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Transient dynamics of subradiance and superradiance in open optical ensembles
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We introduce a computational Maxwell-Bloch framework for investigating out-of-equilibrium optical emit-
ters in open systems. To do so, we compute the pulse-induced dynamics of each emitter from fundamental
light-matter interactions and self-consistently calculate their radiative coupling, including phase inhomogeneity
from propagation effects. This semiclassical framework is applied to open quantum dots systems with different
densities and dipolar coupling. We observe signatures of superradiant behavior, such as directionality and
faster decay, as well as subradiant emission. We compare and discuss the computed light emission obtained
with our method and a master equation approach. Our framework enables quantitative investigations of large
optical ensembles in the time domain and could be used to design new systems with enhanced superradiant and
subradiant properties.
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I. INTRODUCTION

Superradiance and subradiance in optical systems continue
to be under intense experimental and theoretical investiga-
tions, in both atomic and solid-state systems [1,2]. Theoretical
descriptions of these phenomena often rely on effective
Hamiltonians, such as the Dicke model, where interaction
with one or few cavity modes is assumed and emitters are
homogeneous. For extended systems, Maxwell-Bloch equa-
tions can be used where the electric field couples to a
continuous local-averaged polarization field [3,4]. However,
to understand these collective phenomena, it is essential to
consider the role of the emitters’ local configuration and their
spatial and energy distribution. In fact, the disorder in the local
distribution of the emitters can strongly affect the superradi-
ant and subradiant dynamics. The coupling between emitters
resulting from the exchange of virtual photons, known as
van der Waals coupling [5], has been recognized for a long
time to be an obstacle to the experimental observation of
superradiant behavior [6]. Far from being a limitation, sub-
radiance has been recently proposed as a mechanism for
photon storage in quantum memories [7,8]. To design new
systems that exploit superradiance and subradiance, we need
analysis methods that (1) simulate individual optical emitters
and their mutual coupling, (2) include the full spatial depen-
dence of the electromagnetic coupling in three dimensions,
and (3) describe the dynamics in the time domain taking
into account pulse-induced transients and finite propagation
times.

Here we propose a computational approach to investigate
superradiant and subradiant dynamics taking into account lo-
cal inhomogeneities, propagation effects, and the full spatial
dependence of the electromagnetic coupling [9]. The method
relies on an integral formulation of semiclassical microscopic
Maxwell-Bloch equations [10]. The numerical solution of
such a large number of coupled and time-delayed nonlinear
equations in a random medium is challenging [11,12], and our

methods presented in detail in [13] amortize computational
cost and accelerate convergence. In this approach, the nonlin-
ear dynamics of each emitter and the field generated by the
emitters’ polarization are self-consistently computed, show-
ing a rich phenomenology of short- and long-lived excitations
and synchronized oscillations. Since the local configuration of
emitters can be engineered in solid-state systems, we consider
parameters typical of semiconductor quantum dot systems
embedded in a solid matrix, which exhibit strong dipoles and
where collective radiative effects have been experimentally
observed [14–17]. However, the computational framework is
sufficiently general to enable the exploration of other sys-
tems, such as optical centers in solids and atomic clouds.
For instance, the simulation of individual emitters could be
important for interpreting experiments in which the emit-
ters are deterministically placed in the crystal. For example,
geometrical arrangements of erbium atoms in silicon ni-
tride systems have been recently studied [18]. Another group
has experimentally demonstrated the concept of “atom-like
mirrors,” which trap radiation with deterministically placed
artificial atoms acting as resonant mirrors in a waveguide
[19]. Realistic simulations of superradiant coupling in systems
where the emitters have a specific geometry could guide the
experimental realization of these ideas in other solid-state
systems.

We introduce our Maxwell-Bloch formulation based on
an integral representation of the electric field in Sec. II.
In Sec. III we study ensembles containing several hun-
dreds of interacting dots and describe the properties of
their emitted field in time and space. Section IV provides
a comparison of results obtained using the semiclassi-
cal and master equation approaches. The total emission
rate is calculated using different initial conditions for
the system. In Sec. V we discuss our results and offer
some conclusions. The Appendix contains the derivation of
the integral equations in the rotating wave approximation
(RWA).
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II. INTEGRAL MAXWELL-BLOCH EQUATIONS

We model each emitter as a two-level system interact-
ing with a classical electric field. A collection of density
matrices ρ i represents the quantum state of each dot i, and
their evolution is governed by the Liouville equations h̄ρ̇ i =
−i[Hi(t ), ρ i] − D[ρ i], where Hi is the Hamiltonian of the ith
dot of energy h̄ωi

0 and Rabi energy h̄χ i(t ) = d · E(ri, t ), with
d being the dot’s transition dipole, and E(ri, t ) the total elec-
tric field at the position of the dot, ri. The Lindblad term D[ρ i]
describes population decay and decoherence, parametrized
by T1 and T2. The key idea is solving for the total electric
field, E(r, t ) = EL(r, t ) + F{P(r, t )}, self-consistently with
the Liouville equation. Here EL(r, t ) is the exciting laser field
oscillating at frequency ωL. The second term, F{P(r, t )}, is
the radiation electric field due to a polarization distribution
P(r, t ) arising from the off-diagonal elements (coherences) of
the ρ i from all the dots. The latter can be written explicitly in
integral operator form:

F{P(r, t )} .= −μ0
(
∂2

t I − c2∇∇)
g(r, t ) �st P(r, t )

= −1

4πε

∫ [
(I − r̄ ⊗ r̄) · ∂2

t P(r′, tR)

c2R

+ (I − 3r̄ ⊗ r̄) ·
(

∂t P(r′, tR)

cR2
+ P(r′, tR)

R3

)]
d3r′,

(1)

where R = r − r′, tR = t − R/c, r̄ = R/R, g(r, t ) = δ(tR)/R
is the wave equation Green’s function, �st denotes convolution
in space and time, and P(r, t ) = ∑

i δ(r − ri ) d Re[2ρ i
01(t )].

To effect computational speedup, we transform the equa-
tions to a frame corotating with the laser frequency ωL by
writing ρ̃ = UρU †, where U = diag(1, eiωLt ). The equivalent
of Eq. (1) in this rotating frame is

F̃{P̃} .= −μ0
(
∂2

t I − c2∇∇)
g(r, t ) �st P̃ eiωLt , (2)

where, after disregarding antiresonant terms (rotating wave
approximation), P̃(r, t ) = ∑

i δ(r − ri ) dρ̃ i
01(t ). We show in

the Appendix that the radiative Rabi frequency χRad = d ·
F̃{P̃}/h̄ can be written as χRad = −(
 + iγ ), where γ is a
decay term and 
 is an energy shift. Both terms are pro-
portional to � = d2ω3

L/3ε h̄πc3, which corresponds to the dot
spontaneous decay rate for ωL = ω0. This parameter provides
a lower bound on decay rates, which can include contribu-
tions from other processes (e.g., phonons or Auger processes).
In particular, the conditions 1/T1 > � and 1/T2 > �/2 must
hold.

The numerical model thus consists of a system of cou-
pled, time-delayed nonlinear Liouville’s equations where the
right-hand side depends on the derivatives of P̃(t ) up to the
second order. Standard methods for solving this system of
equations, such as RK4, are unstable. Our approach comprises
adapting methods from discretizing time domain integral
equations [20] and coupling these with a predictor-corrector
scheme to obtain a solution to the coupled Liouville equa-
tions [13,21]. At a given time step tn, the algorithm guesses
a value for ρ̃ i(tn+1), then evaluates F̃{P̃(tn+1)} and ˙̃ρ i(tn+1)
to update ρ̃ i(tn+1) until convergence. Repeating this process

for each time step marches the function forward to obtain a
solution for all times.

III. TRANSIENT DYNAMICS

In this section we illustrate the capabilities of our compu-
tational approach by simulating ensembles of quantum dots
embedded in solid media. In all simulations an incident field
with the shifted Gaussian waveform

EL(r, t ) = E0 e− (k·r−ωL (t−t0 ))2

2σ2 cos(k · r − ωLt ) x̂ (3)

is used to excite an ensemble of dots lying initially in
the ground state (ρ̃00, ρ̃01)|t=0 = (1, 0). Here ωL ≈ 4.8fs−1,
σ/ωL ≈ 0.34 ps, k = ωL/c ẑ, and the laser amplitude E0 is
adjusted to produce a π pulse on each dot in the absence of
interactions. First, we consider the case of identical dots with
ωi

0 = ωL. The resonant pulse is chosen to peak at t0 = 5 ps.
The systems of N quantum dots are assumed to be embedded
in an NaCl medium with refractive index n ≈ 1.54. They are
Gaussian distributed with a standard deviation along each
dimension of 0.5λ. This fixed spread implies that the dot
density increases with N . Each dot has an identical dipole
moment d = d x̂, which is varied based on a reference dipole
moment of strength d0/e ≈ 2.5 nm. For d = d0, decay times
T1 ≈ 8.3 ps and T2 = 2T1 are chosen and modified for other
values of d to satisfy the d−2 dependence.

Figure 1(a) depicts the time behavior of a set of ten dots
chosen from a simulation with N = 200 dots, portraying a rich
phenomenology of oscillations following the initial excitation.
The figure shows the excited state population of each dot as a
function of time, i.e., ρ i

11(t ). These oscillations result from lo-
cal energy shifts induced by randomly distributed neighboring
dots and are dominated by the 1/R3 contribution from Eq. (1).
After excitation, we observe a superradiant behavior, which
occurs on the timescale of T1. This can be seen in Figs. 1(b)
and 1(c), where we show the population dynamics averaged
over all dots, 〈ρ11〉 for different N . Figure 1(c) displays
faster reemission after pulse excitation in configurations with
a greater density of emitters. Afterward, the system settles
into a subradiant regime where reemission slows down. This
transition is visible in both per-dot [Fig. 1(a)] and averaged
[Fig. 1(b)] plots. Higher emitter density also leads to more
subradiance, resulting in a larger population decaying at long
times. Increasing the dipole strength d , while increasing the
strength of interactions, induces shorter decay times. Figure 2
summarizes the effects of N and d on the average population
at 1 ns. The subradiant slow decaying states are enhanced
by larger N and lower d , corresponding to dense systems of
weakly interacting dots.

Further patterns emerge when examining the radiated field
of Eq. (1). Field intensities in the region external to the dot
cloud show patterns with a period of half the wavelength
(Fig. 3). As the excitation pulse propagates along z, we also
observe a clear enhancement of the emission along the pos-
itive z axis, a well-known signature of collective radiative
emission [22]. It is worth noting that the three terms of Eq. (1)
are not commensurate. While the near-field interaction terms
produce a random pattern near the origin, the far-field 1/R
term produces a regular pattern characterized by phase shifts
in some directions.
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FIG. 1. Time evolution of the population excitation ρ11 for a
Gaussian distribution of dots with d/d0 = 1.0. (a) Per-dot time evo-
lution for N = 200. We show here ρ i

11, with i corresponding to ten
randomly chosen dots. (b) Dot-averaged values 〈ρ11〉 for different N .
(c) Immediately postexcitation a faster decay is observed for larger
N .

Logarithms

FIG. 2. Log-plot of averaged-over-trials population 〈ρ11〉 at 1 ns
as a function of dipole strength and N . The base of logarithms is 10.

Logarithms

FIG. 3. Color maps of logarithmic field intensity (field norm
squared) for a configuration with N = 100 and d/d0 = 1.00 after 20
ps, on the x-y (top) and x-z (bottom) planes. The spatial oscillations
occur with a period about half the wavelength of 253 nm. Also note
the enhancement along the laser propagation direction in the positive
z axis. The base of logarithms is 10.

Time-space plots reveal the synchronization of groups of
dots into temporal oscillations in Fig. 4, where we plot the
intensity along the y axis as a function of time. These oscilla-
tions become more pronounced and irregular with increased
dipole strength and dot density. This effect is captured in
Fig. 5, which illustrates temporal and spatial Fourier trans-
forms of the field intensity along the y axis for different dipole
strengths. These plots display considerable spectral broaden-
ing with increasing dipole strength. In time, this broadening is
suggested by the emergence of additional peaks correspond-
ing to new oscillation periods in the dot ensemble. Peaks
corresponding to characteristic lengths also appear in space,
which are nonetheless strongly dependent on the random spa-
tial configuration chosen.

Additionally, we studied the effect of inhomogeneous
broadening by considering dots with energy h̄ωi

0 that follow
a Gaussian distribution of width δ centered at ωL. Increasing
δ affects the dynamics in two ways: (1) the excitation induced
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Logarithms

FIG. 4. Plot of logarithmic radiated field intensities for N = 100,
d/d0 = 1.0 (a, b), N = 200, d/d0 = 1.0 (c), d/d0 = 2.0 (d) in time
and space. Evident are not only spatial but also temporal oscillations,
becoming enhanced for larger values of the dipole moment. It is
also evident that the intensity amplitude increases with the number
of emitters. Groups of dots in the cloud (y ∼ 0) undergo emission
synchronization leading to periodic oscillations that become more
irregular as the density increases. Panel (b) displays emission en-
hancement in the laser propagation direction (cf. Fig. 3). The base of
logarithms is 10.

FIG. 5. Temporal (top) and spatial (bottom) Fourier plots of field
intensity I (y, t ) = |E(y, t )|2 along the y axis (as in Fig. 4) for N =
200 and various dipole strengths, normalized by maximum intensity:
Ĩ1( f ) = Ĩ (k = 0, f )/Ĩ (0, 0) (top), Ĩ2(k) = Ĩ (k, f = 0)/Ĩ (0, 0) (bot-
tom). Spectral broadening with increasing dipole strength is evident
in both cases.

by the π pulse is less efficient, so the population inversion de-
creases, and (2) the population of subradiant modes increases
due to increased disorder. These two competing effects can be
seen in Fig. 6. The average excitation of the dots right after
excitation decreases with δ, but at longer times, its depen-

FIG. 6. Time evolution of space-averaged population excitation
〈ρ11〉 for the same N = 200 distribution as in Fig. 1, for different
inhomogeneous broadening values δ (in meV). (Inset) Excitation
values 〈ρ11〉 as a function of δ, at t = 500 ps (circles) and t = 1000 ps
(squares).
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dence on the inhomogeneity is characterized by a peak around
h̄δ = 0.1 meV.

IV. COMPARISON TO MASTER EQUATION

Superradiance and subradiance have been described in
the literature using two different strategies: the master equa-
tion and the Maxwell-Bloch equation. The former approach
traces out the photon degrees of freedom and gives a linear
differential equation for the global 2N × 2N density matrix
ρ describing the quantum state of all the two-level systems,
which evolves according to

ρ̇(t ) = −i[H, ρ] −
∑

i j

�i j ({σ+
i σ−

j , ρ} − 2σ−
i ρσ+

j ), (4)

where H = ∑
i �= j 
i jσ

+
i σ−

j , σ± are standard Pauli operators
and {·, ·} is the anticommutator. In Eq. (4) we assumed identi-
cal dots and used the RWA (see the Appendix) with ωL = ω0.
The coefficients 
i j and �i j can be expressed using Eqs. (A7)
and (A8) as d̂ i�i j d̂ j and d̂ i�i j d̂ j , respectively, where d̂ i in-
dicate the dipole orientations. To obtain an equation for the
global operator ρ, one has to rely on a Markov-Born approxi-
mation [23] that removes effects due to the finite propagation
speed of the electromagnetic field. The Maxwell-Bloch ap-
proach, on the other hand, can be derived from the Heisenberg
equations of motion for the photon and local operators σ z

i (t )
and σ−

i (t ), and describes memory and propagation effects
of the electromagnetic field. The local operators evolve ac-
cording to delayed differential equations and are coupled in a
nonlinear way. The quantum Heisenberg equations of motion
are formally identical to the semiclassical Maxwell-Bloch
equations introduced above if one replaces the polarization,
population, and electric field with the corresponding oper-
ators. The theoretical aspects of two approaches have been
discussed in the literature, and we refer the reader to the
review article of Ref. [5] for an in-depth analysis.

In this section we make a direct numerical comparison
of the results obtained with the Maxwell-Bloch predictor-
corrector approach introduced in this paper and the master
equation approach. A numerical comparison with N =
100–200 is computationally impossible due to the exponential
scaling of the master equation approach. The global density
matrix ρ contains much more information on the quantum
state of the system than what is typically measured in the
experiments. We therefore focus on smaller systems with N =
8 and calculate the transient dynamics of the total radiation
emission in the two approaches. Neglecting retardation, which
is small for a N = 8 system, the total photon emission rate can
be expressed as

γ (t ) =
∑

i

�0〈σ+
i σ−

i 〉 + 2
∑
i �= j

�i j〈σ+
i σ−

j 〉

= γ0(t ) + γI (t ), (5)

where �0 = d2ω3
0/3πεh̄c3. The second term γI (t ) in Eq. (5)

describes the contribution to the emission from the off-
diagonal interactions between the dots and leads to super-
radiance and subradiance. In the master equation approach,
the time-dependent expectation values 〈σ+

i σ−
j 〉 are calculated

as Tr[ρ(t )σ+
i σ−

j ] after solving for ρ(t ) using Eq. (4). In

FIG. 7. Comparison of the off-diagonal term of the emission rate,
γI (t ) using the semiclassical Maxwell-Bloch (solid) and the master
equation (dashed). Eight quantum dots are initially prepared in the
maximum polarization state (|0〉 + |1〉)/

√
2. Curves for different dot

separations s compared to λ are shown.

the quantum Maxwell-Bloch approach, 〈σ+
i σ−

j 〉 are calcu-
lated as 〈�0|σ+

i (t )σ−
j (t )|�0〉, where |�0〉 is the state of the

system at t = 0 and the σ+
i (t ) are operators in the Heisen-

berg representation. In the semiclassical approximation, this
gives 〈�0|σ+

i (t )σ−
i (t )|�0〉 ∼ ρ i

11(t ) and 〈0|σ+
i (t )σ−

j (t )|0〉 ∼
ρ i

10(t )ρ j
01(t ).

Figure 7 shows a comparison of γI (t ) calculated for an
initial state of the system in which each dot is in the (|0〉 +
|1〉)/

√
2 state, corresponding to the maximum initial polar-

ization. Eight dots are in a chain along the y axis, equally
separated by distances given by s/λ, in a configuration studied
in Ref. [24] with the master equation method. There is a tight
agreement between the approaches, and slight deviations are
visible only in the d/λ = 0.1 case. Also evident is the de-
structive interference that occurs when the dots are separated
by a half-wavelength. As expected, for dots separated by λ the
off-diagonal term becomes negligible in both cases.

A special treatment has to be made if every dot is ini-
tially in the |1〉 state. In this case, the initial polarization
of the system is zero and remains zero at all times. This
initial condition is equivalent to setting the Bloch vector of
each dot in the equilibrium “up” initial position, which is
unstable. The semiclassical approximation would then give
no contribution to γI (t ) in Eq. (5). This limitation has been
addressed by Haake et al. [25] who showed that semiclassical
Maxwell-Bloch equations can describe superradiant pulses if
Gaussian-distributed zero-averaging random initial conditions
for the polarization are used. The random initial conditions
provide the necessary tipping angle leading to spontaneous
emission and can be seen as the effect of a polarization mea-
surement on the fully inverted state, which gives noise since
the population and polarization operators do not commute.

Figure 8 shows a comparison of γI (t ) for an initial state of
the system in which each dot is in the |1〉 state, correspond-
ing to the maximum initial population inversion. We added
a complex zero-averaging polarization following a Gaussian
distribution with σ = 1/

√
N/Ng according to the method of

Ref. [25]. Here Ng is the number of groups into which the dots
are divided, each receiving a different random polarization.
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FIG. 8. Comparison of γI (t ) between the semiclassical Maxwell-
Bloch and the master equation. Eight quantum dots equally spaced by
0.1λ are considered. Each dot is initially in the maximum population
state with the addition of a random polarization (the average has been
taken over 500 random initial conditions). Additionally, the dots are
divided into Ng groups each receiving a different random polarization
phase.

In general the profile of the emission, consisting of a sharp
rise postexcitation followed by decay to a steady low-emission
state, resembles that of the master equation. The methodology
of Ref. [25] becomes exact in the limit N/Ng 
 1 and Ng 
 1;
therefore the discrepancies observed are due to the fact that we
are considering a small system with N = 8. Small values of Ng

lead to spurious nonzero values for γI (t ) at t = 0. However,
we observe that the averaged initial emission rate correctly
tends to zero as the number of groups is increased.

Using the same zero averaging of initial conditions, emis-
sion rates were finally calculated for the Gaussian distributed
dot configurations of Sec. III. In Fig. 9 superradiant emis-
sion is evidenced by both the characteristic rise and decay
profile, as well as the N2 scaling, of the emission rate. (A
comparison to the master equation here is infeasible due to
the exponentially scaling computation cost of that approach.)
We also observed high variability of the emission for different
random configurations in the Gaussian cloud.

FIG. 9. The second term of the emission rate, γI (t ), via the
semiclassical Maxwell-Bloch equations is shown, for the Gaussian
distributed dot configurations of Sec. III and all dots starting in the
excited state (no pulse, Ng = 1). The average has been taken over 500
random initial conditions.

V. DISCUSSION

Our computational approach and software available in [9]
allows us to understand the transient response of ensembles of
optical emitters following a laser pulse excitation. We observe
superradiant and subradiant emission and synchronized oscil-
lations. Long-established studies have shown the usefulness
of semiclassical models of superradiance [22,26]. However,
by accounting for the mutual coupling of emitters, our formu-
lation precisely describes local field inhomogeneity. We found
that superradiance is significantly affected by randomness in
electromagnetic coupling. Subradiance leads to a build-up of
slowly decaying population inversion, which is maximized at
small dipole values and large density, as shown in Fig. 6. Our
findings are consistent with recent experiments in Rydberg
atoms where the atom-atom electromagnetic coupling led to
superradiance decoherence [27], and the significant deviations
observed in quantum dots [17] from the ideal dependence.
When decaying, groups of dots exhibit synchronized oscil-
lations that become irregular for larger dipoles and density,
suggesting transitions towards chaotic dynamics [28]. Energy-
inhomogeneous broadening contributes to the suppression of
superradiance in favor of subradiance. However, we found
that the subradiance emission peaks at small levels of energy
broadening, as the overall population inversion created by a
pulse decreases for large broadening (Fig. 6).

Our comparison of the semiclassical and master equa-
tion approaches has shown similar behavior and good quanti-
tative agreement. An initial condition with perfect population
inversion is problematic, as this configuration corresponds to
an unstable equilibrium solution for the nonlinear semiclas-
sical approach. However, we have shown how this limitation
can be overcome using zero-averaging initial random polar-
izations. Our coupled nonlinear equations never converge to
the unstable equilibrium solution when the initial polarization
is different than zero or when random small polarizations are
induced by the exciting pulse propagating in the random cloud
of dots. As shown in the Appendix, the Maxwell-Bloch ap-
proach uses delayed differential equations to describe interdot
coupling [Eq. (A9)], while the master equation describes the
evolution of the density matrix using an ordinary differential
equation local in time. This leads to small effects that violate
causality, ultimately due to the Markov-Born approximation
used in the derivation of the master equation. However, in the
systems we studied, these effects were exceedingly small. The
limitations of a Markovian description of superradiance have
been theoretically investigated in the past (see, e.g., Sec. 7 of
Ref. [5]).

To the best of our knowledge, these results are the first
large-scale numerical investigation of time-resolved superra-
diance and subradiance where the dynamics of each emitter
is calculated self-consistently. There is extensive literature
on superradiance studied with Maxwell-Bloch equations, but
always based on macroscopic fields. Due to computational
power limitations, our calculations would not have been
possible just a few years ago. Also, without our predictor-
corrector-based algorithm, the integration of such an extensive
system of nonlinear and delayed differential equations would
be numerically unstable. The dependence of slowly decaying
states on density and dipole strengths can be understood using
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general theoretical considerations, e.g., higher disorder leads
to more localization and faster emission decreases the popula-
tion in subradiant states. However, this is the first time to our
knowledge that these effects have been explored quantitatively
in realistic simulations.
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APPENDIX: RETARDED RADIATED FIELD IN THE
ROTATING FRAME

Starting from the single-dot Hamiltonian

H(t ) =
(

0 −h̄χ (t )
−h̄χ∗(t ) h̄ω

)
(A1)

and its rotating frame representation

H̃(t ) = UHU † − ih̄UU̇ †

=
(

0 −h̄χ (t )e−iωLt

−h̄χ∗(t )eiωLt h̄(ω − ωL )

)
, (A2)

where U = diag(1, eiωLt ), we obtain the equations for dot i,
ρ̃ i = Uρ iU † as h̄ ˙̃ρ i = −i[H̃i(t ), ρ̃ i] − D[ρ̃ i], corresponding
to

˙̃ρ i
00 = −i

(
χ̃ i∗ρ̃ i

01 − χ̃ iρ̃ i∗
01

) − (
ρ̃ i

00 − 1
)
/T1, (A3)

˙̃ρ i
01 = −i

[
χ̃ i

(
2ρ̃ i

00 − 1
) + ρ̃ i

01(ωL − ω)
] − ρ̃ i

01/T2, (A4)

where χ̃ i = χ i e−iωLt = di · (ẼL + F̃{P})/h̄. The rotating
wave approximation (RWA) consists in keeping only slowly
varying contributions to χ̃ , which is equivalent to approximat-
ing the polarization P = d(ρ01 + ρ10) ∼ dρ̃01eiωLt .= P̃eiωLt ,
where P̃ identifies a slowly varying polarization. The radiated
field in the RWA then takes the form

F̃{P̃(r, t )} = −1

4πε

∫ [
(I − r̄ ⊗ r̄)·

× ∂2
t P̃(r′, tR) + 2iωL∂t P̃(r′, tR) − ω2

LP̃(r′, tR)

c2R

+ (I − 3r̄ ⊗ r̄) ·
(

∂t P̃(r′, tR) + iωLP̃(r′, tR)

cR2

+ P̃(r′, tR)

R3

)]
e−ikR d3r′, (A5)

where k = ωL/c, tR = t − R/c, and P̃ = P̃(r′, tR). After ne-
glecting terms proportional to ˙̃ρ01/ωL and ¨̃ρ01/ω

2
L according

to the RWA, we can write the radiative Rabi energy of dot i,
χ̃ i

Rad = di · F̃{P̃}/h̄ as

χ̃ (t )i
Rad =

∑
j �=i

ε∗
i Gi jε

∗
j ρ̃

j
01(t − Ri j/c), (A6)

where the sum over j extends over all the dots in the sys-
tems, the εi indicate the dot dipole orientations and Gi j =
�i j − i�i j , with

�i j = 3

4
�

[
(I − r̄ ⊗ r̄)

cos(kRi j )

kRi j
− (I − 3r̄ ⊗ r̄)

×
(

sin(kRi j )

(kRi j )2
+ cos(kRi j )

(kRi j )3

)]
, (A7)

�i j = 3

4
�

[
(I − r̄ ⊗ r̄)

sin(kRi j )

kRi j
+ (I − 3r̄ ⊗ r̄)

×
(

cos(kRi j )

(kRi j )2
− sin(kRi j )

(kRi j )3

)]
, (A8)

where Ri j = ri − r j , r̄ = Ri j/Ri j , and � = d2ω3
L/3πεh̄c3.

Note that Eq. (A6) in the RWA maintains the delay factor
t − Ri j/c in calculating the contribution to dot i of the polar-
ization at dot j. This preserves causality in light propagation.
For instance, consider the case of two dots, a and b, in the
ground state separated by a large R 
 λ. Assume that at
t = 0, a small polarization, ρ̃a

01, is excited at dot a. In the
Maxwell-Bloch equations above [Eqs. (A3)], the dynamics of
the polarization at dot b is described by a delayed differential
equation of the form

˙̃ρb
01(t ) = −i[
ba − i�ba)]ρ̃a

01(t − R/c) − ρ̃(t )b
01/T2. (A9)

The delayed argument on the right-hand side of the equa-
tion implies that the polarization at dot b remains exactly
zero until the signal from the dot a reaches b after a R/c
delay. The master equation in Eq. (4), on the other hand, is
an ordinary linear differential equation, which is local in time.
The polarization at b, calculated as Tra[σ+

b ρ(t )], no matter
how small, is not identically zero for t < R/c.
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