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Optical-mode hyperconversion in the bad-cavity regime
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The ability to convert photons between different electromagnetic modes with low intensity has the potential
application in future information technologies. Here, we explore optical-mode-conversion characteristics in a
bimodal cavity coupled to a pair of two-level atoms instead of a single atom using experimentally realistic
parameters. In our scheme, the two cavity modes, involving a vertically (V -) polarized mode and a horizontally
(H -) polarized mode, are not directly coupled to each other owing to their orthogonal polarizations and the V -
polarized mode is coherently excited by an external weak pump laser. Via analytical calculations and numerical
simulations, we find that optical hyperconversion phenomenon from the V -polarized mode to the H -polarized
mode can be realized in the bad-cavity regime, which is reminiscent of optical hyperradiance introduced in the
previous studies. We also provide an approximate analysis which gains deeper understanding into the funda-
mental reason behind this behavior. Furthermore, we identify the parameter ranges for generating optical-mode
subconversion, superconversion, and hyperconversion. The obtained results will deepen the understanding of
mode-conversion micromechanisms in the weak-coupling multiatom cavity architectures.
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I. INTRODUCTION

Cavity quantum electrodynamics (QED) studies light-
matter interactions inside microscale and nanoscale structures
[1–4], which constitutes an excellent platform to transfer in-
formation between light and matter qubits. Also, it has led
to many promising applications in areas ranging from one-
atom maser and laser [5,6], atom cavity microscopy [7,8],
single-photon source [9–11], quantum gate [12,13], to novel
quantum information and computation [14–16], etc. As it
is known, steering, operating, and converting information in
different modes of the electromagnetic field is an important
capability of the highly integrated information architecture
in the future. A few theoretical and experimental schemes
for converting light between different modes, which is called
mode conversion, have been proposed based on various cavity
QED systems [17–22]. For example, the coherent light gener-
ation through spontaneous emission process into an undriven
cavity mode under weak excitation of the orthogonally po-
larized mode has been reported [19]. Incorporating a single
quantum emitter into the asymmetric plasmonic cavity has
been suggested to realize efficient mode conversion [20]. An
optical-mode converter based on cavity QED dark mode in
a semiconductor quantum dot coupled to a photonic crystal
cavity has been proposed [21].

However, almost all the previous studies about optical-
mode conversion have restricted their attention to either the
single-emitter cavity QED system, where the light-matter in-
teractions are strongly amplified, or the good-cavity regime,
which makes the experimental realization not too easy. One of
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the goals for cavity QED is to construct interfaces that connect
quantum memory stored in atoms to photons that carry infor-
mation. Putting more atoms into the cavity can improve the
connection by increasing the output of the cavity. In 2015, the
experiments have uncovered a collective behavior exhibited
by two emitters (atoms [23] or ions [24]) isolated in a single
cavity, and they measure that the collective light output is
greater or less than the sum of single emitters, namely, the
so-called superradiant or subradiant [23,24]. Following this,
in 2016, interference and dynamics of light from a distance-
controlled atom pair in an optical cavity has been explored
[25]. Apart from these, recently, in Ref. [26] it has been
shown that superradiance can occur in a special networklike
architecture for two-level systems interacting with quantized
electromagnetic field which is able to significantly improve
Rabi frequency between collective spin and cavity modes
established by the network topology [27]. On the other hand,
in recent years it has been demonstrated that this collective
behavior from two individual emitters in optical cavity plays
a significant role in hyperradiance [28–31], phonon lasing
[32], quantum statistics [33–35], squeezed light [36], and so
on. For example, the phase controlled collective behaviors of
two atoms in a cavity have been studied [33], showing that
the phase difference between the coupling strengths plays
an important role in the generation of antibunched or su-
perbunched light field. The squeezed light accompanied by
hyperradiance, which is induced by quantum interference in
a high-quality optical cavity coupled to two coherently driven
two-level qubits with a distance of integer multiple and one-
half of wavelengths (i.e., the opposite coupling coefficient to
the cavity), has been proposed [36]. Also, much attention has
been paid to the so-called bad-cavity regime in which the
cavity mode is strongly attenuated with respect to the coupling
with the emitters [37–42], i.e., the cavity loss rate is much
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larger than the emitter-cavity coupling. For example, it has
been shown in Ref. [39] that the steady-state superradiance
can be achieved in the optical frequency domain under the
condition that incoherently pumped atoms couple collectively
but weakly with a high-Q resonator. Physically, such optical
radiation source benefits from the atomic coherence, and can
have an extremely narrow linewidth in the mHz range [39]. In
Ref. [42] it has been found that there is a dissipative phase
transition between the two different phases of steady-state
subradiance before the start of steady-state superradiance in
a bad cavity laser. This transition arises thanks to the bounded
state space of the collective atomic system.

A natural question is thus as follows: What influence does
the collective behavior of two separate emitters coupled to a
bimodal cavity have on the above-mentioned mode conversion
in the bad-cavity regime? Yet, up to now this problem has
not received much attention. To address the above concern,
with numerical simulations and analytical calculations in the
steady state, by utilizing the regime of weak coupling between
a pair of two-level atoms and a bimodal optical cavity with
orthogonal linear polarizations [i.e., a vertically (V -) polarized
mode and a horizontally (H-) polarized mode], we investi-
gate coherent conversion of optical photons from the driven
V -polarized mode to the undriven H-polarized mode. The
influences of the system parameters on optical-mode conver-
sion are analyzed in detail in the limit of weak pump driving
power, finding that optical hyperconversion phenomenon may
be attainable under appropriate conditions. Physically, the
undriven H-polarized cavity mode is not directly coupled to
the input pump laser and the only way it can get light is via
the collective emission of both atoms.

In this regard, we perform numerical simulations based on
the full quantum master-equation approach beyond the mean-
field approximation and give analytical calculations based on
the Heisenberg-Langevin equation approach within the mean-
field approximation in the weak-driving limit. The analytical
results are in excellent agreement with the numerical results.
These calculations yield physical insight into the fundamental
reason behind optical-mode-hyperconversion behaviors in the
bad-cavity regime, and extend hyperradiance effect in a single
mode of the electromagnetic field to steering, operating, and
converting such a hyperradiance effect in different modes of
the electromagnetic field, which is an important ability for
future highly integrated photonic information processing. We
notice that we work in the bad-cavity regime, which is much
easier to achieve, experimentally. Possible applications of the
proposed scheme include the control over directionality and
tunability of hyperradiance and hyperconversion, achievable
with tunable parameters of the system, such as the studies
of random lasers [43], as well as the generation of non-
classical fields with hyperradiance and hyperconversion, such
as squeezed states and photon antibunching of optical fields
[34,36].

Compared with the previous hyperradiance from collective
behavior of coherently driven atoms in a single-mode good
cavity with strong atom-cavity coupling [28], our scheme
is based on a very different operation condition, with the
three major advantages that (i) it does not require strong
atom-cavity coupling (i.e., it can work in a weak-coupling
“bad-cavity” regime), (ii) it extends hyperradiance effect in a

single mode of the electromagnetic field to steering, operating,
and converting such a hyperradiance effect in different modes
of the electromagnetic field, and, (iii) it is more amicable to
implement experimentally. In our scheme, we are interested in
the intermode (i.e., the V -to-H mode) hyperconversion from
collective behavior of two undriven atoms in an orthogonally
polarized two-mode cavity and introducing the evaluation pa-
rameter is to quantify optical V -to-H mode-conversion ability.
Our evaluation parameter is very different from the witness
parameter of the work in Ref. [28] as [28] only describes the
transmission ability of a singe-mode cavity from two driven
atoms rather than the V -to-H mode-conversion ability in an
orthogonally polarized two-mode cavity.

The remainder of the article is organized as follows. In
Sec. II, we present the physical model of the system under
consideration, mainly including the model Hamiltonian, the
master equation, and the evaluation parameter. In Sec. III, we
give both numerical and analytical methods for estimating the
undriven cavity-mode output under steady-state conditions.
One is to directly use the quantum master-equation approach
(Sec. III A) and the other is to exploit the optical Heisenberg-
Langevin equation approach deriving the closed-form solution
in the weak-driving limit (Sec. III B). After that, in Sec. V, we
analyze and discuss in detail the mode-conversion character-
istics from one driven V -polarized mode to the other undriven
H-polarized mode in the bad-cavity regime by adjusting the
system parameters properly. In Sec. IV, we illustrate the
experimental feasibility of our proposed scheme and the se-
lection of relevant system parameters. Finally, the conclusions
and outlooks are yielded in Sec. VI. Technical details of the
model Hamiltonian derivation are presented in the Appendix.

II. SYSTEM CONSIDERATION AND BASIC EQUATIONS

As shown in Fig. 1, the basic components of our system
under consideration are typical of cavity QED architectures.
Our cavity QED system consists of an optical cavity where
two atoms (qubits) interact with two nearly degenerate cavity
modes with orthogonal linear polarizations: a V -polarized
cavity mode (resonance frequency ωV ) and a H-polarized cav-
ity mode (resonance frequency ωH ). Here, for concreteness
but without loss of generality, we consider a two-mode Fabry-
Pérot cavity as our high-finesse optical resonator. Each atom
can be considered as a two-level system (transition frequency
ωA) with the ground (|1〉) and excited (|2〉) states (see inset).
The arrangement of the two atoms trapped inside the cavity is
to fix the first atom and scan the second atom along the z axis
(i.e., the cavity axis), which results in an interatomic distance
�z corresponding to a relative phase shift φz. Here, since the
distance between the two atoms is assumed to be much larger
than the wavelength λ of the cavity photons, the dipole-dipole
interaction between them can be safely ignored.

The V -polarized cavity mode is coherently driven along the
cavity axis by an external continuous-wave (cw) pump laser
E(in)

p (t ) = eV f (in)
p e−iωpt with polarization eV , amplitude f (in)

p ,
and frequency ωp, through the left-side cavity mirror at an
in-coupling rate κle. On the other hand, the transmitted light
through the right-side cavity mirror with an out-coupling rate
κre is collected like in Refs. [19,44]. The starting point for the
theoretical model of Fig. 1 is the two-mode Tavis-Cummings
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FIG. 1. Schematic of a two-atom cavity QED system used for
enhancing photon conversion between different electromagnetic
modes. A pair of two-level atoms (resonance frequency ωA) are
coupled to a two-mode cavity with orthogonal linear polarizations in-
volving a vertically (V -) polarized cavity mode (resonance frequency
ωV ) and a horizontally (H -) polarized cavity mode (resonance fre-
quency ωH ). Two small tan circles represent the atoms 1 and 2
with the radiative decay rate γs. Each atom can be modeled as a
two-level system composed of a lower ground state (|1〉) and an
upper excited (|2〉) state. The configuration to position the two atoms
is to fix the atom 1 at an antinode of the cavity field and to vary
the atom 2 along the cavity axis (the z direction), thus leading to
an interatomic distance �z which further is associated with a rel-
ative phase shift φz. The two atoms are separated by more than a
resonant optical wavelength, so there is no direct (or dipole-dipole)
interaction between them. Here, the system is coherently driven by an
input vertically polarized pump laser (cavity drive) with a frequency
ωp and an amplitude f (in)

p from the left-side cavity mirror with an
in-coupling rate κle along the cavity axis. The output light (cavity
transmission) with the two orthogonal linear polarizations V and H ,
from the right-side cavity mirror with an out-coupling rate κre, can
be separated through a polarizing beam splitter and then be detected
by an avalanche photodiode.

Hamiltonian [45], which, within the dipole and rotating-wave
approximations, reads as (see Appendix for details)

Ĥtot = h̄ωV â†
V âV + h̄ωH â†

H âH + h̄ωAσ̂
†
1 σ̂1 + h̄ωAσ̂

†
2 σ̂2

+ h̄g1(b̂σ̂ †
1 + b̂†σ̂1) + h̄g2

(
b̂σ̂ †

2 + b̂†σ̂2
)

+ h̄Ep(e−iωpt â† + eiωpt â), (1)

where â†
V and âV are the standard creation and annihila-

tion operators of the V - (H-) polarized cavity mode. σ̂
†
j

and σ̂ j ( j = 1, 2) are the raising and lowering Pauli oper-
ators associated with each individual atom with the forms
σ̂

†
j = |2〉〈1| j and σ̂ j = |1〉〈2| j . b̂† = â†

V cos ϕ + â†
H sin ϕ and

b̂ = âV cos ϕ + âH sin ϕ are the cavity photon creation and
annihilation operators along the atomic dipole orientation,
and ϕ is the relative angle. The first and second terms in
Eq. (1) stand for the energies of the bare two-mode cavity
with frequency ωV (ωH ) for the V - (H-) polarized mode
and the third and fourth terms denote the energies of the
two bare atoms with frequency ωA, respectively. The fifth
and sixth terms describe the atom-cavity interaction with
coupling strength g j . More specifically, g j = g cos(2πz j/λ)
describes the position-dependent coupling strength between
the jth atom and two-mode cavity. As already mentioned

above, we assume that the atom 1 is fixed at an antinode of
the cavity field, thus we take g1 = g with cos(2πz1/λ) = 1
or 2πz1/λ = 2nπ (n = 0, 1, 2, . . . ) without loss of general-
ity. However, the position of the atom 2 is varied along the
cavity axis with an interatomic distance �z = z2 − z1 relative
to the atom 1 (see Fig. 1). Based on these facts, we have
g2 = gcos φz where φz = 2π�z/λ is the relative phase shift
induced by the interatomic distance �z. Two remarks are in
order on the implications of the interatomic-distance-induced
phase φz. First, for the case of φz = nπ + π/2, the atom 2
is decoupled to the cavity. Second, φz can be selected (mod
2π ) since g2 is 2π periodic with respect to its phase φz.
In this scenario, the two atoms can be separated by much
larger than a resonant optical wavelength λ, such that there
is no direct (or dipole-dipole) interaction between them in
the above Hamiltonian (1). The last term illustrates the V -
polarized pump electromagnetic field injected into the cavity
with the frequency ωp and strength Ep, which is closely related
to the amplitude f (in)

p and power Pp of the applied pump laser
by the relationships Ep = √

κle f (in)
p = √

κlePp/(h̄ωp).
Moving over to the frame rotating with the pump frequency

ωp, the effective Hamiltonian of the total system in Eq. (1)
becomes

Ĥeff = Û †ĤtotÛ − iÛ † ∂Û

∂t

= h̄�V â†
V âV + h̄(�V + δHV )â†

H âH

+ h̄(�V + δAV )σ̂ †
1 σ̂1 + h̄(�V + δAV )σ̂ †

2 σ̂2

+ h̄g(b̂σ̂ †
1 + b̂†σ̂1) + h̄g cos φz(b̂σ̂ †

2 + b̂†σ̂2)

+ h̄Ep(â† + â), (2)

where Û = exp [−iωp(â†
V âV + â†

H âH + σ̂
†
1 σ̂1 + σ̂

†
2 σ̂2)t] is a

unitary transformation operator. �V = ωV − ωp is the fre-
quency detuning of the V -polarized cavity mode from the
pump laser, δHV = ωH − ωV is the frequency detuning of the
H-polarized cavity mode from the V -polarized cavity mode,
and δAV = ωA − ωV the frequency detuning of the two-level
atoms from the V -polarized cavity mode, respectively.

After taking into account the dissipations of both two-
mode cavity and two-level atoms with theirs surrounding
environments, the dynamical evolution of the hybrid system
is described by the following Lindblad master equation under
the Born-Markov approximation [46–48]:

d ρ̂

dt
= −i[Ĥeff, ρ̂] + κD(âV )ρ̂ + κD(âH )ρ̂ + γsD(σ̂1)ρ̂

+ γsD(σ̂2)ρ̂, (3)

where D(Ô)ρ̂ = Ôρ̂Ô† − 1/2ρ̂Ô†Ô − 1/2Ô†Ôρ̂ is a gen-
eral Lindbald superoperator form for the collapse operator
Ô ∈ {âV , âH , σ̂1, σ̂2}, accounting for the losses to the environ-
ments. Notice that the definition of γs and κ in the dissipator
superoperator terms of Eq. (3) differs by a factor of 2 com-
pared to that in Refs. [25,49]. Above, the thermal photon
numbers have been neglected in the low-temperature limit
because of the extra high frequencies of the V and H cavity
modes. ρ̂ is the density matrix operator of the total atom-
cavity coupled system and Ĥeff is directly given by Eq. (2).
κ = κi + κle + κre is the total loss rate of the cavity mode,
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where κi is the intrinsic loss rate of the cavity, and κle (κre)
is the external loss rate of the left (right) cavity mirror. The
former is due to undesirable absorption and scattering inside
the cavity, whereas the latter is owing to the extraction of
cavity photons to the desired external mode via transmission
of the mirror. Last but not least, the external loss can be exper-
imentally controlled by tuning or designing the transmissivity
of the output coupler, for example, the cavity mirror. γs is the
decay rate of the two-level atom.

According to the input-output formalism [47,48], the oper-
ator f̂H of interest to us here, which describes the transmission
field of the undriven H-polarized cavity mode through the
right-side mirror (see Fig. 1), can be written as follows:

f̂H = −i
√

κreâH , (4)

which is directly proportional to the intracavity field âH of the
H polarization. The output photon flux 〈 f̂ †

H f̂H 〉 is proportional
to the average number of cavity photons 〈â†

H âH 〉. As final
remark, here we point out that, in fact, the multimode vacuum
inputs of the cavity on the right cavity mirror can exist, even a
vacuum field reflecting off of the cavity in Fig. 1. The corre-
sponding input noise operators due to the vacuum field should
be added to the right-hand side of Eq. (4) in order to preserve
the bosonic commutation relation. These input noise operators
and their normally ordered moments have zero mean values as
was shown already in standard textbooks: for quantum optics,
see, e.g., Ref. [37]. Therefore, the later calculation results will
not be affected. Also, the related terms are not included in
Eq. (4) explicitly.

Correspondingly, making use of Eq. (4), the normalized
intensity transmission Tj ( j = 1, 2), namely, the ratio of the
number of the resulting output photons per unit time in the
H polarization to the input photons in the pump laser, can be
given by the formula

Tj = 〈 f̂ †
H f̂H 〉 j∣∣ f (in)
p

∣∣2 = Tr(ρ̂ f̂ †
H f̂H ) j∣∣ f (in)

p

∣∣2 , (5)

where 〈·〉 denotes the quantum expectation value and Tr
the trace. For convenience of comparison below, we have
introduced the subscript j. T2 means the average intensity
transmission for two atoms ( j = 2) in the cavity, while T1

corresponds to the average intensity transmission for only one
atom ( j = 1) in the cavity. It is worth pointing out that Ti

also can be regarded as the overall photon mode-conversion
efficiency because it is the ratio of the output photon flux
〈 f̂ †

H f̂H 〉 j for the undriven H-polarized mode over the input
photon flux | f (in)

p |2 for the driven V -polarized mode.
On the other hand, the ability and behavior of optical-mode

conversion from the V -polarized to H-polarized mode in the
two-atom cavity QED system can be quantified by the follow-
ing evaluation parameter W , defined as

W = T2 − 2T1, (6)

where T1 is a reference value of a single atom positioned at an
antinode of the cavity field and the factor 2 appearing in front
of T1 is introduced in order to compare the mode-conversion
efficiency for the coupled two-atom system with that for the
system of two uncorrelated atoms, which is analogous to that

introduced in Ref. [50]. T1 and T2 are given by Eq. (5). Several
remarks are in order on the implications of Eq. (6).

First of all, W = 0, i.e., T2 = 2T1, represents the fact that
optical-mode conversion for the two-atom cavity system is
simply the sum of that for two independent atoms in the cavity,
namely, an uncorrelated conversion for two atoms.

Second, W < 0, i.e., T2 < 2T1, indicates that the mode con-
version is suppressed for the two-atom cavity system, which
is called mode subconversion, analogous to subradiance [51].

Third, W > 0, i.e., T2 > 2T1, reveals an enhanced mode
conversion. Interestingly, W = 2T1, i.e., T2 = 4T1, implies
that the mode conversion scales with the square of the number
of atoms in the cavity, which is reminiscent of superradiance
[51], therefore referred to as mode superconversion. In partic-
ular, when W > 2T1, i.e., T2 > 4T1, this implies that the mode
conversion is significantly enhanced, which is defined as the
mode hyperconversion.

To sum up, when the two atoms in a two-mode cavity,
where the V -polarized mode is coherently driven, cooper-
atively radiate at smaller, just twice times higher, or more
than twice times higher optical power into another undriven
H-polarized cavity mode than the two independent atoms,
in turn we call it subconversion, superconversion, or hyper-
conversion, namely, the so-called evaluation parameter. So,
it quantifies optical V -to-H mode-conversion ability in an
orthogonally polarized two-mode cavity.

III. CALCULATIONS OF INTENSITY TRANSMISSION
AND EVALUATION PARAMETER

A. Numerical solution using Born-Markov quantum
master-equation approach

In order to find the steady state of the system ρ̂(t → ∞),
we can numerically solve the master Eq. (3) with the left-hand
side set to zero (i.e., d ρ̂/dt = 0), from which we can calculate
the average value of every observable of the system using the
relation 〈Ô〉 = Tr(ρ̂Ô). Of interest to us here are the intensity
transmission Tj and the evaluation parameter W . For this
purpose, we truncate the Hilbert space of two cavity modes at
photon numbers sufficiently large to ensure full convergence,
which depends on the pump laser strength Ep in Eq. (2). Here,
the considered Hilbert space is expanded by the electronic
states of the two two-level atoms and the Fock states of the
two cavity modes. The main aim is to check the accuracy of
the analytical solution presented below.

B. Analytical solution using Heisenberg-Langevin
equation approach in the weak-driving limit

The intensity transmission in Eq. (5) and the evaluation
parameter W in Eq. (6) can also be analytically calculated in
the weak-pumping limit, that provides further physical insight
into the numerical results. To this end, we focus on the case of
a rather small Ep in the following.

By multiplying the master equation (3) with the given oper-
ator Ô ∈ {âV , âH , σ̂1, σ̂2}, performing the trace operation, and
applying the cyclic permutation of the trace, it is straightfor-
ward to attain the Heisenberg-Langevin equations of motion
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for the mean values of the operators 〈âV 〉, 〈âH 〉, 〈σ̂1〉, and 〈σ̂2〉:
d〈âV 〉

dt
= −i(�V − iκ/2)〈âV 〉 − ig cos ϕ〈σ̂1〉 − ig cos φz cos ϕ〈σ̂2〉 − iEp, (7)

d〈âH 〉
dt

= −i(�V + δHV − iκ/2)〈âH 〉 − ig sin ϕ〈σ̂1〉 − ig cos φz sin ϕ〈σ̂2〉, (8)

d〈σ̂1〉
dt

= −i(�V + δAV − iγs/2)〈σ̂1〉 + ig cos ϕ〈âV σ̂z1〉 + ig sin ϕ〈âH σ̂z1〉, (9)

d〈σ̂2〉
dt

= −i(�V + δAV − iγs/2)〈σ̂2〉 + ig cos φz cos ϕ〈âV σ̂z2〉 + ig cos φz sin ϕ〈âH σ̂z2〉, (10)

where σ̂z j = σ̂
†
j σ̂ j − σ̂ j σ̂

†
j is the population-difference opera-

tor of atom j ( j = 1, 2) between the ground state |1〉 j and the
excited state |2〉 j with σ̂

†
j = |2〉〈1| j and σ̂ j = |1〉〈2| j , namely,

σ̂z j = |2〉〈2| j − |1〉〈1| j . In the limit of low-pump excitation
mentioned above, the two-level atomic system is approxi-
mately in its ground state, so we can take σ̂z j � −1. As can
be seen, the operators σ̂ and σ̂ † satisfy the bosonic com-
mutation relation, i.e., [σ̂ j, σ̂

†
j ] = −σ̂z j � 1. In this situation,

the two-level atomic system can be treated as a good model
for a harmonic oscillator. Therefore, we can set 〈âV σ̂z j〉 �
−〈âV 〉 and 〈âH σ̂z j〉 � −〈âH 〉 in Eqs. (9) and (10). Under
the steady-state condition, utilizing the above approximation,
Eqs. (7)–(10) can then be simplified into the following alge-

braic forms:

f1〈âV 〉 = −g cos ϕ〈σ̂1〉 − g cos φz cos ϕ〈σ̂2〉 − Ep, (11)

f2〈âH 〉 = −g sin ϕ〈σ̂1〉 − g cos φz sin ϕ〈σ̂2〉, (12)

f3〈σ̂1〉 = −g cos ϕ〈âV 〉 − g sin ϕ〈âH 〉, (13)

f3〈σ̂2〉 = −g cos φz cos ϕ〈âV 〉 − g cos φz sin ϕ〈âH 〉, (14)

where we have defined f1 = �V − iκ/2, f2 = �V + δHV −
iκ/2, and f3 = �V + δAV − iγs/2, respectively.

After some tedious but straightforward calculations, the
steady-state solution of Eqs. (11)–(14) about 〈âH 〉 can be
found as

〈âH 〉
f (in)

p

= 2 f3
√

κleg2(1 + cos2 φz ) sin 2ϕ

g4(1 + cos2 φz )2 sin2 2ϕ − 4( f1 f3 − g2 cos2 ϕ − g2 cos2 ϕ cos2 φz )( f2 f3 − g2 sin2 ϕ − g2 sin2 ϕ cos2 φz )
, (15)

from which we subsequently can acquire the normalized in-
tensity transmission T2 = κre|〈âH 〉/ f (in)

p |2 for the two-atom
case. The closed-form solution (15) is the starting point of
the analytical discussion of optical-mode conversion in the
following. Here it is emphasized that, if φz = π/2, the ex-
pression of T2 reduces to that of T1 for the one-atom case.
Additionally, T2 is of π periodicity with respect to φz and is of
π/2 periodicity with respect to ϕ.

IV. RESULTS AND DISCUSSION ABOUT EFFICIENT
MODE CONVERSION

In what follows, we will start by looking at optical-
mode-conversion characteristics in a bimodal optical cavity
mediated by the two atoms for experimentally realistic
parameters. Figure 2(a) shows the normalized intensity trans-
missions of the undriven H-polarized cavity mode: T2 for the
two-atom case and T1 for the one-atom case, as a function of
the frequency detuning �V /γs. As a matter of fact, T2 and
T1 also represent the conversion efficiency form the driven
V -polarized cavity mode to the undriven H-polarized cavity
mode. As can be seen from Fig. 2(a), T2 reaches its maximal
value of 0.032 at �V /γs = −0.02, beyond which it rapidly
decreases to reach a vanishingly small value. A similar curve
is found for T1, but the maximal value of T1 is only 0.012.
From this analysis it is clear that T2 > 2T1 exists, and the
enhanced mode conversion can be achieved. As a check, we

compare the numerical results from the master equation (3)
and the analytical estimates from the formulas (15), finding
that they are consistent.

Physically, the driven V mode excites the |1〉 ↔ |2〉 tran-
sition in the atoms through the pump laser, and the cw pump
driving of this mode introduces the energy into the system.
Some of these energies are transferred to the undriven H
mode by the excitation and decay of both atoms. The differ-
ence in peak height between both scenarios is thanks to an
enhanced collective emission induced by the two atoms in
the cavity [23–25]. On the other hand, it should be pointed
out that a nonzero small value of �V corresponding to the
appearance of the maximal intensity transmission in Fig. 2(a)
is due to the fact that we consider the slight splitting of
δHV /γs = 0.08 between the V and H modes in the calculation
as a result of fabrication imperfections in a realistic system
[20,44]. When setting δHV = 0, as expected the maximal
intensity transmission occurs at �V = 0 (not shown here).
Figure 2(b) depicts the evaluation parameter W of optical-
mode-conversion ability together with 2T1 as a function of the
detuning �V /γs. The main purpose is to assess the quality
of the mode conversion of the two-atom system, through per-
forming a reference simulation of a single atom located at the
antinode of the cavity fields. From these plots, we can see that
W > 0 can be well obtained in the approximate range of −1 <

�V /γs < 1. At �V /γs = 0.5 and �V /γs = 1 as shown in the
inset, we observe W = 2T1 (i.e., T2 = 4T1) as a clear sign of
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FIG. 2. (a) Intensity transmissions T2 of the undriven H -polarized cavity mode in the two-atom case as a function of the detuning �V /γs,
and T1 in the one-atom case. Here, the transmission is normalized to the intensity of the input pump laser driving the V -polarized cavity mode,
which also describes the conversion efficiency from the driven V -polarized mode to the undriven H -polarized mode. (b) Evaluation parameter
W ≡ T2 − 2T1, showing the conversion degree of the V -to-H mode with two atoms in comparison to one atom, as a function of the detuning
�V /γs, and also twice the intensity transmission 2T1 for the one-atom case for comparison. The red solid and blue dashed curves in (a) and the
magenta solid and black dashed curves in (b) are the numerical simulations obtained using Eq. (3), while the red circle and blue square markers
in (a) and the magenta star and black cross markers in (b) are the analytical results calculated from Eq. (15). The inset in (b) emphasizes the
region of �V /γs ∈ [0.5, 1] where both W � 2T1 and T2 > 0 in the main panels. The system parameters for all the results are g = 0.25γs,
κle = κre = 0.4γs, κi = 0.03γs, δHV = 0.08γs, δAV = 0, φz = 0, ϕ = π/4, and Ep = 0.01γs.

optical-mode superconversion. In particular, in the ranges of
0.5 < �V /γs < 1 and −1 < �V /γs < −0.5, we find W >

2T1 (i.e., T2 > 4T1), manifesting optical-mode hyperconver-
sion. Notice that, for a significantly large detuning, for
example, �V /γs = 1.5, both T2 and T1 are equal to zero,
which should be excluded from the above obtainable conclu-
sions.

To gain a more quantitative insight and simplify the anal-
ysis, as above, we now focus on some parameter values, such
as �V = 0, δAV = 0, ϕ = π/4, and δHV → 0. In this scenario,
based on Eq. (15), the normalized intensity transmission T2

can be rewritten as

T2 =
⎡
⎣ g2√κle

√
κre

g2κ + κ2γs

4(1+cos2 φz )

⎤
⎦

2

, (16)

from which we can clearly see that T2 reaches a maximum
at φz = 0 (in-phase coupling of two atoms) or π (out-of-
phase coupling of two atoms), whereas it has a minimum at
φz = π/2 (decoupling of one atom). For example, provided
the aforementioned criterion W = 0, under the given g, κ , and
γs, from Eq. (16) we can derive the following condition about
φz:

φz = arccos

[ √
2

1 − (
√

2 − 1)C
− 1

]
(17)

or

φz = π − arccos

[ √
2

1 − (
√

2 − 1)C
− 1

]
, (18)

where C = 4g2/(κγs) is the cooperativity parameter. If φz

is located in the range of arccos[
√

2
1−(

√
2−1)C

− 1] < φz < π −
arccos[

√
2

1−(
√

2−1)C
− 1], then we can get W < 0. Otherwise,

beyond this range in a periodicity of π , we have W > 0. For
the intensity transmission corresponding to the situation of
an off-resonant pump laser (�V �= 0), the tedious expressions
offer no clear physical insight, thus they are not given here.

In Figs. 3(a) and 3(b), we show how the intensity trans-
mission T2 (or T1) of the undriven H-polarized cavity mode
and the evaluation parameter W changes as a function of the
relative phase φz induced by the interatomic distance �z in
Fig. 1. Specifically, for the case of a pair of atoms in the cavity
as shown by the red solid line in Fig. 3(a), the intensity trans-
mission T2 exhibits a clear π -periodic change with respect to
φz. Moreover, from Fig. 3(a), we can find that T2 reaches a
maximum value when φz = 0 or π . However, T2 reaches a
minimum value when φz = π/2 because the second atom just
is decoupled from the cavity fields. These are in agreement
with the analytic prediction of Eq. (16). As mentioned before,
in the atomic position with φz = π/2, the system is equivalent
to that for the scenario of a single atom in the cavity, as a result
T2 and T1 intersect at one point with an equal value T2 = T1.
Apart from that, we observe the following: T2 decreases with
the increasing of φz from 0 to π/2. Instead, T2 increases with
increasing φz from π/2 to π . Shown by the blue dashed line
in Fig. 3(a) is T1 versus φz for the case of only a single atom in
the cavity as a comparison. Quite evidently, the phase factor φz

during the atom-field coupling can not appear at all, therefore,
the intensity transmission T1 is a straight line and is irrelevant
to φz.

043705-6



OPTICAL-MODE HYPERCONVERSION IN THE … PHYSICAL REVIEW A 107, 043705 (2023)

0 1/4 1/2 3/4 1 5/4 3/2 7/4 2
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

 

 

φ
z
/π

N
or

m
al

iz
ed

 tr
an

sm
is

si
on

 o
f u

nd
riv

en
 m

od
e

T
2
 

T
1
 

(a)

0 1/4 1/2 3/4 1 5/4 3/2 7/4 2
−0.015

−0.010

−0.005

0.000

0.005

0.010

φ
z
/π

E
va

lu
at

io
n 

pa
ra

m
et

er
 W

 

 

(b)

FIG. 3. (a) Normalized intensity transmissions T2 of the undriven H -polarized cavity mode in the two-atom case as a function of the
interatomic-distance-induced phase φz/π , and T1 in the one-atom case. (b) Evaluation parameter W of optical-mode-conversion ability as a
function of the interatomic-distance-induced phase φz/π . Here, the system parameters are g = 0.25γs, κle = κre = 0.4γs, κi = 0.03γs, δHV =
0.08γs, δAV = 0, �V = 0, ϕ = π/4, and Ep = 0.01γs.

As shown in Fig. 3(b), the evaluation parameter W
of optical-mode-conversion ability exhibits a strong phase-
dependent effect. First, W decreases with increasing φz from
0 to π/2. Beyond φz = π/2, a further increase in φz increases
W in the π periodicity. Aside from this, it can be seen that
W = 0 at φz � π/5 and 4π/5. According to Eqs. (17) and
(18), for the given parameters in Fig. 3(b), we obtain φz �
π/5 corresponding to W = 0. The numerical results confirm
our analytical results. In the ranges of 0 < φz < π/5 and
4π/5 < φz < π , we have the evaluation parameter W > 0,
corresponding to the enhanced mode conversion in the two-
atom system. However, in the range of π/5 < φz < 4π/5,
we have W < 0, reflecting optical-mode subconversion. In
light of the above analysis, we find that the V -to-H-mode
conversion displays these features that are not expected in a
simple picture of two uncorrelated atoms emitting into the
H-polarized cavity mode.

In order to further show explicitly the dependency of the
mode conversion on the detuning �V and the phase φz, we
plot, in color, the two-dimensional (2D) density distribution
of the normalized intensity transmissions T2 [Fig. 3(a)], the
evaluation parameter W [Fig. 3(b)], and another evaluation pa-
rameter W − 2T1 [Fig. 3(c)] in Figs. 4(a)–4(c), enabling direct
comparison between the three data sets. Looking closer, we
see that the regions of all T2 > 0, W > 0, and W − 2T1 > 0
can be generated by appropriately choosing �V and φz. This
suggests the possibility of optical-mode hyperconversion,
reminiscent of driven-atom hyperradiance [28]. In Figs. 5(a)
and 5(b) the dependencies of the intensity transmission T2

(or T1) of the undriven H-polarized cavity mode and the
evaluation parameter W are checked against the atom-cavity
coupling strength g (note the logarithm scale of the horizontal
axis). As follows from Fig. 5(a), the intensity transmission
T2 is seen to monotonically increase with increasing g and
then saturates at higher g shown, e.g., g ∼ 10γs. Analogously,
as g increases, so does the intensity transmission T1, and it
ultimately reaches a saturated state for larger g. The difference

between the one- and two-atom coupling situations is that T2

is larger than T1 in an intermediate regime of g.
Physically, this behavior can be understood by introducing

the mentioned-above cooperativity parameter C = 4g2/(κγs).
For the case of a symmetric cavity κle = κre = ηκ and η =
κle/κ = 40/83 given in Fig. 5, we can reexpress Eq. (16) in
terms of C as

T2 =
(

ηC

C + 1
1+cos2 φz

)2

, (19)

from which, we can know that (i) C 
 1, T2 approaches 0; and
(ii) C � 1, T2 approaches η2, i.e., T2 � 0.23 in Fig. 5. For the
one-atom case, φz = π/2 directly leads to T1 = ( ηC

C+1 )2. So,
between (i) and (ii), we have the relation T2 > T1.

Further, when φz = 0 or π for the two-atom case and
φz = π/2 for the one-atom case, the normalized intensity
transmissions T2 and T1 can be explicitly expressed as

T2 =
(

g2√κle
√

κre

g2κ + κ2γs/8

)2

for two atoms, (20)

T1 =
(

g2√κle
√

κre

g2κ + κ2γs/4

)2

for one atom. (21)

From Eqs. (20) and (21), one can easily see that the ap-
pearance of an uncorrelated conversion W = 0 requires the
following condition for the denominators in the parentheses:
g2κ + κ2γs/4 = √

2(g2κ + κ2γs/8), because the numerators
are the same. After some calculations, we obtain a more
compact relation

g =
√√

2κγs/8, (22)

for this critical point W = 0. Similarly, when the condi-
tion g >

√√
2κγs/8 holds, optical-mode subconversion W < 0

emerges. By contrast, g <
√√

2κγs/8 results in W > 0. With
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FIG. 4. Contour plots of (a) the normalized intensity transmissions T2 of the undriven H -polarized cavity mode in the two-atom case,
(b) evaluation parameter W of optical-mode-conversion ability, and (c) another evaluation parameter W − 2T1 versus the detuning �V /γs

and the interatomic-distance-induced phase φz/π . (a)–(c) Share the same color bar. The system parameters are g = 0.25γs, κle = κre = 0.4γs,
κi = 0.03γs, δHV = 0.08γs, δAV = 0, ϕ = π/4, and Ep = 0.01γs.

these parameters at hand (see Fig. 5), we have g/γs � 0.383
at W = 0.

As shown in Fig. 5(b), first the evaluation parameter W
from a zero value grows slowly with the atom-cavity cou-
pling strength g and reaches a positive maximum around
g/γs = 0.28. With the increase of g above the optimal value
g/γs = 0.28, W then starts to decrease rapidly. In the mean-
time, the demarcation point W = 0 arises at g/γs � 0.383 in
excellent agreement with the analytical formulas (22). And, in
this regard, W takes negative values when g/γs > 0.383 (see
inset).

To gain further insight, we simultaneously consider the
effect of detuning the pump laser from the driven V -polarized

cavity mode and scanning the atom-cavity coupling strength.
Figures 6(a)–6(c) show the evolution of T2, W , and W − 2T1

as a function of �V and g, which exhibits a pronounced mode
hyperconversion regime. It shows that detuning the driving
pump laser is preferred to obtain optical-mode hyperconver-
sion. In Figs. 7(a)–7(c) we plot T2, W , and W − 2T1 as a
function of φz and g, considering the on-resonance case �V =
0. It reveals that, regardless of what both φz and g are set
to, there is no mode hyperconversion because of W − 2T1 �
0. As a further remark, we note that the values of W >

0 appearing in Fig. 7(b) are indicative of mode-conversion
enhancement, to a certain extent. On the contrary, in a de-
tuned case, i.e., for �V /γs = 1 in Figs. 8(a)–8(c), the other
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FIG. 5. (a) Normalized intensity transmissions T2 of the undriven H -polarized cavity mode in the two-atom case as a function of the
atom-cavity coupling strength g/γs, and T1 in the one-atom case. (b) Evaluation parameter W of optical-mode-conversion ability as a function
of the atom-cavity coupling strength g/γs. The inset of (b) shows the zoomed-in region of W > 0 for clarity. In all panels, the horizontal axis is
plotted in logarithmic scale. Other unspecified system parameters are κle = κre = 0.4γs, κi = 0.03γs, δHV = 0.08γs, δAV = 0, �V = 0, φz = 0,
ϕ = π/4, and Ep = 0.01γs.
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FIG. 6. Contour plots of (a) the normalized intensity transmissions T2 of the undriven H -polarized cavity mode in the two-atom case,
(b) evaluation parameter W of optical-mode-conversion ability, and (c) another evaluation parameter W − 2T1 versus the detuning �V /γs and
the atom-cavity coupling strength g/γs. The system parameters are κle = κre = 0.4γs, κi = 0.03γs, δHV = 0.08γs, δAV = 0, φz = 0, ϕ = π/4,
and Ep = 0.01γs.

parameters remaining the same as Figs. 7(a)–7(c), one ob-
serves that optical-mode hyperconversion W − 2T1 > 0 can
be obtained. Once again, it turns out that detuning the V -
polarized cavity mode and pump laser resonances enables the
generation of optical-mode hyperconversion.

Following the analogy of Eqs. (4) and (5) in Sec. II, for
the driven V -polarized cavity mode, we define the normalized
intensity transmission denoted by I2 for two atoms and I1

for only one atom when replacing the subscript H with V in
Eqs. (4) and (5). We begin by studying a normalized intensity
transmission for the driven V -polarized cavity mode as the
one for the undriven H-polarized cavity mode. The result
is shown in Fig. 9, finding that I2 in the two-atom case is
smaller than I1 in the one-atom case, which is opposite to that
in Fig. 2(a). This is because of optical-mode-conversion
enhancement under the two-atom collective radiation
[23].

V. EXPERIMENTAL PROPOSAL AND TYPICAL
PARAMETERS FOR THE MODEL

In this section, we elucidate the experimental feasibility of
the proposed atom-cavity system to observe our theoretical
predictions. To be specific, one possible platform to imple-
ment our present scheme mainly includes an optical cavity, a
source of atoms (a pair of neutral atoms), a polarizing beam
splitter, and an avalanche photodiode detector.

For the cavity, we make use of optical Fabry-Pérot cav-
ity, involving the two nearly degenerate TEM00 modes with
orthogonal linear polarizations H and V , which has been
successfully realized in Refs. [20,44,52]. Further, it is shown
that a slight nondegeneracy (birefringence splitting) of these
two orthogonal modes is less than 2π × 0.5 MHz [20,44].
Here, we set the mode splitting δHV to be 2π × 0.48 MHz,
satisfying the above requirement. In order to control the
length of the cavity, the mirrors are glued directly to flat
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FIG. 7. Contour plots of (a) the normalized intensity transmissions T2 of the undriven H -polarized cavity mode in the two-atom case,
(b) evaluation parameter W of optical-mode-conversion ability, and (c) another evaluation parameter W − 2T1 versus the interatomic-distance-
induced phase φz/π and the atom-cavity coupling strength g/γs at �V = 0. The system parameters are κle = κre = 0.4γs, κi = 0.03γs, δHV =
0.08γs, δAV = 0, ϕ = π/4, and Ep = 0.01γs.
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FIG. 8. Contour plots of (a) the normalized intensity transmissions T2 of the undriven H -polarized cavity mode in the two-atom case,
(b) evaluation parameter W of optical-mode-conversion ability, and (c) another evaluation parameter W − 2T1 versus the interatomic-distance-
induced phase φz/π and the atom-cavity coupling strength g/γs at �V = γs. The system parameters are κle = κre = 0.4γs, κi = 0.03γs, δHV =
0.08γs, δAV = 0, ϕ = π/4, and Ep = 0.01γs.

piezoelectric transducers. The cavity length can be stabilized
with the Pound-Drever-Hall technique [20,25,44]. For more
details about the fabrication procedure of this bimodal cavity
in the experiment, see Refs. [20,44,52].

For the source of atoms, we choose the 87Rb atom pair
on the 5S-5P transition (nuclear spin I = 3

2 , D2 line, and
wavelength 780.2 nm [53]) as an example. The other type of
qubits like the ions can also be suitable candidates [24,54].
The designated states and the decay rate in the inset of Fig. 1
can be selected as follows: |1〉 = |5S1/2, F = 1, mF = 0〉
and |2〉 = |5P3/2, F = 0, mF = 0〉 together with γs = 2π ×
6 MHz [25,53], where F and mF denote the quantum num-
bers describing the total atomic angular momentum and its
projection onto the quantization axis, respectively. Initially,
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FIG. 9. Normalized intensity transmissions I2 of the driven V -
polarized cavity mode in the two-atom case as a function of the
detuning �V /γs, and I1 in the one-atom case. The system param-
eters are g = 0.25γs, κle = κre = 0.4γs, κi = 0.03γs, δHV = 0.08γs,
δAV = 0, φz = 0, ϕ = π/4, and Ep = 0.01γs.

the two Rb atoms can be captured from background gas by
a magneto-optical trap and, subsequently, are loaded into de-
tuned standing-wave optical dipole traps [23]. By means of
the combined trapping potential, we can fix one atom at an
antinode of the cavity fields (i.e., it is maximally coupled
to the cavity), and vary another atom along the cavity axis.
Experimentally, via combining an optical lattice for atom lo-
calization and an imaging system with single-site resolution, a
distance-controlled and deterministically prepared 87Rb atom
pair in an optical Fabry-Pérot cavity has been reported; see
Refs. [25,55,56] for more details.

In order to separate the two orthogonal linear polarizations,
a calcite Wollaston prism (i.e., a polarizing beam splitter) at
the cavity output, as indicated in the right side of Fig. 1, is
applied. Then, the H-polarized photons along the cavity axis
(i.e., the z axis) can be detected by a single-photon avalanche
diode.

Finally, we comment on realistic experimental parame-
ters of the system. In our calculations, typical parameters
are expressed in units of atomic dipole decay rate γs, for
87Rb atoms here, γs = 2π × 6 MHz [53]. We take the cavity
with the total loss rate κ = 0.83γs � 2π × 5 MHz, where
κle = κre = 0.4γs = 2π × 2.4 MHz (symmetric cavity) and
κi = 0.03γs = 2π × 0.2 MHz. For the cavity length of L =
2.2 mm [57,58], its finesse is F = πc/(κL) � 1.4 × 104 with
c being the light speed in free space. We set the atom-
cavity coupling strength as g = 0.25γs = 2π × 1.5 MHz [57].
Owing to the fact that g < (κ/2, γs/2) or the cooperativity
parameter C = 4g2/(κγs) = 0.3 < 1, these parameters place
our atom-cavity system in the weak-coupling regime of cav-
ity QED (i.e., the bad-cavity regime). The cavity parameter
values required above are fairly representative of the generic
experimental atom-cavity QED architectures.

VI. CONCLUSIONS AND OUTLOOKS

In summary, we have studied optical-mode-conversion be-
haviors in a bimodal cavity QED system under the weak
excitation of the V -polarized mode, where the H-polarized
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light can be well generated by the atomic radiation into the
H-polarized mode. Operating in the weak-coupling regime of
cavity QED, we present the detailed analytical and numerical
results and assess the mode-conversion efficiency from the
V polarization to the H polarization. It is revealed that the
collective behavior of two atoms in the cavity can effec-
tively enhance optical-mode-conversion efficiency, such as the
so-called hyperconversion. We also discuss the experimental
feasibility of the scheme by combining currently available
technologies of cavity QED and atom traps. In addition to
being of fundamental interest, our results may have potential
applications in the control over directionality of hyperradiance
and hyperconversion, achievable with tunable drive param-
eters, such as the studies of random lasers [43], as well as
the generation of nonclassical fields with hyperradiance and
hyperconversion, such as squeezed states and photon anti-
bunching of optical fields [34,36].

Next, although the study that we present is in the context
of Fabry-Pérot cavities and the atomic or ionic systems, the
results should be applicable to other types of orthogonally
polarized two-mode cavities like micropillar cavities [59],
H1 photonic crystal cavities [60], and two-level systems like
quantum dots and diamond nitrogen-vacancy centers. We thus
expect that our findings stimulate new experiments in different
domains of physics.

In future work, it will be interesting to explore optical-
mode hyperradiance and hyperconversion by extending the
bad-cavity limit to the free-space limit. Namely, we remove
completely cavity and consider free-space limit. In this free
space, although the two cavity modes are absent, we can apply
the two free-space lasers (free-space modes [61]) to play the
same functionalities as the cavity modes. This will bring more
interesting results to the study of strong amplification and
correlations in matter-field systems without a dedicated cavity.
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APPENDIX: DERIVATION OF SYSTEM HAMILTONIAN
STARTING FROM VECTOR-POTENTIAL

REPRESENTATION IN EQ. (1)

As shown in Fig. 1, this coupled cavity-atom system can
be described by the total Hamiltonian

Ĥtot = Ĥcav + Ĥato + Ĥint + Ĥdri. (A1)

The four terms of the Hamiltonian are, respectively, the
bimodal cavity-field Hamiltonian (Ĥcav), the two-atom Hamil-
tonian (Ĥato), the atom-field interaction Hamiltonian (Ĥint),
and the external pump driving Hamiltonian (Ĥdri).

For a bimodal cavity with the V -polarized mode (resonance
frequency ωV ) and the H-polarized mode (resonance fre-
quency ωH ), along the lines of Refs. [47,48], the unperturbed

Hamiltonian Ĥcav takes the second quantization form

Ĥcav =
∑

j=H,V

h̄ω j

(
â†

j â j + 1

2

)
, (A2)

where â j and â†
j are photon annihilation and creation op-

erators, respectively. Note that, in the main text and below,
we will discard the zero-point energies of 1

2 h̄ω j ( j = H,V )
because they only cause an overall energy offset and do not
effect the dynamics of the system under consideration.

In order to describe the two-atom Hamiltonian and the in-
teraction Hamiltonian between the atoms and the cavity fields,
we need to introduce the electromagnetic vector potential
operator Â based on a canonical quantization way. Without
considering relativistic corrections, such a system involved
here is described by the following Hamiltonian:

Ĥcp =
∑
i=1,2

[p̂i − qÂ(ri )]2

2m
+ U (ri ), (A3)

where m and q are the mass and the charge of each electron
in the two atoms, whose positions and momenta are depicted
by the operators r̂i and p̂i. The first term of the Hamiltonian
describes the kinetic energy of the electron in the atoms, while
the second term represents the electric potential energy U (ri ),
respectively. Finally, the vector potential at the electron posi-
tion Â can be expressed in the Schrödinger picture as [47,48]

Â(ri ) =
∑

j=H,V

√
h̄

2ε0V ω j
f j (ri )e j (â j + â†

j ), (A4)

where ε0 is the permittivity of vacuum and e j is the unit
polarization vector of the electric field. f j (r) indicates the
cavity-mode function which depends on the specific geometry
of the cavity and can be normalized to be equal to the cavity-
mode volume, i.e.,

∫
d3r| f j (r)|2 = V . At the same time, f j (r)

should satisfy the Helmholtz equation ∇2 f j (r) + ω2
j

c2 f j (r) =
0. Worth to note is that this vector potential operator Â(ri ) in
Eq. (A4) acts on both the spaces of the two atoms (i = 1, 2)
and of the two-mode cavity fields ( j = H,V ).

When the first term on the right-hand side of Eq. (A3) (i.e.,
the square in the kinetic energy of the atoms) is expanded,
the Hamiltonian Ĥcp in Eq. (A3) can be rewritten after some
simplifications as

Ĥcp = Ĥato + Ĥint + ĤA2 , (A5)

Ĥato =
∑
i=1,2

p̂2
i

2m
+ U (ri ), (A6)

Ĥint = − q

m

∑
i=1,2

p̂i · Â(ri ) ≡ iω j

∑
i=1,2

qr̂i · Â(ri ), (A7)

ĤA2 = q2

2m

∑
i=1,2

Â2(ri ), (A8)

where we have utilized the relations p̂ · Â = Â · p̂ due to
the Coulomb gauge condition ∇ · Â = 0 and p̂ = m d r̂

dt =
−imω j r̂ in the derivation process of Eq. (A7). It is worth to
mention that the third term ĤA2 [see Eq. (A8)] describes the
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two-photon annihilation and creation process in the interac-
tion of the bimodal cavity field with the two atoms. In this
work, we neglect this high-order light-matter interaction term.

We consider the two two-level atoms with the lower ground
states |1〉i (energy E1i = E1) and the upper excited states
|2〉i (energy E2i = E2), and the same transition frequencies
[ωA = (E2 − E1)/h̄)] between two energy levels of each atom
(see the inset of Fig. 1). |1〉i and |2〉i represent a complete
basis for each atom. We also assume that the two-level atomic
systems with the transition frequency ωA is on resonance or
close to resonance with the cavity-mode frequencies ω j . Ac-
cording to the quantum-mechanical treatment, the two-atom
Hamiltonian Ĥato [see Eq. (A6)] can be recast into

Ĥato =
∑
i=1,2

E1|1〉i〈1| + E2|2〉i〈2| ≡
∑
i=1,2

h̄ωA|2〉i〈2|. (A9)

In the last step, without loss of generality, we have set the
energy of the ground-state level |1〉i as the zero-point energy
E1 = 0.

For the dipole interaction term Ĥint [see Eq. (A7)] between
the atoms and the cavity fields, we make use of the long-
wavelength approximation (i.e., the dipole approximation)
and assume that the wavelengths λ j of the two cavity modes
are much larger than the atom size a0 (Bohr radius), i.e.,
λ j � a0. With this approximation, the space dependence of
the electromagnetic field can be ignored, therefore, Â(ri ) �
Â(ri0), with ri0 being the positions of the two atoms inside
the cavity. By applying the unity operator (i.e., the complete
basis (|1〉i〈1| + |2〉i〈2| = 1) of two atomic eigenstates |1〉i and
|2〉i) to both sides of the atomic dipole moment operator d̂i =
qr̂i [see Eq. (A7)] resulting from the separation between the
nucleus and electron [62], the dipole interaction Hamiltonian
Ĥint reads as

Ĥint =
∑

i=1,2; j=H,V

h̄Gi j (σ̂
†
i + σ̂i )(â j + â†

j ), (A10)

where σ̂
†
i and σ̂i are the raising and lowering Pauli oper-

ators associated with each individual atom with the forms
σ̂

†
i = |2〉〈1|i and σ̂i = |1〉〈2|i. Above, we have assumed the

atomic dipole moment matrix element to be real without loss
of generality, where the dipole matrix element d12

i = 〈1|d̂i|2〉i.
Finally, we have introduced the coupling parameter between

the ith atom and the j-polarized cavity mode, defined as [3,63]

Gi j = gi j cos(ϕi j ), (A11)

with

gi j = d12
i

h̄

√
h̄ω j

2ε0V
f j (ri0), (A12)

cos(ϕi j ) = d12
i · e j

d12
i

, (A13)

from which it is clear that the coherent coupling strength
between atoms and fields depends on the spatial distribution
of the cavity mode f j (ri0), the relative orientation between
the dipole moment of the atom and the polarization of the
cavity mode ϕi j , and the cavity-mode volume V . Especially,
gi j ∝ V −1/2 reflects that gi j can be increased by decreasing V ,
i.e., confining the cavity field to a small mode volume.

In the rotating-wave approximation where the terms pro-
portional to σ̂iâ j and σ̂

†
i â†

j do not conserve energy and can be

neglected, the Hamiltonian Ĥint in Eq. (A10) can be further
simplified and rearranged as

Ĥint = h̄g1[(âV cos ϕ + âH sin ϕ)σ̂ †
1 + H.c.]

+ h̄g2[(âV cos ϕ + âH sin ϕ)σ̂ †
2 + H.c.], (A14)

where H.c. denotes the Hermitian conjugate. We have taken
f j (ri0) = cos(2πzi/λ j ) along the cavity axis z (see Fig. 1) and
the transverse mode function u j (xi0, yi0) = 1 for a Fabry-Pérot
cavity, ϕi j = ϕ, d12

i = d12, and ω j = ω, respectively. Under

these conditions, gi j is reduced into gi = d12

h̄

√
h̄ω

2ε0V cos(2πzi/λ)=

g cos(2πzi/λ) with g = d12

h̄

√
h̄ω

2ε0V in the main text.
Here, we apply an external pump laser in order to drive the

system. The driving term Ĥdri, which describes the excitation
of the V -polarized cavity mode by a coherent pump laser of
frequency ωp, is added in the form

Ĥdri = h̄Ep(e−iωpt â† + eiωpt â), (A15)

where Ep is the driving strength which is proportional to the
amplitude of the pump laser. The time dependence of the
Hamiltonian Ĥdri reflects the nonconservation of the system
energy, which is expected because the photons are exchanged
with the pump laser.
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