

We now look at the properties of the excited states and
find that similar to the Dicke model, the anisotropic Dicke
model also exhibits an excited-state quantum phase transition
in the superradiant phase (for g1 + g2 > 1). While the litera-
ture on ESQPT has mainly considered eigenvalue properties
[12–15,38,40,60], we showed in our recent paper [10] the
profitability of studying eigenvector properties such as the von
Neumann entanglement entropy [2], the average bosonic num-
ber [3], concurrence [61,62], and participation ratio [58,59].
We also aruged that there is not only a lower cutoff energy but
also an upper cutoff and energies between these two cutoffs
behave differently from the upper and lower bands. In the
Dicke model, the lower cutoff energy [40,60] is the ground-
state energy at the critical coupling strength gc and the upper
cutoff energy [10] is the maximum energy at g = 0 (for finite
nmax). On the other hand, in the ADM, we find that the lower
cutoff energy is around the ground-state energy of the system
on the critical line of quantum phase transitions (g1 + g2 =
1) while the upper cutoff energy is the maximum energy
at g1 = g2 = 0 (for finite nmax). Energies below (above) the
lower (upper) cutoff form the lower (upper) energy band
and the energies in between the two cutoffs form the central
band.

The entanglement entropy between the spins and the
bosons is simply the von Neumann entropy of the reduced
density matrix of the spins

Sspins = −Tr[ρspins ln(ρspins)], (6)

where ρspins is the reduced density matrix of the spins obtained
by tracing over the bosonic degrees of freedom. In Fig. 2(a)
we show the von Neumann entanglement entropy (between
spins and bosons) as a function of the energy eigenvalues
at some point g1 = 1.0 and g2 = 1.1. We observe from this
representative plot that there are three characteristic parts:
(i) an increasing part up to some energy, followed by (ii) a
plateau region and then (iii) a region where VNEE decreases.
To quantify the beginning and the end of the plateau region,

we define two characteristic energies Elower and Eupper as

Elower =
⎡
⎣∑ ND

2
n=0 En|
Sn|∑ ND

2
n=0 |
Sn|

⎤
⎦, (7)

and

Eupper =
⎡
⎣

∑ND

n= ND
2

En|
Sn|∑ND

n= ND
2

|
Sn|

⎤
⎦, (8)

where 
Sn = Sn+1 − Sn is the VNEE difference between that
of the (n + 1)th eigenstate and the nth eigenstate, and En is
the nth energy. The above energies are obtained by using the
jumps in the VNEE as weights. The change in VNEE is taken
as weights for the different energies, and we would thus expect
these quantities to signal the two ends of the plateau region. In
Fig. 2(a), these two energies are marked by two vertical lines:
the orange dash-dotted line denotes Elower whereas the blue
dashed line denotes Eupper and they more or less match with
the two end energies of the plateau region. Now we define two
more new quantities, χlower and χupper:

χlower = Elower

E0
normal

, (9)

χupper = Eupper

Emax
g1,g2=0

, (10)

where E0
normal is the minimum energy in the normal phase

(g1 + g2 < 1) and Emax
g1,g2=0 is the maximum energy at g1 =

g2 = 0 (for finite nmax). We plotted these two quantities as
a function of g1 and g2 in Figs. 2(b) and 2(c). Remarkably
this reveals a clear visual correlation between the ESQPT
and what is called the ergodic-to-nonergodic phase transi-
tion (ENET) [31], which we describe in greater detail in
the following subsection. Moreover we notice that, along the
diagonal line [it is more clear in Fig. 2(c)] there is a relatively
dark line which indicates that the symmetric Dicke model is
special. A quantitative way of identifying the central band
of energies corresponding to the plateau region in Fig. 2(a)
is to consider the energies that lie between χlower = 1 and
χupper = 1, i.e., Elower = E0

normal and Eupper = Emax
g1,g2=0. We per-

form a study of the average level spacing ratio [63] 〈r〉 for
the energies lying between Elower and Eupper. Let sn denote the
level spacing between two consecutive energies En+1 and En,
then the 〈r〉 is defined as the average over n of the ratio of
consecutive level spacings

rn = min(sn−1, sn)

max(sn−1, sn)
. (11)

For an ergodic system, the value of 〈r〉 = 0.53 and the prob-
ability distribution of the consecutive gaps shows Wigner-
Dyson statistics [64] while for a nonergodic system it is 〈r〉 =
0.386 and the probability distribution becomes Poissonian.

Figure 2(d) shows the phase diagram based on the level
spacing ratio. It can be seen that a small value of either g1 or
g2 leads to a nonegrodic phase where the eigenvalue statistics
obey the Poisson distribution with 〈r〉 ≈ 0.386. On the other
hand, when both the couplings are significantly large, we see
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FIG. 2. (a), (e), and (i) Von Neumann entanglement entropy as a function of the eigenstate energies of the ADM Hamiltonian at the point
g1 = 1.0, g2 = 1.1 [for (a) and (e)] and at the point g1 = 4, g2 = 2 [for (i)]. In the figure the orange dash-dotted line denotes Elower [given in
Eq. (7)] and the blue dashed line is for Eupper [given in Eq. (8)]. (b), (f), and (j) χlower [given in Eq. (9)] as a function of g1 and g2. (c), (g), and
(k) χupper [given in Eq. (10)] as a function of g1 and g2. (b,c) show similar phase transition from nonergodic to ergodic phase, which suggest
that ESQPT is related to ENET. (d), (h), and (l) Consecutive level spacing ratio 〈r〉 of the energies lying between E 0

normal, Emax
g1,g2=0. For all the

above figures atom number N = 40 and we take the bosonic cutoff nmax = 200. Top panel is for resonant case ω = ω0 = 1, middle and bottom
panels are for two off-resonant cases ω = ω0

4 and ω = 4ω0, respectively.

a crossover to Wigner-Dyson distribution where the level-
spacing ratio becomes 〈r〉 ≈ 0.53. It is worth mentioning that
this nonergodic-to-ergodic transition is quite different from
the normal to superradiant phase transition. We perform a
careful analysis of this phase transition in the next subsection.
We show that the Wigner-Dyson behavior corresponds to the
energy band that lies between the two cutoffs [10] (Elower =
E0

normal, Eupper = Emax
g1,g2=0).

So far we restricted ourselves to the resonant case ω = ω0.
Now we also study ESQPT for the off-resonant cases consid-
ering ω = ω0

4 (middle panel of Fig. 2) and ω = 4ω0 (bottom
panel of Fig. 2). Studying the consecutive level spacing ratio
of the energy band sandwiched between E0

normal and Emax
g1,g2=0

[see Figs. 2(h) and 2(l)], we see a transition from 〈r〉 ≈ 0.386
to 〈r〉 ≈ 0.53 that is a nonergodic-to-ergodic transition. From
a careful observation of Figs. 2(f) and 2(g) and 2(j) and 2(k)
we infer that while a clear correspondence between ENET
and ESQPT is present for g1 �= g2 even in the off-resonant

scenario, the diagonal direction (g1 = g2) corresponding to
the Dicke model exhibits special behavior [6].

C. Ergodic to nonergodic transition

1. Statics

As discussed in the previous subsection, different eigen-
states play a role in different phase transitions. While the
ground state shows the normal-to-superradiant phase transi-
tion or equivalently from a localized phase to a multifractal
phase, the middle excited states exhibit a nonergodic-to-
ergodic transition. Here, we study the phase diagram on the
g1, g2 plane of the ADM for different eigenstates with the
help of participation ratio and multifractal dimension and ex-
plore the possibility of multifractal states in the excited states.

While the participation ratio quantifies the degree of local-
ization and delocalization of a quantum state, a study of its
scaling with the system size offers further insights. When the
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FIG. 3. Participation ratio and multifractal dimension, D1 of ADM for different eigenstate of the system Hamiltonian as a function of
coupling parameters g1 and g2. (a)–(d) are the figure for participation ratio corresponding to ground state (gs), tenth excited state, 100th
excited state, and middle excited state or thermal state (TS), respectively. (e) D1 for the ground state shows QPT from localization (NP) to
multifractal (SP) behavior. (f) D1 for the tenth excited state. (g) D1 for the 100th excited state. (h) D1 for the middle excited state shows ENET
from nonergodic extended (multifractal) to ergodic (delocalized) behavior. For all the above plots parameters are ω = ω0 = 1, atom number
N = 40. We take the bosonic cutoff to be nmax = 200.

Hilbert space dimension is large (ND is large) the multifractal
dimension [65,66] can be represented as

Dq = 1

1 − q

ln
(∑ND

j=1 |ψ j |2q
)

ln(ND)
, (12)

where |ψ〉 is an eigenstate of the Hamiltonian and

Sq = 1
1−q ln (

∑ND
j=1 |ψ j |2q) is known as the q-dependent

participation entropy. In the Shannon limit, S1 =
−∑

j |ψ j |2 ln (|ψ j |2), while the q = 2 participation entropy
is connected to the usual participation ratio as S2 = ln(P).
For a perfectly delocalized state Sq = ln(ND), (when ND

is large) and hence Dq = O(1), for all q. On the other
hand, for a localized state Sq = constant and Dq = 0. In
an intermediate situation, wave functions are extended but
nonergodic with Sq = Dq ln(ND) where 0 < Dq < 1 and the
state is multifractal in that particular basis.

In Fig. 3 we show the phase diagrams of the ADM based
on participation ratio [Figs. 3(a) to 3(d)] and the multifractal
dimension D1 [Figs. 3(e) to 3(h)] for different eigenstates of
the system Hamiltonian. For a fixed system size, we pick a
few states including the ground state and the middle excited
state. While for the ground state, we clearly see the normal-
to-superradiant phase transition along the line g1 + g2 = 1
as shown by the phase diagram of the participation ratio
[Fig. 1(d)] and the multifractal dimension [Fig. 3(e)], as the
states become more and more excited, it is the nonergodic-
to-ergodic transition that is highlighted. Studying the PR of
the middle excited state [Fig. 3(d)], we see a similar phase
diagram as that of the level spacing ratio of the system as
a function of g1 and g2 [see Fig. 2(d)], signifying a transi-
tion from the nonergodic phase to the ergodic phase. In the

nonergodic phase the PR value is low whereas in the ergodic
phase its value is relatively higher.

In Figs. 3(e) to 3(h) we study the multifractal dimension
D1 for the different eigenstates of the ADM as a function
of coupling parameters g1 and g2 similar to the participation
ratio. Here in Fig. 3(e) we show the nature of D1, for the ADM
ground state. In the NP, Dq ≈ 0 whereas in the SP, 0 < D1 <

1. This suggests a transition from a localized to a multifractal
phase. Figure 3(h) shows D1 for the middle excited state of the
ADM. In this figure we see the regions (depicted by the blue
color) where 0 < D1 < 1 which behaves like a multifractal
phase, whereas the region where D1 ≈ 0.9 (depicted by the
white color), behaves as more like a delocalized phase. Hence
the middle excited state shows a transition from an extended
nonergodic (multifractal) phase to an ergodic (delocalized)
phase.

2. Dynamics

To study the quench dynamics of a closed quantum sys-
tem, one prepares the system in some eigenstate of the initial
Hamiltonian H0. The Hamiltonian is suddenly changed to
H = H0 + H1 and the system is allowed to evolve under the
corresponding unitary time evolution operator. Here, we take
the middle excited state of the decoupled Hamiltonian (H0 =
ωa†a + ω0Jz) as our initial state, which can be written as
|ψin〉 = ∑

α Cα|α〉, with |α〉 = |n, j, m〉 being a computational
basis state and Cα being the corresponding coefficient. The
time-evolution of the state is given by |ψt 〉 = e−iHt |ψin〉 =∑

α Cα (t )|α〉, where H is the ADM Hamiltonian. To study
the dynamical properties, we calculate the dynamics of the
participation ratio PR(t ) = 1/

∑
α |Cα (t )|4 at different times
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FIG. 4. (a) Quench dynamics of participation ratio of ADM for ω = ω0 = 1, N = 20, and nmax = 100, at different times (a) t = 0.01,
(b) t = 0.2, (c) t = 1, (d) t = 1000. Here the initial state is the middle excited state of the decoupled Hamiltonian of the system (H0 =
ωa†a + ω0Jz). The time t is in units of ω−1

0 and we fix ω0 = 1 throughout this paper.

t = 0.01, 0.2, 1, 1000. From Fig. 4(a) we see that, for a very
small duration of time, say t = 0.01, the participation ratio
has low value for all g1 and g2. As we evolve the system a
bit, say at t = 0.2, in Fig. 4(b), one can notice that in the red
part, the PR value is increasing, for higher values of g1 and
g2. In fact, this portion in the central region increases with
time also. In Fig. 4(c) we see that in the red part the value
of PR is significantly higher than in the blue part. When the
dynamics is carried out over a very long time [say t = 1000
as in Fig. 4(d)], we get a phase diagram which exactly looks
like the nonergodic (blue color) to ergodic (red color) phase
diagram [see Figs. 4(d) and 3(d)]. Figure 4(d) suggests that, if
the system is initially in the nonergodic phase and we evolve it
for a long time, the system will stay in the nonergodic phase,
i.e., the participation ratio is relatively low no matter how long
the time is. This is in contrast to the ergodic phase where the
PR value is higher for long times even if the inital PR is low.

IV. THERMAL PHASE TRANSITION

Another type of phase transition exhibited by the ADM is
the finite-temperature phase transition [26]. As with the Dicke
model, it is known that a finite critical temperature can destroy
the superradiant phase and a transition back to the normal
phase is obtained going beyond the critical temperature [26].
We can derive an exact analytical expression for the transition
temperature as a function of the parameters g1 and g2. We start
by rewriting the Hamiltonian (in units of ω) as

H̃ = H
ω

= a†a +
N∑

j=1

ε

2
σ z

j + λ1

2
√

N

N∑
j=1

(aσ+
j + a†σ−

j )

+ λ2

2
√

N

N∑
j=1

(a†σ+
j + aσ−

j ), (13)

where ε = ω0
ω

, λ1 = g1

ω
, λ2 = g2

ω
. The partition function for the

full ADM is given by

Z (N, T ) =
∑

s1,...,sN =±1

∫
d2α

π
〈s1, . . . , sN |〈α|e−βH̃|α〉|s1, . . . ,

× sN 〉. (14)

The expectation value of the Hamiltonian with respect to the
bosonic modes is

〈α|H̃|α〉 = α∗α +
N∑

j=1

[
ε

2
σ z

j + λ1

2
√

N
(ασ+

j + α∗σ−
j )

+ λ2

2
√

N
(α∗σ+

j + ασ−
j )

]
. (15)

Defining

h j = ε

2
σ z

j + λ1

2
√

N
(ασ+

j + α∗σ−
j ) + λ2

2
√

N
(α∗σ+

j + ασ−
j )

(16)

the expectation value with respect to the spins becomes a
product of single-spin expectation values

〈s1, . . . , sN |〈α|e−βH̃|α〉|s1, . . . , sN 〉
= e−β|α|2�N

j=1〈s j |e−βh j |s j〉. (17)

Thus the computation of the partition function reduces to the
evaluation of a double integral

Z (N, T ) =
∫

d2α

π
e−β|α|2 [Tre−βh]N

=
∫

d2α

π
e−β|α|2

×
(

2 cosh

[
βε

2

[
1 + 4(λ1 + λ2)2α2

ε2N

]1/2])N

,

(18)

which in the thermodynamic limit (N → ∞) can be solved
using the method of steepest descent within the superradiant
phase. Tracking the point at which the method breaks down
(see the Appendix), we have an exact expression for the tran-
sition temperature

Tc = 1

βc
=

(
ω0

2ω

)
1

tanh−1
(

ωω0
(g1+g2 )2

) . (19)

Thus, in the superradiant phase (g1 + g2 > 1 at T = 0),
raising the temperature to a value larger than the critical
temperature (Tc), causes the system to go back to the normal
phase. We now provide numerical evidence of this phase
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FIG. 5. Mutual information of two spins I12 as a function of
temperature. Inset of the figure shows the numerical differentiation
of MI with respect to temperature dI12

dT , at g1 = 1.0, g2 = 0.5. The
vertical line represents the theoretical value of the critical tempera-
ture Tc ≈ 0.46. Here ω = ω0 = 1, nmax = 40.

transition with the help of mutual information between two
spins. While the entanglement entropy is a good measure to
capture a QPT, it is unsuitable for a TPT since mixed states
are involved. Mutual information [45–48] between two spins
is a good measure to capture the TPT, as we showed in an
earlier work for the Dicke model [10]. We show here that the
usefulness of mutual information as a marker of the thermal
phase transition extends to the ADM.

When the overall state is mixed, the correlations between
two subsystems can be quantified with the help of the mutual
information defined as

I12 = S1 + S2 − S12, (20)

where S1,2 = −Tr[ρ1,2 ln(ρ1,2)], S12 = −Tr[ρ12 ln(ρ12)].
Here ρ1, ρ2 are the reduced density matrices for the two
subsystems, S1, S2 are the corresponding von Neumann
entropies, ρ12 is the density matrix of the overall system, and
S12 is the corresponding entropy. When the overall state is
in a pure state, S12 = 0 and the mutual information become
twice the entanglement entropy since S1 = S2. For our model
we study the mutual information between any two spins (due
to the symmetry of the system Hamiltonian, it does not matter
which spin pair is chosen). Here we use the spin product

space, hence we have to diagonalize the system Hamiltonian
with dimension (nmax + 1)2N . To calculate I12, we have to
take a partial trace of the total density matrix over the bosonic
part first and then over the N − 2 atoms.

Figure 5 shows the mutual information between two spins.
For the parameters g1 = 1.0, g2 = 0.5, the system is in the
superradiant phase at zero temperature where the value of mu-
tual information takes significantly large values (Fig. 5). On
increasing the temperature, we see that the mutual information
starts to decrease, signifying a change in the direction of the
normal phase. To check that mutual information does indeed
capture the exact transition between the superradiant-to-
normal phase, we plot the derivative of the mutual information
with respect to the temperature dI12

dT (inset of the Fig. 5). We
observe that the temperature at which the derivative is min-
imum corresponds to the transition temperature of the TPT
from SP to NP for g1 + g2 > 1. For this particular choice of g1

and g2, the critical temperature is Tc = 0.46, which we denote
by the vertical straight line in the inset figure.

In Fig. 6 we showed I12 as a function of g1 and g2 at
different temperatures: T = 0, 0.1, 1.0, and 1.5. Figure 6(a)
(T = 0) shows a clear QPT from NP (black color) to SP
(white color) along the line g1 + g2 = 1. We emphasize that
at zero temperature, the ground state is a pure state, and
so the mutual information is really the same as twice the
entanglement entropy. I12 is close to zero in the normal
phase and close to unity in the superradiant phase. An-
other way of saying this is that the total correlation between
two spins is almost zero in the normal phase whereas it is
maximum in the superradiant phase. Hence the QPT in the
anisotropic Dicke model is similar to the isotropic Dicke
model (for which g1 = g2) but here an additional parameter
is introduced. On the other hand, one can notice that as tem-
perature increases [in Figs. 6(b) (T = 0.1), 6(c) (T = 1), and
6(d) (T = 1.5)] the region corresponding to the NP (black
portion) also expands: the phase boundary is highlighted
by a red dashed line (g1 + g2 = constant) which depends
on the temperature. Using Eq. (19) we see that for T =
0.1, 1, and 1.5, the phase boundary is given by g1 + g2 =
1.01, g1 + g2 = 2.16, and g1 + g2 = 2.64, respectively; be-
yond the phase boundary, the system is in the SP where
the correlation between two spins is close to unity. These

FIG. 6. Mutual information between two spins as a function of g1 and g2 at different temperature: (a) T = 0 (QPT), (b) T = 0.1, (c)
T = 1.0, (d) T = 1.5. As temperature increases, the region corresponding to the normal phase (denoted by black color) also increases. The
red dashed line denotes the value of g1 + g2 for a fixed temperature following Eq. (19). Zero-temperature case denotes QPT along the line
g1 + g2 = 1, for T = 0.1, 1 and 1.5, g1 + g2 = 1.01, 2.16, 2.63, respectively. The parameters are ω = ω0 = 1, N = 6. The bosonic cutoff is
taken to be nmax = 40.
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FIG. 7. (a), (f), (k), (p), and (u) χlower [given in Eq. (9)], (b), (g), (l), (q), and (v) χupper [given in Eq. (10)], (c), (h), (m), (r), and (w) average
consecutive level spacing ratio 〈r〉; (d), (i), (n), (s), and (x) participation ratio (PR) and (e), (j), (o), (t), and (y) the multifractal dimension D1

for the middle excited state of the system for the resonance condition (ω = ω0 = 1) considering 20 spins and truncating the bosonic mode at
gradually increasing values: nmax = 200, 300, 400, 500, 600 (panels 1 to 5, respectively).

figures indicate that the mutual information between spins is
an excellent measure of the thermal phase transition of the
system.

V. SUMMARY AND CONCLUSION

We first discuss the ground-state phase transition from a
normal phase to the superradiant phase showing that a crit-
ical line g1 + g2 = 1 separates the two phases. We see that

the ground-state energy density is almost constant in the NP
whereas in the SP we find a broad range of energy densities,
which are lower than that in the normal phase. The ground-
state number operator is almost zero in the NP while it is
nonzero in the SP, indicating macroscopic excitations in the
bosonic mode. By studying the participation ratio, we con-
clude that the ground state of the system exhibits multifractal
features in the superradiant phase with the participation ratio
scaling as PRgs ∝ √

ND.

043706-9



DAS, BHAKUNI, AND SHARMA PHYSICAL REVIEW A 107, 043706 (2023)

Next, we explore the excited state features and find that the
ADM also exhibits the excited state phase transition both for
the resonant (ω = ω0) and the off-resonant (ω �= ω0) cases.
The ESQPT is nicely captured by the von Neumann entan-
glement entropy (between spins and bosons) as a function
of eigenstate energies. We observe that for the ADM there
exist two cutoff energies separating the different phases: a
lower cutoff energy (corresponding to the ground-state energy
along the line, g1 + g2 = 1) and an upper cutoff energy (cor-
responding to the maximum energy at g1 = g2 = 0 for finite
nmax). Between these two cutoff energies, we find that the level
statistics exhibits either Poisson statistics or Wigner-Dyson
statistics depending on the values of the coupling parameters
g1 and g2 suggesting a nonergodic-to-ergodic phase transition.
A study of the consecutive level spacing ratio of the system
for the middle energy band (energy band between the lower
and the upper cutoff energies) supports these findings. It is
convenient to introduce two new quantities (having the di-
mensions of energy) that correspond to the lower and upper
cutoff energies of the spectrum in the superradiant phase. The
above energies are obtained by using the jumps in the VNEE
as weights. These characteristic energies, which are a measure
of the energies at which the corresponding von Neumman
entropies of the eigenstates begin and end their plateau-like
behavior, signal the ESQPT of this model. Remarkably, when
a phase diagram is obtained using these characteristic ener-
gies, we get a picture that looks very similar to the phase
diagram obtained using level spacing ratios. Thus from our
study, we conclude that the ESQPT and ENET are intimately
related to each other for the anisotropic Dicke model (g1 �=
g2). We checked that this connection is robust both for the
resonant (ω = ω0) and off-resonant (ω �= ω0) cases for the
generic ADM; the diagonal direction (g1 = g2) corresponds
to the Dicke model exhibits special behavior [6]. From a study
of eigenstate properties with the aid of participation ratio
and multifractal dimension D1, we see that the normal-to-
super-radiant phase transition corresponds to the ground state
undergoing a localized-to-multifractal transition. On the other
hand, the ergodic-to-nonergodic transition corresponds to the
middle excited state undergoing a delocalized-to-multifractal
transition. The correspondence between the multifractal na-
ture of the middle excited state and the nonergodic phase is
also captured dynamically when we study participation ratio
in a quench dynamical protocol.

Finally, the ADM also exhibits yet another phase transition,
namely the temperature-dependent phase transition. For g1 +
g2 > 1, there exists a critical temperature, Tc above which the
superradiant phase disappears and the system comes back to
the normal phase. Following the old work of Hioe [26], we
write down an analytical expression for Tc as a function of
g1, g2. We show that the mutual information between two
spins as a function of temperature proves handy to obtain
an independent characterization of the thermal phase tran-
sition. A study of the mutual information suggests that for
g1 + g2 < 1, the system lies in the normal phase for all tem-
peratures with a relatively lower value of mutual information,
but for g1 + g2 > 1 there exists a Tc such that when T < Tc

the system lies in the SP with a relatively higher value of
mutual information and for T > Tc the system goes back to
NP, showing a temperature-dependent phase transition.
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APPENDIX A: EXPRESSION FOR THE CRITICAL
TEMPERATURE FOR THE TPT

In this Appendix we include a brief derivation of the ex-
pression for the critical temperature for TPT similar to the
previous work [26]. We begin by recalling the expression
of the partition function in the form of a double integral
[Eq. (18)]

Z (N, T ) =
∫

d2α

π
e−β|α|2 [Tre−βh]N

=
∫

d2α

π
e−β|α|2

×
(

2 cosh

[
βε

2

[
1 + 4(λ1 + λ2)2α2

ε2N

]1/2])N

.

(A1)

Rewriting the double integral using polar coordinates and
defining y = r2

N and

φ(y) = −βy + ln

(
2 cosh

[
βε

2

[
1 + 4(λ1 + λ2)2y

ε2

]1/2])
(A2)

we can write

Z (N, T ) = N
∫ ∞

0
dy exp [Nφ(y)]. (A3)

Since we are interested in the thermodynamic limit where
N → ∞, we can invoke Laplace’s method [67] to evaluate
the integral as

Z (N, T ) = N
C√
N

max
0�y�∞

exp(N[φ(y)]), (A4)

where C is some constant. To find the maximum of the func-
tion φ(y), we compute its derivative

φ′ = −β + β(λ1 + λ2)2

ε

1

η
tanh

(
βεη

2

)
, (A5)

where

η =
[

1 + 4(λ1 + λ2)2y

ε2

]1/2

. (A6)

Putting

φ′ = 0, (A7)

we have

εη

(λ1 + λ2)2
= tanh

(
βεη

2

)
. (A8)
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The hyperbolic tangent funtion is a monotonically increasing
function and is bounded above by unity. Since η � 1 by def-
inition [Eq. (A6)], if (λ1 + λ2)2 < ε, there is no solution for
Eq. (A8). On the other hand, for (λ1 + λ2)2 > ε, the solution
depends on the value of β. The critical value of the inverse
temperature βc can be computed by putting η = 1 and is given
by

βc = 2

ε
tanh−1

(
ε

(λ1 + λ2)2

)
. (A9)

Substituting ε = ω0
ω

and λ1 = g1

ω
, λ2 = g2

ω
, we have an exact

expression for the transition temperature

Tc =
( ω0

2ω

) 1

tanh−1
(

ωω0
(g1+g2 )2

) . (A10)

APPENDIX B: ROBUTSTNESS OF OUR RESULTS
AGAINST INCREASING BOSONIC CUTOFF

In Fig. 7 we show the data corresponding to the ES-
QPT and ENET for 20 spins and considering gradually
increasing values of the bosonic truncation number nmax =
200, 300, 400, 500, 600 (panels 1 to 5, respectively) to
check the robustness of our results. In each panel of this figure,
we show χlower (the lower cutoff energy which is scaled by the
minimum energy in the nornal phase), χupper (upper cutoff en-
ergy which is scaled by the maximum energy at g1 = g2 = 0),
consecutive level spacing ratio 〈r〉, participation ratio (PR),
and the multifractal dimension (D1) of the middle excited
state, respectively, as a function of the coupling parameters g1

and g2. We notice that the results are qualitatively unchanged
against increasing values of the bosonic truncation number
nmax and are also converging.
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