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An optical interferometer seeded by coherent and squeezed vacuum states seems to be the most promising
platform for gravitational wave detection. Prior studies regarding this estimation protocol focus on the scenario
in which the transmittances of two beam splitters are 1

2 . In this paper, with respect to the same inputs, we analyze
the phase sensitivity of an unbalanced Mach-Zehnder interferometer (MZI) followed by balanced homodyne
measurement. We give the optimal transmittance and demonstrate the advantage of our scheme over a balanced
MZI scheme. Additionally, when the average photon number of the coherent state is dominant, the phase
sensitivity of our scheme can nearly saturate the single-parameter quantum Cramér-Rao bound. Our results
may contribute to the development of practical quantum sensing.
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I. INTRODUCTION

Optical interferometers play an essential role in the field
of precision measurements in that they can be used to ob-
serve slight variations of many physical quantities, such as
concentration [1,2], temperature [3–5], and angular displace-
ment [6,7]. In general, a classical interferometer utilizes a
solely coherent state as input and the corresponding phase
sensitivity is governed by the shot-noise limit. Caves pointed
out that this bound originates from vacuum fluctuation of the
unseeded port and demonstrated that the shot-noise limit can
be broken by injecting a quantum state into the unseeded port
[8]. Since then, quantum interferometers have become a focus
of research. Related to this, various exotic two-mode inputs
have received a great deal of attention, such as NOON states
[9], two-mode squeezed vacuum states [10], and entangled
coherent states [11]. In theory, the phase sensitivity of an
interferometer using these states can reach or even surpass the
Heisenberg limit. However, preparing these states with high
photon numbers remains a challenge, which causes difficulty
when it comes to practical measurements. Therefore, using
coherent and squeezed vacuum states is a feasible way due
to the fact that a high-photon coherent state is effortless to
obtain.

Over the past few years, phase estimation using a Mach-
Zehnder interferometer (MZI) fed by coherent and squeezed
vacuum states has been widely discussed. Pezzé and Smerzi
proposed that phase sensitivity can reach the Heisenberg limit
through the use of photon-number-resolving measurement
[12]. Schäfermeier et al. demonstrated an MZI-based proof-
of-principle experiment, in which phase sensitivity surpasses
the shot-noise limit by a factor of 1.7 [13]. Lang and Caves
proved that a squeezed vacuum state is the optimal choice
for the second input port when a coherent state is seeded
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into the first port [14]. By calculating the quantum Fisher
information, Ono and Hofmann studied the optimal weights of
coherent and squeezed vacuum states in the presence of pho-
ton loss [15]. Through the same approach, phase sensitivity
limits in lossless and lossy scenarios were given by Gao [16].
Gard et al. analyzed the effects of realistic factors on phase
sensitivity using several measurement strategies and found
that balanced homodyne measurement is highly robust against
various factors [17].

It should be noted that all of these schemes are discussed in
terms of a balanced MZI. Until recently, from the perspective
of the quantum Fisher information, Zhong et al. calculated
the sensitivity limit of an unbalanced MZI using coherent and
squeezed vacuum states [18]. They found that an unbalanced
MZI may provide improved performance when compared
with a balanced one in some cases. Ataman showed that
similar situations also exist with respect to other Gaussian and
non-Gaussian inputs [19,20]. Mishra and Ataman reported a
paradigmatic method for calculating the optimal transmittance
using several measurement strategies [21]. As an example,
they analyzed coherent and squeezed vacuum states with a
specific intensity ratio and found the optimal transmittance,
which can improve the sensitivity by using balanced homo-
dyne measurement. In this paper, with balanced homodyne
measurement, we comprehensively analyze an unbalanced
MZI using coherent and squeezed vacuum states with arbi-
trary intensity ratios. We address the optimal transmittance
and compare the phase sensitivity of our scheme with that
of a balanced MZI. The results indicate that it is feasible
to improve phase sensitivity through the use of unbalanced
beam splitters. The optimal phase sensitivity of our scheme
can nearly saturate the single-parameter quantum Cramér-Rao
bound when the average photon number of the coherent state
is dominant.

The remainder of this paper is organized as follows. Sec-
tion II introduces our scheme and gives the analysis of phase
sensitivity. In Sec. III we discuss the optimal transmittance
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FIG. 1. Schematic of the phase estimation scheme with an MZI
fed by coherent and squeezed vacuum states. The blue solid line
and red dashed line represent modes A and B, respectively. The
mode operators for the input and output are shown in the figure. The
following denotations are used: BS, beam splitter; BBS, balanced
beam splitter; LO, local oscillator; D, detector; and S, subtracter.

with respect to the phase sensitivity and show the advantage
of our scheme over a balanced MZI. In Sec. IV the phase
sensitivity with the optimal transmittance is compared with
the quantum Cramér-Rao bound. We summarize our work in
Sec. V.

II. MODEL AND SENSITIVITY ANALYSIS

In this section we introduce our scheme and analyze its
phase sensitivity. Let us start with an unbalanced MZI, as
depicted in Fig. 1, where â0 (b̂0) and â1 (b̂1) are annihilation
operators of the input and output with respect to mode A (B).
The transmittances of the two beam splitters in our scheme
are arbitrary. A linear phase shift of θ occurring in arm A is
the parameter we would like to estimate. We send a coherent
state |α〉 combined with a squeezed vacuum state |ξ 〉 into the
interferometer and perform balanced homodyne measurement
at the output port A.

According to the theory of quantum parameter estimation,
all operations before and after the estimated phase can be
regarded as probe preparation and measurement. Hence, by
adjusting the transmittances of two beam splitters, it is possi-
ble to construct a better probe and measurement than the use
of a balanced MZI. For this reason, we consider an unbalanced
MZI in this paper. In particular, when the transmittances of
two beam splitters are 1

2 , our interferometer is simplified as a
conventional interferometer.

Although the interferometer is unbalanced, the total mean
photon number inside the interferometer remains N = Nc +
Ns, with Nc = |α|2 and Ns = sinh2 r. Throughout this paper,
we assume that α = |α|eiδ and ξ = reiϕ , where δ and ϕ are
initial phases of the coherent and squeezed vacuum states,
respectively.

For simplicity, we consider a particular homodyne mea-
surement in the x direction of phase space (not real space),
which takes the operator form

X̂ = â1 + â†
1. (1)

The transformation between the output and input modes of the
interferometer is given by

â1 = [eiθ√η1η2 −
√

(1 − η1)(1 − η2)]â0

+ i[eiθ
√

(1 − η1)η2 +
√

η1(1 − η2)]b̂0, (2)

where η1 and η2 represent the transmittance of BS1 and BS2,
respectively. Further, we can calculate the expectation value
of the measurement operator

〈X̂ 〉 = 2|α|[√η1η2 cos(θ + δ) −
√

(1 − η1)(1 − η2) cos δ]

(3)

and

〈X̂ 2〉 = 2C1sinh2r + C2 sinh(2r) + 2C3|α|2 + 1, (4)

with

C1 = (1 − η1)η2 + 2
√

η1η2(1 − η1)(1 − η2) cos θ

+ η1(1 − η2), (5)

C2 = (1 − η1)η2 cos(2θ + ϕ) + η1(1 − η2) cos ϕ

+ 2
√

η1η2(1 − η1)(1 − η2) cos(θ + ϕ), (6)

C3 = − 2
√

η1η2(1 − η1)(1 − η2)[cos(θ + 2δ) + cos θ ]

+ (1 − η1)(1 − η2)[cos(2δ) + 1]

+ η1η2[cos(2θ + 2δ) + 1]. (7)

Based on Eqs. (3)–(7), the variance of the measurement results
can be expressed as

〈X̂ 2〉 − 〈X̂ 〉2 = 2C1sinh2r + C2 sinh(2r) + 1, (8)

irrespective of the initial phase δ and the amplitude |α| of the
coherent state.

Through the use of the error propagation formula [22,23]

�θ =
√

〈X̂ 2〉 − 〈X̂ 〉2

|∂〈X̂ 〉/∂θ | , (9)

the phase sensitivity of our scheme is calculated to be

�θ =
√

2C1sinh2r + C2 sinh(2r) + 1

2
√

η1η2|α sin(θ + δ)| . (10)

The smaller the value of phase sensitivity is, the closer the
estimated value is to the true value.

One can verify that the phase sensitivity sits at its min-
imum �θ

η
opt when the estimated phase is 0. Meanwhile,

the optimal phase-matching conditions are found to be δ =
π/2 and ϕ = π . Since �θ

η
opt is optimal for a transmit-

tance combination η = (η1, η2), we define it as local optimal
sensitivity.

In Figs. 2(a)–2(c) we show the dependence of lo-
cal optimal sensitivity on the transmittances of two beam
splitters with different weights of coherent and squeezed
vacuum states. One can find that the local optimal sen-
sitivity is symmetrically distributed with respect to the
diagonal line η1 = η2, that is, the phase sensitivity stays the
same when the transmittances of the two beam splitters are
reversed.

In order to observe the effects of transmittance intuitively,
we introduce a ratio which describes how close the sensitivity
with transmittance combination η is to the sensitivity with
the optimal transmittance combination. Its definition is R =
�θmin/�θ

η
opt, where �θmin is the minimum of Eq. (10) over all
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FIG. 2. The photon numbers are (a) and (d) Nc = 2 and Ns = 18, (b) and (e) Nc = 10 and Ns = 10, and (c) and (f) and Nc = 18 and
Ns = 2. (a)–(c) Locally optimal sensitivity as a function of transmittances of two beam splitters, where the locally optimal sensitivity greater
than 1 is not shown (white area). (d)–(f) Ratio �θmin/�θ

η
opt as a function of transmittances of two beam splitters, where ratio within the white

solid line is greater than 0.99.

transmittance combination, i.e., �θmin = minη(�θ
η
opt ). Simi-

lar definitions are also used in other schemes [24,25]. The
values of 1 and 0 correspond to the optimal transmittance
combination and the worst one, respectively.

In Figs. 2(d)–2(f) we give the ratio corresponding to
Figs. 2(a)–2(c). An evident phenomenon is that only when
the transmittances of two beam splitters are the same does the
ratio sit at 1. It also can be seen from Figs. 2(d) and 2(e) that
when the photon number of the squeezed vacuum state is not
less than that of the coherent state, the optimal transmittance
is around 1

2 . However, when the number of photons in the
coherent state is dominant, the optimal transmittance is no
longer 1

2 .
These results suggest that unbalanced beam splitters can

improve the phase sensitivity when compared to balanced
ones. In addition, when the total number of photons is fixed,
the area in which the ratio exceeds 0.99 increases with in-
creasing weight of the coherent state. This indicates that more
transmittance combinations can be used in our scheme to
achieve the nearly optimal sensitivity.

III. PHASE SENSITIVITY WITH
OPTIMAL TRANSMITTANCE

In Sec. II we showed that the optimal phase sensitivity is
obtained when the transmittances of two beam splitters are the
same. For this reason, in this section we consider the scheme
using two beam splitters with the same transmittance η, i.e.,
η1 = η2 = η and η = (η, η). At this point, the locally optimal

sensitivity can be expressed as

�θ
η
opt = H

|α| , (11)

with the squeezing-induced enhancement factor

H =
√

4η(1 − η)(e−2r − 1) + 1

2η
. (12)

This result suggests that the sensitivity varies with the squeez-
ing parameter and transmittance for a fixed coherent state.
In particular, for η = 1

2 , the enhancement factor reduces to
e−r , i.e., �θ

η
opt = e−r/|α|, which is consistent with the optimal

sensitivity of the scheme using a balanced MZI [17]. This
also indirectly verifies the correctness of the result given by
Eq. (10).

In order to determine the optimal transmittance, one can
take the derivative of locally optimal sensitivity with respect
to transmittance

∂ (�θ
η
opt )

∂η
= 2η(1 − e−2r ) − 1

2|α|η2
√

1 − 4η(1 − η)(1 − e−2r )
(13)

and set this derivative to 0. The optimal transmittance mini-
mizing the locally optimal sensitivity is found to be

η′
opt = 1

2(1 − e−2r )
. (14)
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FIG. 3. Squeezing-induced enhancement factor as a function of
the squeezing parameter. The red dotted line and blue solid line are
the squeezing-induced enhancement factors of a balanced MZI and
an unbalanced MZI with the optimal transmittance, respectively.

Here we use the prime to emphasize that this result is correct
in mathematics instead of physics, since the value of transmit-
tance should be between 0 and 1 in a realistic scenario.

With physical limitation considered, the optimal transmit-
tance is rewritten as

ηopt =
{

1, r � ln
√

2
1

2(1−e−2r ) , r > ln
√

2.
(15)

In Fig. 3 we plot the squeezing-induced enhancement factors
with ηopt (blue solid line) and η = 1

2 (red dotted line) against
the squeezing parameter, respectively. For r = 0, the phase
sensitivity of our scheme using the optimal transmittance
is twice that of a balanced MZI. This advantage is down-
played with an increase of the squeezing parameter. When
the squeezing parameter is greater than 1.5, a balanced MZI
becomes approximately the best choice.

This conclusion is not difficult to understand from the
perspective of physics. For a small squeezing parameter, the
squeezing effect will bring about the sensitivity improvement
but the result is inapparent. Therefore, the sensitivity improve-
ment is more significant when all photons of the coherent state

are used through a beam splitter with a transmittance of 1. For
a large squeezing parameter, the squeezing effect becomes the
main thrust of sensitivity improvement. In contrast, when the
transmittances are greater than 1

2 , the number of photons in the
squeezed vacuum state passing through the estimated phase
will decrease as most of the photons in the squeezed vacuum
state after passing through the estimated phase are not output
from the measured port. These two conditions are not con-
ducive to improving the phase sensitivity; as a consequence,
the best choice is a balanced MZI.

It is worth noting that r = 2 is almost the best squeezing
parameter for the current experimental techniques. In this
regard, adjusting the transmittances of two beam splitters is
a beneficial choice for phase sensitivity. As a consequence,
an unbalanced MZI is useful for a practical scheme using
coherent and squeezed vacuum states.

To test the correctness of the above results, we compare
them with the specific case given in the previous stud-
ies. In Ref. [21] the authors showed the optimal sensitivity
with Nc = 10 000 and r = 1.2 (see Fig. 5 for details). Our
phase-matching condition is 2δ − ϕ = 0 and the optimal
transmittance calculated from Eq. (15) is 0.55. These results
are the same as those in Ref. [21]. The optimal phase sensi-
tivity in Ref. [21] is obtained with two equal transmittances,
which is also consistent with our conclusion.1

IV. COMPARISON WITH THE QUANTUM
CRAMÉR-RAO BOUND

Now we move on to compare the optimal sensitivity of our
scheme with the corresponding quantum Cramér-Rao bound.
Based on parameter estimation theory, the quantum Fisher

1The measured output port in Ref. [21] is different from our
scheme. As a consequence, there is a π translation between the op-
timal phase points in the two schemes; meanwhile, the transmittance
of BS2 in Ref. [21] is equal to the reflectivity of BS2 in our scheme.

FIG. 4. Ratio �θmin/�θ
η
opt as a function of transmittance of two beam splitters and the squeezing parameter, where the white dashed line

is the optimal transmittance of our scheme and the black solid line is the transmittance corresponding to the optimal QCRB, for (a) Nc = 10,
(b) Nc = 100, and (c) Nc = 1000.
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FIG. 5. Phase sensitivity of our scheme using the optimal transmittance (blue solid line) and the QCRB (red dashed line) versus squeezing
parameter for (a) Nc = 10, (b) Nc = 100, and (c) Nc = 1000.

information is given by2 [26]

F = 4η1(1 − η1)(|α|2e2r + sinh2r) + 4η2
1|α|2

+ 2(1 − η1)2sinh2(2r). (16)

Further, the quantum Cramér-Rao bound (QCRB) is found
to be �θQCRB = 1/

√
F . To each transmittance there corre-

sponds a distinctive QCRB. In the following, the QCRB refers
to the inverse of the square root of the quantum Fisher infor-
mation calculated in terms of the optimal transmittance. In
addition, it should be noted that the QCRB only contains the
transmittance of BS1, as BS2 is a measuring device and will
not increase the information of the parameter to be estimated.

For coherent states with different average photon numbers,
Fig. 4 gives the ratio R versus different squeezing parameters
and transmittances. The results show that when the average
photon number of the coherent state is small, the transmittance
corresponding to the optimal QCRB gradually tends to 0 as
the squeezing parameter increases. For example, the optimal
transmittance for Nc = 10 and r = 2 is approximately 0. At
this point, our scheme is equivalent to a single-mode phase
estimation protocol based on a squeezed vacuum. For a coher-
ent state with a high average photon number, the transmittance
corresponding to the optimal QCRB gradually approaches 1

2
with an increase of the squeezing parameter, which is com-
pletely consistent with our scheme.

So far, we have proved that our scheme has the same opti-
mal transmittance as the optimal QCRB when a coherent state
with a high average photon number is used. Finally, we further
compare the QCRB and phase sensitivity of our scheme using
the optimal transmittance. Figure 5 shows phase sensitivity
and the QCRB as a function of the squeezing parameter with
the optimal transmittance. It can be seen from the figure that,
with a small average photon number in the coherent state,
the phase sensitivity of our scheme can saturate and deviate
from the QCRB with a low and a high squeezing param-

2The phase sensitivity limit calculated from the two-parameter ap-
proach is suitable for schemes without any reference source, whereas
that calculated from the single-parameter approach holds true for
schemes using reference sources [26]. In our scheme, the phase of
the local oscillator is a phase reference for the inputs. Therefore, we
utilize the single-parameter approach to analyze the phase sensitivity
limit of our scheme [Eq. (4) in Ref. [26]].

eter, respectively. When the average photon number of the
coherent state increases, the QCRB can be saturated with the
phase sensitivity of our scheme for any squeezing parameter.
The results show that our scheme is the optimal candidate
for phase estimation using coherent and squeezed vacuum
states.

Here we provide a comparison of our results with the previ-
ous results in Refs. [19,20]. Figure 6 in Ref. [19] showed the
QCRB with Nc = 100 and r = 0.5 and that with Nc = 100
and r = 1.2. The transmittances corresponding to the optimal
QCRBs are about 0.8 and 0.55, respectively. These results
are completely consistent with our results shown in Fig. 4(c).
In addition, this work pointed out that the transmittance cor-
responding to the optimal QCRB is η ≈ 1/2(1 − e−2r ) for
Nc � Ns, which is in keeping with Eq. (15). This result
proves, from a mathematical perspective, that our scheme is
optimal when the average photon number of the coherent
state is dominant. In Ref. [20] the QCRB with Nc ≈ 249
and r = 1.9 and that with Nc = 1000 and r = 0.88 were
studied (see Figs. 4 and 12 therein for details). The trans-
mittances corresponding to the optimal QCRBs are about 0.5
and 0.6, respectively. We calculate the transmittances in terms
of Eq. (15) since the photon number of the coherent state is
dominant in the two cases. It turns out that our results are the
same as those in Ref. [20]; meanwhile, the transmittance in
the second case is also consistent with our result shown in
Fig. 4(c).

The above results provide confirmation of the correctness
of our work. Although this work is inspired by previous
studies, there is a more detailed analysis showing three novel
results. First, we proved that the optimal transmittance is only
related to the squeezing parameter and provided the analytical
expression for the optimal transmittance against squeezing
parameter. Furthermore, we determined that equal transmit-
tances of two beam splitters are the best configuration. Finally,
the optimal sensitivity of our scheme can approach the QCRB
when the average photon number of the coherent state is
dominant.

V. CONCLUSION

We have proposed a phase estimation scheme which uti-
lizes an MZI with two unbalanced beam splitters. We used
coherent and squeezed vacuum states as inputs and performed
balanced homodyne measurement at the output. The phase
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sensitivity of our scheme was analyzed and its advantage over
a balanced MZI was demonstrated. We showed that using un-
balanced beam splitters can improve phase sensitivity and the
optimal phase sensitivity is reachable when the transmittances
of two beam splitters are the same. A balanced MZI is ap-
proximately the best choice when the squeezing parameter is
large. In addition, we compared the optimal phase sensitivity
of our scheme with the quantum Cramér-Rao bound. For a
high-photon-number coherent state, the quantum Cramér-Rao
bound can be nearly saturated with the optimal phase sensitiv-
ity of our scheme, suggesting that our scheme is the optimal
measurement strategy. The results in this paper may contribute

to the development of practical quantum sensors, particularly
next-generation gravitational wave detectors.
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