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with dipole-dipole-interacting �-type atoms
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We study multiphoton blockade effects in a single-mode cavity interacting with two three-level atoms in �

configuration having position-dependent atom-field coupling. We consider the effects of dipole-dipole interaction
(DDI) between the three-level atoms and show how the presence of DDI strongly influences the multiphoton
blockade. For symmetric coupling of the atoms with the field, the DDI induces an asymmetry in the emission
spectra as a function of pump field detuning. At positive detuning, the single-photon blockade gets stronger as
a function of DDI strength, leading to photon antibunching. However, it becomes weaker at negative detuning
and can also completely vanish. We show that this vanishing single-photon blockade is associated with a strong
two-photon blockade, leading to two-photon bunching. Therefore, by just tuning the frequency of the pump field,
we can achieve two very distinct features. We also study the effects of DDI when the atoms are asymmetrically
coupled with the field and show that the proposed system exhibits two-photon bunching. We believe our results
are important for the experimental realization of such systems where DDI may be present.
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I. INTRODUCTION

Photon antibunching is a purely quantum-mechanical
effect that has no classical counterpart [1,2]. In photon anti-
bunching, a stream of temporally well-spaced single photons
can be generated by a blockade of two or more photon gen-
eration, an effect known as single-photon blockade. Similarly,
it is also possible to generate the nonclassical photon pairs by
blockade of a third photon generation (two-photon blockade).
The phenomenon of the multiphoton blockade arises due to
the anharmonicity of the low-laying collective states of the
system (dressed states). These nonclassical states of light have
many applications in quantum communication [3], quantum
metrology [4], quantum computing [5], among others.

Photon blockade effect has been studied extensively in
various physical systems including cavity QED [6–12], cir-
cuit QED [13–18], trapped atoms [19], quantum dots [20,21],
optomechanical systems [22,23], magnomechanical sys-
tems [24], diamond nanophotonic cavities [25], quantum
wells [26], semiconducting transition-metal dichalcogenides
[27,28], among others. An atom coupled with a cavity is
an ideal system to realize multiphoton blockade [7–9,29,30]
because of the strong atom-field coupling. Many interest-
ing studies have been carried out in recent years studying
photon blockades in two-level and three-level atoms cou-
pled with single-mode cavities [8,31–33]. Furthermore, the
single two-level atom case was extended to the two-photon
Jaynes-Cummings model, showing an enhanced photon
blockade [34]. Moreover, it is also shown that multiatom
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cavity QED has very interesting effects on photon statistics
[35–38].

Recently, Zhu et al. considered coherently driven two
two-level atoms with position-dependent coupling in a
single-mode cavity [39]. They showed that single and
two-photon blockades can be observed simultaneously, under
appropriate conditions where the location of atoms plays an
important role. In the same system, Pleinert et al. have shown
that a strong atom-field coupling regime leads to correlated
emission surpassing the superradiant emission, a phenomenon
they termed hyperradiance [40]. Radulaski et al. also indepen-
dently considered a similar system in the bad cavity limit and
showed three different mechanics of the photon blockade [41].
Inspired by these results, a number of subsequent interesting
studies were carried out [42–48]. For instance, it is shown
that replacing two-level atoms with three-level atoms in a
cascade configuration enhances the strength of the two-photon
blockade [42–44]. This is because of the inherent interesting
phenomenon of electromagnetic-induced transparency in a
three-level atomic system.

It is well known that depending upon the separation be-
tween the atoms, the dipole-dipole interaction (DDI) has
important consequences on the energy spectrum and photon
blockade [49–51]. It is therefore important to investigate the
effects of DDI in photon blockade studies in such schemes.
Zhu et al. included DDI between two two-level atoms coupled
with a single-mode field [45]. The presence of DDI induces a
shift in energies of the dressed states, resulting in improved
photon number and correlation functions as compared to the
case where DDI is absent [39]. From Ref. [42], we know that
a three-level atomic system enhances the photon blockade,
while the presence of DDI in two-level atomic systems results
in improved photon number and correlation function values
due to the shift in energies of the dressed states [45]. It
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FIG. 1. Schematic model of two three-level �-type atoms
strongly coupled with a single-mode cavity of angular frequency
ωc and decay rate κ . The distance between two atoms is labeled
as �z. The spontaneous decay rates from |e〉 → |g〉, |e〉 → |s〉, and
|s〉 → |g〉 are indicated by γge, γse, and, γsg, respectively.

is, therefore, important to investigate DDI in two three-level
atoms coupled with a single-mode cavity. To the best of our
knowledge, such a study is not reported so far. In this paper,
we consider two three-level atoms in � configuration having
DDI and coupled to a single-mode cavity. The atom-field
coupling is assumed to be position dependent. We show that
the presence of DDI plays an important role. For instance, for
symmetric coupling of two atoms, it induces an asymmetry in
the emission peaks in the detuning space improving the single-
photon blockade at one detuning while suppressing it at the
other. At positive pump field detuning, the mean photon num-
ber stays almost constant for increasing DDI strength while
the second-order correlation function gets weaker, leading to
a stronger single-photon blockade. At negative detuning, the
mean photon number decreases with increasing DDI strength
accompanied by a stronger second-order correlation function,
resulting in a weaker single-photon blockade. We show that
for a proper choice of parameters the single-photon blockade
vanishes, and we obtain a strong two-photon blockade, show-
ing the two-photon bunching. Therefore, the proposed system
promises the realization of a single-photon source at positive
detuning and a two-photon source at negative detuning which
can be controlled by tuning the frequency of the pump field.
Finally, we discuss the effects of DDI on correlation functions
for asymmetric coupling of the atoms with the field. In this
regime, our system exhibits two-photon bunching for a proper
combination of drive field and DDI strength.

II. MODEL AND DRESSED STATE PICTURE

We consider two �-type three-level atoms in a single-mode
optical cavity, as illustrated in Fig. 1. Each atom consists
of three nondegenerate energy levels |g〉, |s〉, and |e〉 (see

magnified level structure in Fig. 1). The transition |g〉 ↔ |e〉 is
coupled with the single mode of the cavity. A pump field with
Rabi frequency �p drives this transition, whereas a drive field
of Rabi frequency �d is applied to the transition |e〉 ↔ |s〉. We
also consider the DDI between the atoms [52]. The Hamilto-
nian of the system in a rotating frame under rotating-wave and
dipole approximation is given by

H = H0 + HI + Hd + HP, (1)

with

H0 = −h̄
∑
i=1,2

(
�eσ

i
ee + �sσ

i
ss + �ca†a

)
, (2)

HI = h̄

[ ∑
i=1,2

gi
(
aσ i

eg + a†σ i
ge

) + J1
(
σ (1)

eg σ (2)
ge + H.c.

)

+ J2
(
σ (1)

es σ (2)
se + H.c.

)]
, (3)

Hd = h̄
∑
i=1,2

�d
(
σ i

es + σ i
se

)
, (4)

and

HP = h̄
∑
i=1,2

�p
(
σ i

eg + σ i
ge

)
. (5)

The bare Hamiltonian H0 represents the energies of the cavity
mode and atoms with detunings �s = ωp − ωd − (ωs − ωg),
�l = ωd − (ωe − ωs), �c = ωp − ωc, and �e = ωp − (ωe −
ωg) = �l + �s. Here, ωk is the frequency of state |k〉(k ∈
[g, s, e]) and ωc, ωd , and ωp are the frequencies of the cavity
mode, drive field, and pump field, respectively. We assume
ωe − ωg = ωc which results in �c = �e. The operator σ i

ab =
|a〉i〈b|(a, b ∈ [g, s, e]) is used to denote the atomic transition
operator for the ith atom. The bosonic field annihilation (cre-
ation) operator is denoted by a (a†). The atom-field interaction
and DDI between atoms is included in the Hamiltonian HI

with gi the coupling strength of the ith atom with the field.
We consider position-dependent atom-field coupling strength
gi = g[cos (2πzi/λc)] with zi the position of the ith atom in
the cavity mode of wavelength λc. The parameters J1 and J2

are interatomic dipole-dipole coupling strengths for transition
|e〉 ↔ |g〉 and |e〉 ↔ |s〉, respectively and for mathematical
simplicity it is assumed that J1 = J2 = J and �l = 0 such that
�e = �s = �. The Hamiltonian Hd describes the external
coherent drive, whereas HP is the Hamiltonian of the pump
field.

To study the quantum properties of the system, we solve the
following Lindblad master equation numerically for steady-
state solutions using QuTiP [53]:

dρ

dt
= − i

h̄
[H, ρ] + Lγ ρ + Lκρ, (6)

where ρ is the density-matrix operator and the last two terms
incorporate the atoms and cavity dissipation with rate γ and
κ , respectively. The cavity Liouvillian function is defined as

Lκρ = κ

2
(2aρa† − a†aρ − ρa†a), (7)
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while atomic decay is associated with

Lγ ρ = 1

2

∑
i=1,2

[
γge

(
2σ i

geρσ i
eg − σ i

egσ
i
geρ − ρσ i

egσ
i
ge

)
+ γse

(
2σ i

seρσ i
es − σ i

esσ
i
seρ − ρσ i

esσ
i
se

)
+ γgs

(
2σ i

gsρσ i
sg − σ i

sgσ
i
gsρ − ρσ i

sgσ
i
gs

)]
, (8)

where γαβ (α, β ∈ [e, s, g]) is the spontaneous emission rate
of state |β〉 to |α〉.

In the absence of coherent pumping, the Hamiltonian of the
system can be reformulated in collective basis states. These

basis states are |gg, 1〉, |±(1), 0〉, and |±(2), 0〉 in one-photon
space while in two-photon space these are |gg, 2〉, |ss, 0〉,
|ee, 0〉, |±(1), 1〉, |±(2), 1〉, and |±(3), 0〉 (see Appendix A for
details). The Hamiltonian matrix in one-photon space is given
by

H (1P) =

⎛
⎜⎜⎜⎜⎝

ωc g+/
√

2 g−/
√

2 0 0
g+/

√
2 ωc + J 0 �d 0

g−/
√

2 0 ωc − J 0 �d

0 �d 0 ωc 0
0 0 �d 0 ωc

⎞
⎟⎟⎟⎟⎠. (9)

In two-photon space, the Hamiltonian is given by

H (2P) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2ωc g+ g− 0 0 0 0 0 0
g+ 2ωc + J 0 �d 0 0 0 0 g+/

√
2

g− 0 2ωc − J 0 �d 0 0 0 −g−/
√

2
0 �d 0 2ωc 0 g+/2 g−/2 0 0
0 0 �d 0 2ωc −g−/2 −g+/2 0 0
0 0 0 g+/2 −g−/2 2ωc + J 0 �d �d

0 0 0 g−/2 −g+/2 0 2ωc − J 0 0
0 0 0 0 0 �d 0 2ωc 0
0 g+/

√
2 −g−/

√
2 0 0 �d 0 0 2ωc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (10)

where g± = g [1 ± cos (φz )] with φz being the position-
dependent phase shift between atoms and defined as
φz = 2π�z/λc with �z the distance between two atoms.
The atoms feel similar coupling with the cavity mode
when �z = 0 and consequently Dicke’s asymmetric
states (|−(1), n〉, |−(2), n〉, |−(3), n〉) become uncoupled
from the cavity excitation spectrum with atoms radiating
in phase. To characterize the single- and two-photon
blockades, equal time second- and third-order field
correlation functions, i.e., g(2)(0) = 〈a†a†aa〉/(〈a†a〉)2 and
g(3)(0) = 〈a†a†a†aaa〉/(〈a†a〉)3, are numerically computed,
respectively. The single-photon blockade is characterized by
g(2)(0) < 1, whereas the two-photon blockade is characterized
by g(2)(0) > 1 and g(3)(0) < 1. We diagonalize Eqs. (9)
and (10) to obtain the energy eigenvalues and eigenstates
(see Appendices B and C) to construct the dressed state
picture as shown in Fig. 2. The criterion of allowed and
forbidden transitions is associated with transition strengths
by calculating the dipole matrix elements of HP. In Fig. 2,
the green (black) arrows indicate the allowed (forbidden)
transitions for symmetric coupling of the atoms with the
cavity field (φz = 0). The collective study of cavity atoms
shows the anharmonicity and splitting of energy levels
[39,42]; however, they can be further shifted by including
DDI (see Fig. 2). Furthermore, Fig. 2 shows that for J = 0 (no
DDI), primary shifting of energy states due to DDI vanishes,
and it transforms to the dressed state picture as proposed
in Ref. [32] for φz = 0. For weak coherent pumping, the
system can absorb only a single photon, leading to the
transitions �(0) = |gg, 0〉 → �

(1)
±2 (shown by green arrows

in Fig. 2), and does not absorb the second photon as the
two-photon manifold is highly detuned and anharmonic.
This phenomenon is known as the single-photon blockade
and studied extensively recently. We propose in this paper

that allowed transitions can be shifted by including DDI
as depicted in Fig. 2 and hence affect the photon blockade
strongly.

III. RESULTS AND DISCUSSION

In this section, we present the results of our numerical
simulations. First, we discuss the case of equal coupling
of both atoms with the cavity mode (i.e., φz = 0). We plot
mean photon number (〈a†a〉) and corresponding logarithmic
second-order field correlation function [g(2)(0)] as a function
of normalized detuning in Fig. 3. In Fig. 3(a), we plot
the mean photon number for different values of �d in
the absence of DDI (J = 0). As the coherent pumping is
weak (�p = 0.2κ), one-photon transitions dominate, and
we obtain two symmetric peaks in 〈a†a〉 at frequencies

� = ±
√

�2
d + 2g2. This shows that the one-photon transition

frequency moves away from the resonance by increasing
the driving field strength (�d ) as shown by red solid
(�d = 0), blue dashed (�d = 20κ), and green dot-dashed
(�d = 30κ) curves in Fig. 3(a) (see Appendix D for further
discussion). The corresponding second-order correlation
function log10[g(2)(0)] is plotted in Fig. 3(c). It can be seen

that, at the frequencies ±
√

�2
d + 2g2, log10[g(2)(0)]�d =0κ >

log10[g(2)(0)]�d =20κ ≈ log10[g(2)(0)]�d =30κ , which shows
that the strength of the single-photon blockade increases
by increasing driving field strength. However, there
is no significant change beyond �d = 20κ . Next, we
consider the case of nonzero DDI (J 	= 0) in Fig. 3(b).
We choose �d = 4κ and plot the mean photon number
and second-order correlation function for different choices
of J . We found that the presence of DDI significantly
improves the single-photon blockade. Figure 3(b) shows
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FIG. 2. The dressed state structure of important transitions on the
basis of collective Dicke states for φz = 0.

two asymmetric peaks in 〈a†a〉 at two asymmetrical

frequencies � = 1
2 [J ±

√
J2 + 4�2

d + 8g2] whereas Fig. 3(d)
shows the corresponding second-order correlation functions.
The strength of the DDI significantly improves the
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FIG. 3. Mean photon number 〈a†a〉 and corresponding second-
order field-correlation function log10[g(2)(0)] as a function of
normalized detuning �/κ for different values of driving field
strength (a), (c) and DDI strength (b), (d). We choose J = 0 in
panels (a) and (c) and �d = 4κ in panels (b) and (d). The remaining
parameters are [φz, �p, g, γge = γse, γgs] = [0, 0.2κ, 20κ, 0.01κ, κ].
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FIG. 4. Mean photon number 〈a†a〉 (a), second-order field-
correlation function log10[g(2)(0)] (b), and third-order field-
correlation function log10[g(3)(0)] (c) as a function of normalized
detuning �/κ and DDI strength J/κ . The rest of the parameters are
the same as in Fig. 3(b).

single-photon blockade at frequencies � = 1
2 [J +√

J2+4�2
d+8g2] as log10[g(2)(0)]J=0 > log10[g(2)(0)]J=7κ >

log10[g(2)(0)]J=14.5κ . This significant improvement in the
single-photon blockade through DDI can only be observed
in the limit �z < λc because within this limit DDI can be
strong enough to shift and displace the energy span between
one- and two-photon space. Next, in Fig. 4, we present
a density plot of mean photon number and second-order
and third-order correlation functions against detuning and
DDI strength J at φz = 0. At positive values of detuning,
the second-order correlation function shows a very strong
single-photon blockade with increasing DDI strength [see
Fig. 4(b)]. However, the single-photon blockade becomes very
weak at negative detuning when DDI strength is increased
[see Fig. 4(b)]. It almost vanishes when the DDI strength is
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FIG. 5. Mean photon number 〈a†a〉 (a) and corresponding
second- and third-order field-correlation functions log10[g(n)(0)],
n = 2, 3 (b) as a function of normalized detuning �/κ . We choose
J/κ = 20 and the rest of the parameters are the same as in Fig. 4.

comparable to the atom-field coupling strength, i.e., J ≈ g.
This asymmetry of the spectrum and the correlation function
due to the presence of DDI has an important consequence,
as shown in Fig. 4(c), where the third-order correlation
function is plotted. It can be seen that when the single-photon
blockade is very weak, i.e., log10[g(2)(0)] ≈ 0 [see Fig. 4(b)
along the mean photon spectrum peak in Fig. 4(a)], we
have a relatively weaker third-order correlation function,
i.e., log10[g(3)(0)] < 0. To illustrate better, we plot a line
cut of Fig. 4 at J/κ = 20 in Fig. 5. We show the mean
photon number in Fig. 5(a) and second- and third-order
correlation functions in Fig. 5(b). At �/κ ≈ 40, we have a
strong single-photon blockade [see Fig. 5(b)] as discussed
above. However, the DDI-induced asymmetry in the spectrum
shows that log10[g(2)(0)] ≈ 0 [g(2)(0) ≈ 1] at �/κ ≈ −20
showing the absence of antibunching and presence of a
coherent state. At this same value of detuning, the third-order
correlation function log10[g(3)(0)] < 0, confirming that
three-photon bunching is absent. This promises a possibility
of a two-photon bunching phenomenon if we can tune
parameters to obtain log10[g(2)(0)] > 0. Next, we show
that this is indeed possible. This is an important result that
shows that by tuning the detuning of the pump field, we can
achieve two very different types of photon emissions, namely,
single-photon emission at positive detuning and two-photon
bunched emission at negative detuning.

It is clear from Fig. 5(b) that the single-photon block-
ade almost vanishes at a particular negative detuning. Next,
we explore the parameter space where the single-photon
blockade completely vanishes, i.e., log10[g(2)(0)] � 0. We
plot the second-order and third-order correlation functions
and mean photon number in Fig. 6 as a function of the di-
mensionless coupling constant g/κ and DDI strength J/κ .
Here, we focused on the negative detuning values, which
are calculated for each combination of g and J using � =
1
2 [J −

√
J2 + 4�2

d + 8g2]. We find that to obtain strictly pos-
itive values of log10[g(2)(0)], we need to lower the strength of
�p. Figure 6(a) shows the second-order correlation function,
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FIG. 6. Second-order correlation function log10[g(2)(0)] (a),
third-order correlation function log10[g(3)(0)] (b), and mean photon
number 〈a†a〉 (c) are plotted against normalized coupling constant
g/κ and DDI strength J/κ . We choose �d = 16κ and �p = 0.1κ .
For each value of g/κ and J/κ , the detuning value corresponds to
the peak in the mean photon number, which is calculated using the
relation given in the text. The remaining parameters are the same as
in Fig. 4.

where the darkest region corresponds to log10[g(2)(0)] � 0.
In this parameter space, the single-photon blockade com-
pletely vanishes. The slightly less dark region corresponds
to −0.1 � log10[g(2)(0)] < 0, i.e., a very weak single-photon
blockade. The corresponding third-order correlation function
in Fig. 6(b) shows that for the region where the single-photon
blockade vanishes, we have a strong two-photon blockade. It
is clear that in this parameter regime, we have nonclassical
states of a radiation field, i.e., two-photon bunching with high
purity, which is quite interesting. However, reducing �p also
decreases the mean photon number, as shown in Fig. 6(c).

Finally, we consider the asymmetric coupling of the atoms
with the field, i.e., φz = π , and discuss the effects of DDI and
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FIG. 7. Mean photon number 〈a†a〉 (a), (b), second-order cor-
relation function log10[g(2)(0)] (c), (d), and third-order correlation
function log10[g(3)(0)] (e), (f) as a function of �/κ and �d/κ . The
system parameters are chosen as J = 0 (left) and J = 5κ (right),
�p = 1.5κ, φz = π while the remaining parameters are the same as
in Fig. 3.

drive field. In Fig. 7, we plot mean photon number and second-
order and third-order correlation functions as a function of
detuning and drive field strength. In the left panel of Fig. 7,
DDI is absent, while for the right panel, we have J = 5κ .
The darker regions in Fig. 7(a) show the mean photon number
peaks with the corresponding second- and third-order correla-
tion functions in Figs. 7(c) and 7(e), respectively. Figure 7(c)
shows that the single-photon blockade is absent in the system
for the whole range of drive field strength. The dynamical
system makes only two-photon transitions without permit-
ting one-photon absorption as evident by log10[g(2)(0)] > 0
[see Fig. 7(c)] leading to the multiphoton bunching. On the
other hand, the two-photon blockade depends on the strength
of the driving field and exists for �d � 6κ as evident by
log10[g(3)(0)] < 0 [see Fig. 7(e)] ensuring the absence of
three-photon bunching. Therefore, in this region of parameter
space, we get two-photon bunching. The presence of DDI
[see Figs. 7(b), 7(d), and 7(f)] induces an asymmetry in the
spectrum showing that the range of driving field strength cor-
responds to two-photon blockade changes. At positive pump
field detuning, the two-photon bunching occurs for �d � 4κ

whereas for negative detuning it occurs for �d � 8κ . The
result has important consequences from an experimental point
of view because the strength of the drive field required to
observe two-photon bunching depends on the DDI strength.
We also note that there is also a very weak two-photon
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FIG. 8. Mean photon number 〈a†a〉 (a), (b), second-order cor-
relation function log10[g(2)(0)] (c), (d), and third-order correlation
function log10[g(3)(0)] (e), (f) as a function of �/κ and J/κ . The sys-
tem parameters are chosen as �d = 5κ (left) and �d = 10κ (right),
�p = 1.5κ , φz = π while the remaining parameters are the same as
in Fig. 3.

blockade (two-photon bunching) for �d � 2κ . Next, we show
density plots of mean photon number and second-order and
third-order correlation functions as a function of detuning
and DDI strength in Fig. 8. We choose �d = 5κ in the left
panel showing that the increasing strength of DDI makes the
mean photon number spectrum more and more asymmetric
around pump detuning [see Fig. 8(a)], while the single-photon
blockade remains absent [Fig. 8(c)]. Figure 8(e) shows that
the two-photon blockade is absent at J = 0; however, in-
creasing DDI induces the two-photon blockade at positive
detuning. Therefore, we have two-photon bunching only at
positive detuning for finite DDI, which is in agreement with
the behavior shown in Figs. 7(e) and 7(f). We choose a slightly
stronger drive field (�d = 10κ) in the right panel of Fig. 8. At
strong driving, we have two-photon bunching at both positive
and negative pump detunings which persists for the complete
range of DDI strength considered here.

Here, we briefly present the feasibility of the potential ex-
perimental realization of our proposed scheme. The proposed
scheme can be realized by placing two Rydberg atoms or ions
in an optical cavity [54–61]. Similarly, quantum dots coupled
with a photonic crystal cavity or an optical microcavity are
also a good candidate system for experimental realization
[20,21,62–64]. Browaeys et al. recently reviewed the experi-
mental realization of DDI interaction between Rydberg atoms
[65]. It is shown that DDI strength J in Rydberg atoms can
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TABLE I. One-photon space.

Eigenvalues Eigenstates

λ
(1)
0 = ωc �

(1)
0 = |±(2), 0〉 − �d√

2g
|gg, 1〉

λ
(1)
±1 = ωc − J/2 ±

√
J2

4 + �2
d �

(1)
±1 = |−(2), 0〉 + ±

√
J2
4 +�2

d − J
2

�d
|−(1), 0〉

λ
(1)
±2 = ωc + J/2 ±

√
J2

4 + �2
d + 2g2 �

(1)
±2 = |+(2), 0〉 +

√
2g

�d
|gg, 1〉 + 1

�d
[ J

2 ±
√

J2

4 + �2
d + 2g2]|+(1), 0〉

be efficiently manipulated in experiments [66–69], reaching
values of the same order considered here. Similarly, the study
of exchange coupling in quantum dots is also an active area
of interest [70,71]. We also note that the typical values of
mean photon number in microwave and optical experiments
are of the order of 10−2 [8,18,21]. We, therefore, believe that
the experimental realization of the proposed scheme is well
within the reach of current experimental technology.

IV. CONCLUSION

In conclusion, we studied the multiphoton blockade in a
single-mode cavity coupled with two three-level atoms in �

configuration. We show that the presence of DDI has impor-
tant consequences on the emission spectrum as well as on the
multiphoton blockade. For positive values of pump field de-
tuning for symmetric coupling of atoms, we found a positive
effect of DDI, leading to a stronger single-photon blockade.
Therefore, the proposed system promises the realization of a
high-purity single-photon source if a strong DDI is present.
At negative values of the pump field, DDI interaction has
detrimental effects, suppressing the single-photon blockade.
We show that the single-photon blockade can be completely
suppressed, accompanied by a strong two-photon blockade.
This results in the emission of nonclassical photon pairs. It
is interesting to note that these two phenomena can be ob-
tained by controlling the frequency of the pump field. For
asymmetric coupling, we show that the correct combination of
drive field strength and DDI strength is important to observe
two-photon bunching. The results presented in this paper are
important for any potential experimental realizations where
DDI between atoms is present.
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APPENDIX A: DEFINITION OF COLLECTIVE
BASIS SATES

The basis states in n-photon space for Eqs. (9) and (10)
are |gg, n〉, |ss, n − 2〉, |ee, n − 2〉, |±(1), n − 1〉, |±(2), n − 1〉,
and |±(3), n − 2〉. The entangled states are defined as

|±(1), n − 1〉 = 1√
2

(|eg, n − 1〉 ± |ge, n − 1〉), (A1)

|±(2), n − 1〉 = 1√
2

(|sg, n − 1〉 ± |gs, n − 1〉), (A2)

and

|±(3), n − 2〉 = 1√
2

(|eg, n − 2〉 ± |ge, n − 2〉). (A3)

APPENDIX B: EIGENVALUES AND EIGENSTATES
OF EQ. (9)

The eigenvalues and eigenstates of Eq. (9) for φz = 0 are
given in Table I.

APPENDIX C: EIGENVALUES AND EIGENSTATES
OF EQ. (10)

The two-photon manifold in Fig. 2 is constructed based
on the following eigenvalues and eigenstate of Eq. (10)
(see Table II) with A and B defined as

A = 0.07J2 + 0.43�2
d + g2, (C1)

B = 0.714
√

0.04�4
d + 0.53�2

d g2 + g4. (C2)

APPENDIX D: ANALYSIS OF THE
EIGENENERGY SPECTRUM

Here, we discuss the effects of the control field and DDI on
the eigenenergy spectrum. In the absence of the control field
and DDI, we have an excitation doublet at � = ±√

2g similar
to the two-level system [39] corresponding to two eigenvalues
of the one-photon Hamiltonian (see Table I). In the presence
of the control field, these energy eigenstates symmetrically
shift away from the resonance. We illustrate this by plotting
energy eigenvalues as a function of control field �d in Fig. 9.
In the top panel of Fig. 9, we plot eigenvalues for the one-
photon Hamiltonian in the absence [Fig. 9(a)] and presence of
DDI [Fig. 9(b)]. Figure 9(a) shows that the increasing strength
of the drive field symmetrically shifts the eigenenergies away
from the resonance. The presence of DDI shifts energy levels
in the absence of the control field (�d = 0), as shown in

TABLE II. Two-photon space.

Eigenvalues Eigenstates

λ
(2)
0 = λ

(2)
0± = 2ωc �

(2)
0 , �

(2)
0

λ
(2)
±1 = 2ωc − J/2 ± √

J2/4 + �2
d + g2 �

(2)
±1

λ
(2)
±2 = 2ωc + J/2 ± 1.87

√
A − B �

(2)
±2

λ
(2)
±3 = 2ωc + J/2 ± 1.87

√
A + B �

(2)
±3

λ
(2)
ζ = 2ωc − J ζ (2)
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FIG. 9. Energy eigenvalues of the one-photon (top) and two-
photon (bottom) Hamiltonian vs Rabi frequency of the drive field.
(a), (c) J = 0κ . (b), (d) J = 10κ . The parameters χ = 1.87

√
A − B

and η = 1.87
√

A + B are defined for J = 0 and �d = 0.

Fig. 9(b). These levels then shift asymmetrically (with respect
to resonance) when the control field is applied. As a result,
the spectrum significantly differs from Fig. 9(a) where no
DDI is considered. This illustrates the control-field induced
asymmetry in the spectrum at � = 1

2 [J ±
√

J2 + 4�2
d + 8g2]

in the presence of DDI. In Figs. 9(c) and 9(d), we present the
energy spectrum of the two-photon Hamiltonian [Eq. (10)]
again illustrating the anharmonicities induced by DDI. The
second asymmetry is in the strength of correlation functions
at these asymmetric frequencies, leading to a single-photon
blockade at positive detuning and a two-photon blockade at
negative detuning. We note that two energy eigenstates below
the resonance in Fig. 9(b) become almost degenerate in the
presence of DDI. This degeneracy influences the emission
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FIG. 10. Energy eigenvalues of the one-photon (a) and two-
photon (b) Hamiltonian vs DDI. The rest of the parameters are the
same as in Fig. 4 of the main text.

process and is potentially responsible for the asymmetry in
correlation functions. Furthermore, we plot, in Fig. 10, the
eigenenergy spectrum of the one-photon [Fig. 10(a)] and two-
photon [Fig. 10(b)] Hamiltonian as a function of DDI strength
J . It can be seen in Fig. 10(a) that at negative detuning, two
energy levels move closer to each other as a function of J
and become degenerate at J ≈ g. Therefore, this asymmetric
eigenenergy pattern in response to DDI strength is responsible
for the asymmetric strengths of the correlation function.
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