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We successfully fabricated silicon-on-insulator (SOI) photonic crystal (PhC) slabs in which electromagnetic
topological band gaps and edge modes were materialized for symmetric transverse-electric-like modes. Because
the structure of our specimens can be regarded as symmetric about the horizontal middle plane of the PhC
slab, their symmetric and antisymmetric eigenmodes were rigorously separated, so we could achieve genuine
photonic band gaps for the former. We fabricated those specimens by electron beam lithography of the top
Si layer of SOI wafers and successive plasma-enhanced chemical vapor deposition of a SiO2 capping layer.
We confirmed the complete common band gap of topologically trivial and nontrivial PhCs and the topological
edge modes on the boundary between them by angle-resolved reflection spectroscopy in the mid-infrared range.
This is an observation of the common band gap and edge modes that materialized in symmetric PhC slabs
without a membrane structure, that is, without the etching of a sacrificial layer under the PhC to increase the
refractive-index contrast and the width of the common band gap.
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I. INTRODUCTION

Topological edge modes in the electromagnetic spectrum,
which imitate the quantum spin Hall effect [1–5], have intro-
duced a novel principle of wave confinement and propagation
and may serve as new building blocks for optical microcir-
cuits [6–11]. They are materialized on the boundary between
topologically trivial and nontrivial photonic crystals (PhCs),
for which Wu and Hu reported the design based on the
C6v-symmetric PhC structure [6]. The trivial and nontrivial
band gaps are created for transverse magnetic (TM) modes be-
tween E1 (dipole)-symmetric and E2 (quadruple)-symmetric
eigenmodes on the � point of the first Brillouin zone accord-
ing to the order of their frequencies, which can be controlled
by structural parameters of the PhC unit cell. Their idea
stimulated many researchers to promote the investigation
of the topological edge modes to mitigate disorder-induced
backscattering and exploit directional control of light.

The limited extent of topological protection and the
backscattering of the edge modes have been reported for both
topological insulators [12–15] and topological PhCs [16]. In
addition, we must bear in mind that the practical photonic
systems are non-Hermitian. Most of the surface modes of
two-dimensional PhC thin films, which are called PhC slabs,
suffer from the diffraction loss and have a finite lifetime,
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which is another origin of the limited topological protection.
On the other hand, the photonic system has its own merits. For
example, sample fabrication is relatively flexible, and we can
introduce defect structures of any shapes by simply changing
the design drawing (CAD data) for lithography, so we can
imitate and examine some of the problems in the quantum
spin Hall effect and new classes of material systems proposed
by topological quantum chemistry [17,18]. Another merit is
a direct access to the edge modes with incident light waves
using non-Hermiticity.

Barik et al. extended the original design for purely two-
dimensional PhCs to PhC membranes by changing the shape
of the dielectric materials composing the unit cell [7,8].
Specifically, they adapted a triangular shape of air cylin-
ders for their PhC membranes to prevent the band gap from
closing on the M point. Thus, they proved the presence of
complete band gaps for transverse-electric (TE)-like modes
common to the trivial and nontrivial PhC membranes, which
resulted in the presence of the edge modes, by both theory and
experiment.

However, the membrane or air-bridged structure needs a
sacrificial layer beneath the PhC layer, which should be re-
moved by selective etching after the PhC layer is fabricated
[7–11,19–29]. The PhC membranes generally have large pho-
tonic band gaps due to the large refractive-index contrast
between air and dielectric materials consisting of the unit cell.
Because the common band gap, which is defined as the band-
gap frequency range shared by two PhCs, is a prerequisite
for the topological edge modes, its large value is desirable
for practical experimental studies. For example, complete
common band gaps of 4.1% and 4.7% widths relative to the
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FIG. 1. Design of the symmetric SOI PhC. (a) Side view of the SOI PhC with a SiO2 capping layer. (b) Side view of the symmetric Si PhC
slab. The x-y plane is taken at the middle of the Si PhC slab. (c) Top view of the unit cell of the Si PhC, which consists of six triangular holes
arranged in the C6v symmetry. In the numerical calculation, the lattice constant a, the side length s, and the thickness of the Si PhC layer were
fixed to 2 µm, 800 nm, and 400 nm, respectively. The distance between the center of the unit cell and the center of the triangular hole, R, was
varied from 620 to 700 nm.

mid-gap frequency were reported in Refs. [8,9], respectively.
However, their mother materials are limited, their fabrication
process is complicated, and their mechanical strength is low,
while the PhC membranes have particular applications such
as cavity optomechanics [30,31].

Here, we report on the design and fabrication of non-air-
bridged PhC slabs to materialize a complete common band
gap for the symmetric TE-like modes and topological edge
modes. Specifically, we propose PhC slabs consisting of Si
PhC sandwiched by two SiO2 layers, which can be regarded
as symmetric about the horizontal middle plane of the Si
PhC so that the lowest-order symmetric TE-like modes and
the lowest-order antisymmetric TM-like modes are separated
rigorously and genuine band gaps are obtained for the former.
We show that we can materialize the complete common band
gap of a 4.1% width relative to the mid-gap frequency. We
prove the presence of the complete common band gap and
the edge modes by specimen fabrication on SOI (silicon-on
insulator) wafers and evaluation by angle-resolved reflection
spectroscopy.

This paper is organized as follows. In Sec. II, we show
our sample design by the finite element method (FEM) cal-
culations. Specimen fabrication is described in Sec. III. The
method for the angle-resolved reflection measurements is
explained in Sec. IV. We describe the results of the mea-
surements in Sec. V and give a brief conclusion in Sec. VI.
To prove the negligibly small influence of the Si substrate
of the SOI wafer on the electromagnetic eigenmodes in the
frequency range of our interest, the comparison of dispersion
curves between SiO2 under layers with finite and infinite
thicknesses is presented in the Appendix.

II. SAMPLE DESIGN

We followed the recipe by Barik et al. [7,8] for the sam-
ple design. We examined the triangular lattice of air holes
fabricated in the top Si layer of SOI wafers. In their original
design, they analyzed and fabricated PhC membranes by se-
lective etching of a sacrificial layer under a GaAs PhC. The
membrane structures have a large refractive-index contrast,
so they are generally advantageous for creating large pho-
tonic band gaps, while their fabrication is complicated, and
their mechanical strength is low. Another merit of the mem-
brane PhC is that the symmetric and antisymmetric modes are
rigorously defined since their structure can safely be regarded

as symmetric about the horizontal middle plane of the PhC
[32]. So, we can discuss the presence of the well-defined
photonic band gap in each case separately.

In this study, we tried to find a non-air-bridged specimen
design that does not need the underetching and yet it can
be regarded as symmetric about the horizontal middle plane.
For this purpose, we examined Si PhCs sandwiched by SiO2

layers as shown in Fig. 1(a). The thickness of the top Si layer
and the SiO2 layer below it was fixed at 400 nm and 3 µm,
respectively, according to available SOI wafers (SOITEC).
As we show in the Appendix, when the thickness of the
SiO2 layer is larger than 2 µm, the dispersion relation of the
electromagnetic eigenmodes confined in the top Si layer is
practically the same as in the case of an infinitely thick SiO2

layer in the frequency range of our interest, that is, 2 µm (5000
cm−1) to 4 µm (2500 cm−1). So, the sandwiched structure
of Fig. 1(a) can safely be regarded as symmetric about the
horizontal middle plane located in the Si PhC as shown in
Fig. 1(b) when the SiO2 capping layer is also thicker than
2 µm. The triangular air holes fabricated in the top Si layer
by lithography will be filled with SiO2 during the chemical
vapor deposition (CVD) growth process of the capping layer,
so we assumed the refractive index of SiO2 for this region in
the FEM numerical calculations.

The solid and broken lines in Fig. 2 show the dispersion
relation of two symmetric PhCs calculated by FEM with
COMSOL Multiphysics, whereas the circles and triangles de-
note eigenfrequencies observed by angle-resolved reflection
spectroscopy, which will be described in Sec. V. For the
numerical calculation, we located a perfectly matched layer
(PML) absorbing boundary at z = 6 µm in the SiO2 capping
layer and assumed a symmetric boundary condition for the
electric field at z = 0 µm (the horizontal middle plane of the Si
PhC layer). Because the PML absorbing boundary is located
sufficiently far from the Si layer compared with the localiza-
tion length in the z direction, this condition is equivalent to
an infinitely thick SiO2 layer. The latter condition excludes
the antisymmetric modes, and we can selectively calculate the
symmetric modes.

Figures 2(a) and 2(b) show the dispersion relation of spec-
imens named PhC-t and PhC-n, respectively, whose structural
parameters are given in the figure caption. The dispersion
curves are plotted in the �-to-K and �-to-M directions in
the first Brillouin zone. Because the PhC structure is highly
symmetric (C6v), there are polarization selection rules for
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FIG. 2. Dispersion relation of (a) PhC-t and (b) PhC-n. The hor-
izontal axis is the wave vector in the first Brillouin zone, and the
vertical axes are genuine (right) and normalized (left) frequencies,
where ω, a, and c are the angular frequency, the lattice constant,
and the light velocity in free space, respectively. The red broken
lines and blue solid lines denote p- and s-active symmetric modes,
respectively, calculated by FEM. The red open circles and blue open
triangles denote eigenfrequencies acquired by our homemade high-
resolution setup, whereas the red solid circles and blue solid triangles
show those measured by Seagull. Designed structural parameters
are as follows: a = 2.0 µm, s = 800 nm, R = 620 nm for PhC-t,
and R = 700 nm for PhC-n. The refractive indices of Si and SiO2

were assumed to be 3.427 [33] and 1.440 [34], respectively, in the
numerical calculations.

eigenmodes propagating in these directions [35]. The blue
solid lines and the red broken lines in Fig. 2 represent eigen-
modes active to s and p polarizations, respectively. E1, E2,
A1, and B2 denote the symmetry of the magnetic field of
eigenmodes on the � point, which was clarified by examining
their field distribution obtained by numerical calculations.

It is evident that there is a complete band gap between the
E1 and E2 modes for the two PhCs. Because the E1-mode
frequency is lower (higher) than the E2-mode frequency for
PhC-t (PhC-n), the band gap is topologically trivial (non-
trivial) [6]. In addition, Fig. 2 clearly shows that we can
materialize a complete band gap common to the trivial and
nontrivial PhCs, so we can also materialize helical edge modes
on the boundary between the two PhCs [6]. The common
band gap is 4.1% wide relative to the mid-gap frequency.
Surprisingly, this relative width was comparable to the case
of PhC membranes, 4.1% in Ref. [8] and 4.7% in Ref. [9],
for example, in spite of the relatively small refractive-index
contrast. This is because the band gap is not only dependent on
the refractive-index contrast but also dependent on the degree
of symmetry breaking described by R, since the band gap
vanishes for the symmetric case of the honeycomb lattice.

Next, we calculated the topological edge modes localized
on the boundary between the two PhCs. We assumed PhC-n
and PhC-t of 11 unit cells in positive and negative y re-
gions, respectively, as shown in Fig. 3(a) and set the PML
absorbing boundary on both ends. The red broken line denotes
the unit structure, on which the Bloch boundary condition
was imposed in the x direction. As Fig. 3(b) shows, helical
edge modes are materialized in the band-gap frequency range
accompanied by a small gap on the � point due to the lack

FIG. 3. (a) Geometry for materializing topological edge modes
using the symmetric SOI-PhCs. The upper half is a topologically
nontrivial PhC (PhC-n), whereas the lower half is a topologically
trivial PhC (PhC-t). The edge modes are materialized on their bound-
ary. The red broken line denotes the unit structure, on which the
Bloch boundary condition was imposed in the x direction, whereas
the PML absorbing boundary condition was imposed in the other
two directions. (b) Red solid line: Dispersion relation of topological
edge modes materialized on the boundary between the two PhCs.
Gray region: Frequency ranges of bulk modes. The vertical axis is
the normalized frequency and the horizontal axis is the wave vector
in the x direction. Red and blue circles: Eigenmodes whose field
distributions and Poynting’s vectors are presented in panels (c) and
(d), respectively. The field distributions and Poynting’s vectors are
for the (c) right-going and (d) left-going edge modes. Black wedges
show the direction and magnitude of the Poynting’s vectors. Blue
and red colors show the positive and negative magnetic fields in the
vertical (z) direction. The bent red lines denote the boundary between
the two PhCs.

of the inversion symmetry caused by the PhC boundary. The
two split modes on the � point are linearly polarized due to
the 1:1 mixture of the two helical modes with right circular
and left circular polarizations. Calculated far-field patterns
showed that the lower and upper branches are polarized in
the x and y directions, respectively. When we move away
from the � point, this mixture diminishes, and the helical
edge modes go back to their original character of the circular
polarization. Because the dispersion curves of the edge modes
are located above the light line, their lifetime is finite due to
the diffraction loss [32]. The quality factor, which is defined
by the ratio of the real part of the eigenfrequency to two times
its imaginary part, is approximately 300 for both upper and
lower branches on the � point. A typical localization length in
the y direction was 3.9 a, which was obtained by curve fitting
to the distribution of the magnetic field intensity calculated for
the edge modes denoted by the circles in Fig. 3(b), whose field
distributions and Poynting’s vectors are shown in Figs. 3(c)
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FIG. 4. Scanning electron microscopy (SEM) images of the fab-
ricated specimens. (a) Cross-sectional view of the specimen after
etching. The nanostructure obtained has smooth walls. (b) Top-view
SEM of PhC-t with R = 620 nm and (c) PhC-n with R = 700
nm. (d) Cross-sectional SEM of the specimen after growing the
SiO2 capping layer. (e) Cross-sectional view of PhC walls buried
in the SiO2. (f) Close-up of the PhC walls, showing minimal void
formation.

and 3(d). The localization length was comparable to the case
of asymmetric SOI-PhCs in our previous study, 3.6 a [36].

III. SAMPLE FABRICATION

We fabricated the specimens by standard electron beam
lithography (Elionix, ELS-125) of SOI wafers (SOITEC) with
high-contrast e-beam resist (Allresist, AR-P6200) and expo-
sure parameters of an accelerating voltage of 125 kV, a current
of 1 nA, a field size of 250 µm, 50 000 dot numbers, and a
shot time of 0.06 µs/dot of 240 µC/cm2 dose. The pattern was
developed at room temperature in xylene for 90 s, followed
by isopropyl alcohol (IPA) wash for 30 s with slow puddling.
Then we performed the through etching of 400 nm in depth
using the deep reactive ion etching Bosch process with 27 cy-
cles, having an etch rate of 15.14 nm/cycle. The residue resist
was removed by a 20-min dip in 80 ◦C organic solvent NMP
(N-methyl-2-pyrrolidone), followed by an acetone wash, an
IPA wash, and plasma ashing. Figure 4(a) is a cross-sectional
scanning electron microscopy (SEM) image of one of the
samples at this stage, showing the acquired smooth vertically
etched walls.

We fabricated 3 mm by 3 mm photonic crystal slabs of
the trivial (PhC-t) and nontrivial (PhC-n) bulk samples. The
top view of the PhCs is presented in Figs. 4(b) and 4(c), re-
spectively, revealing sharp vertices of the triangular holes and
consistent side lengths s that were achieved in the fabrication.

FIG. 5. Normal incidence reflection spectra of PhC-t measured
by the IR microscope (a) before and (b) after growing the SiO2

capping layer (black solid line) and calculated spectra (blue dotted
line). The red arrows mark the calculated E1-mode frequencies. In
panel (a), the upper and lower limits of the reflection spectra are 1
and 0, respectively. Spectra in panel (b) are drawn in the same scale
and shifted by 1 in the vertical direction.

These sharp vertices are essential to open the band gap for
symmetric TE-like modes [7,8].

The samples were then capped with a 2.45-µm-thick SiO2

by plasma-enhanced chemical vapor deposition (PECVD)
using a combination of tetraethyl orthosilicate (TEOS) [or
Si(OC2H5)4] in the presence of oxygen (O2). We used TEOS
at a flow rate of 5 sccm, under 195 sccm of O2, and ap-
plying 50 W of radio-frequency power. We deposited SiO2

for 62 min, at a rate of 40 nm/min. The substrate holder
was maintained at a temperature of 350 ◦C throughout the
deposition. Figure 4(d) shows the cross-sectional SEM of the
SOI wafer having a 3-µm insulating layer, a silicon layer
of 0.4 µm, and a chemically grown SiO2 layer of 2.45 µm.
Figures 4(e) and 4(f) are the cross sections of PhCs buried in
SiO2 and an enlarged view, respectively. The SEM pictures
show a small number of air voids. We estimated their volume
percentage by comparing calculated and observed E1-mode
frequencies. Because their agreement is quite good for both
uncapped and capped specimens (see Fig. 5), the CVD process
was satisfactory. We estimated from the small discrepancy in
the E1-mode frequencies that the volume percentage of the air
voids was smaller than 1%.

In the same manner, we fabricated another sample that
consisted of repetitive arrays of zig-zag boundaries between
the trivial and nontrivial PhCs, which we hereafter call the
combination specimen. Each zig-zag boundary is made up of
20 unit cells of trivial and nontrivial PhCs on either side.
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IV. MEASUREMENTS

Angle-resolved reflection spectra in the mid-IR range were
measured in the same manner as in our previous studies
[35–38]. We used a Fourier-transform (FT)-IR spectrometer
(JASCO, FT/IR-6800) with a 2.0-cm−1 spectral resolution.
For the reflection measurement around the � point of the first
Brillouin zone, we used our homemade optical setup to ma-
terialize a 0.3◦ angle resolution [39], which was integrated in
the sample chamber of the FT-IR spectrometer, while we used
a commercial attachment, Seagull (Harrick Scientific), for 5◦
to 70◦ incident angles. For polarization-dependent measure-
ments, we used a nanoparticle-film polarizer. The measured
reflectance was normalized by using that of a silver mirror.

We also used an IR microscope (JASCO, IRT-5200) for the
normal-incidence reflection measurements. For the collection
of the reflected light, we attached a CaF2 singlet lens with a fo-
cusing length of 50 mm (Thorlabs, LA5763) together with an
iris with a diameter of approximately 5 mm to the microscope.
The setup made it possible to measure near-normal incidence
spectra with an angle resolution of approximately 5◦.

V. RESULTS AND DISCUSSION

A. Bulk modes

Figure 5 shows the reflection spectra of PhC-t measured
by the IR microscope at normal incidence (a) before and (b)
after growing the SiO2 capping layer (black solid line). Their
fundamental features agree very well with calculated spectra
(blue dotted line). In each panel, a big Fano-type resonance
peak originating from the E1 mode is superimposed on smooth
undulations caused by the interference of the Si and SiO2

multilayers in the SOI wafer. The resonance frequencies agree
quite well with calculated E1-mode frequencies, which are
denoted by red arrows. Their discrepancy was smaller than
0.22%. In Fig. 5, there is another small resonance around
3240 cm−1 in panel (a) and around 3010 cm−1 in panel
(b) that is caused by the E2 mode on the � point. The E2

(quadruple) mode is originally inactive to the incident light
from the normal direction [35]. However, the angle resolution
of the IR microscope was not high (≈5◦), and so eigenmodes
of small but nonzero wave vectors were weakly detected at
this frequency. The spectral features were shifted to lower fre-
quencies by growing the capping layer because of the increase
in the refractive index. The excellent agreement between the
measured and calculated spectra is evidence for the accuracy
of our calculations and sample fabrication.

To evaluate the dispersion relation around the � point, we
examined the angle-resolved reflection spectra in the �-to-K
and �-to-M directions for both s and p polarizations. Figure 6
shows the spectra of (a) PhC-t and (b) PhC-n measured by
our homemade high-resolution setup. The incident angle was
tuned from θ = −3.79◦ to 3.79◦. Each panel in Fig. 6 consists
of 27 reflection spectra measured in 0.292◦ steps. The upper
and lower limits of the lowest reflection spectrum are 1 and
0, respectively. Other spectra are drawn in the same scale and
shifted by 0.15 in the vertical direction.

In each spectrum, one or two sharp peaks of the Fano-type
resonance are superimposed on the smooth background un-
dulations. The sharp Fano-type peaks originate from the PhC

eigenmodes; therefore, their dispersion relation can be ob-
tained by plotting the resonance frequency against the lateral
wave-vector component of the incident light. Each resonance
frequency was estimated by curve fitting to the observed
spectrum with a combination of an asymmetric Lorentzian
function (Fano function) for the PhC eigenmode and a third-
order polynomial function for the background undulation.
Because the spectra for the s and p polarizations are close to
each other, we can conclude that the relevant eigenmodes are
doubly degenerate on the � point; that is, they are the E1 mode
or the E2 mode. In addition, from the fact that the smaller peak
disappears at θ = 0◦ while the bigger peak does not, we can
conclude that the former is the E2 mode and the latter is the
E1 mode according to the selection rules [35]. Because the
E2-mode (E1-mode) frequency is higher for PhC-t (PhC-n),
its band gap is a trivial (nontrivial) one [6].

The data points thus obtained are plotted (open circle and
triangle) around the � point in Fig. 2, whose frequencies
are very close to the calculated dispersion curves. In fact,
E1- and E2-mode frequencies were 2915.8 and 3009.6 cm−1

(measured) and 2882.4 and 3002.7 cm−1 (calculated) for
PhC-t, and 3029.5 and 2917.0 cm−1 (measured) and 3002.5
and 2871.2 cm−1 (calculated) for PhC-n. Their discrepancy
was smaller than 1.6% and 28.3 cm−1 on average, which is
again evidence for the accuracy of our calculation and sample
fabrication. Note that the E2-mode peak disappears on the �

point (θ = 0◦), so we estimated its frequency by curve fitting
with a quadratic function to the observed dispersion data for
nonzero wave vectors.

To examine whether these band gaps are complete gaps,
we measured reflection spectra for larger incident angles (θ =
5◦–70◦) with Seagull in the �-to-M direction, since the band
gap does not decrease but rather increases in the �-to-K direc-
tion, so a possible gap closing takes place only in the �-to-M
direction. The measured reflection spectra are presented in
Fig. 7, in which systematic shifts of Fano-type resonance
peaks are clearly observed with increasing incident angle. The
spectral width of the Fano-type resonance peaks is generally
larger than that of Fig. 6, mainly because the angle resolution
of our homemade setup is better than that of Seagull. For
the reflection spectra in Fig. 7, the resonance frequency was
estimated by the average of the local minimum and maximum
frequencies of each Fano-type peak. Their data points are also
plotted (solid circles and triangles) in Fig. 2. We can clearly
see that the photonic band gap found around the � point is
kept open all the way to the M point. Actually, the measured
frequency of the upper s-active mode on the M point was
3005.0 cm−1 for PhC-t and 3056.1 cm−1 for PhC-n. These
values are higher than the upper gap-edge frequency on the �

point; therefore, the band-gap frequency range is defined by
the E1 and E2 modes on the � point. Thus, we confirmed the
complete band gap of the symmetric TE-like modes for both
PhC-t and PhC-n.

In addition, Fig. 2 clearly shows that PhC-t and PhC-n
share a common complete band gap, which is a prerequisite
for topological edge modes, from 2917.0 to 3009.6 cm−1

experimentally and 2882.4 to 3002.5 cm−1 theoretically.
This gives us a band gap of 3.1% common to both PhC-t
and PhC-n experimentally. So, we can expect the presence
of the edge modes localized on the boundary between the
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FIG. 6. Angle-resolved reflection spectra of (a) PhC-t and (b) PhC-n. The reflection spectra were measured by our homemade high-
resolution setup from incident angles (θ ) −3.79◦ to 3.79◦. The incident beam was tilted to the �-to-K and �-to M directions with s and p
polarizations. Twenty-seven spectra were measured for different incident angles in 0.292◦ steps. In each panel, the upper and lower limits of
the lowest reflection spectrum are 1 and 0, respectively. Other spectra are drawn in the same scale and shifted by 0.15 in the vertical direction.

two PhCs by the bulk-edge correspondence [6] as shown in
Fig. 3.

B. Edge modes

Figure 8 shows the reflection spectra of the combination
specimen for p and s polarizations. In each panel, two distinct
Fano-type resonance peaks are observed around 2900 and
3050 cm−1, which originate from the E1 modes of PhC-t
and PhC-n, respectively. In each spectrum, one small dip is
also observed in the mid-gap frequency range in addition
to a few dips in the lower frequency side (�2900 cm−1)
of the common band gap. The former originates from the
lower (p polarization) and upper (s polarization) branches
of the edge modes, whereas the latter originate from dis-
cretized bulk modes due to the periodic arrangements of
PhC-t and PhC-n of 20 unit cells. The latter feature is not
so distinct on the higher frequency side of the common band
gap. Because the mid-gap dips for the s polarization were
shallow and detectable only for small incident angles (θ ), we
plotted such reflection spectra for which the mid-gap dips
were relatively distinct. The reason for the shallower dips
for the s polarization is not clear at present, although they

may be caused by an interference between the edge-mode dip
and the higher E1-mode dip, the latter of which has a full
width at half maximum larger than that of the lower E1-mode
dip.

To confirm the edge-mode dispersion relation, we extracted
the eigenmode frequencies from the observed spectra by the
following curve-fitting procedure (see Fig. 9). Because the
reflection dips of the mid-gap modes were shallow, we first
took the difference between the reflection spectrum of the
combination specimen and the averaged spectrum of bulk
PhC-t and PhC-n. By this procedure, we could emphasize
the mid-gap mode to some extent, although we could not
completely eliminate the E1-mode dips or background undu-
lations because the bulk states in the combination specimen
are not exactly the same as those in PhC-t or PhC-n. Then,
we performed the curve fitting with a combination of three
functions, that is, a third-order polynomial for the background
undulation and two asymmetric Lorentzian functions (Fano
functions) for E1-mode and mid-gap-mode dips. For s (p)
polarization, the upper (lower) E1 mode around 3050 cm−1

(2900 cm−1) was taken into consideration in the curve fitting,
since we anticipated that the mid-gap modes approach the up-
per (lower) E1-mode frequency with increasing θ . The result
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FIG. 7. Angle-resolved reflection spectra measured in the �-to-M direction for PhC-t [panels (a) and (b)] and PhC-n [panels (c) and (d)]
for both s and p polarizations by the commercial variable-angle reflection accessory, Seagull. Each panel consists of 14 spectra measured for
different incident angles (θ ) in 5◦ steps. The upper and lower limits of the lowest reflection spectrum in each panel are 1 and 0, respectively.
Other spectra are drawn in the same scale and shifted by 0.15 in the vertical direction.

of the curve fitting for s polarization and θ = 0◦ is presented
in Fig. 9 as an example.

On the other hand, the E1-mode frequencies of the
edge-mode specimen or, more exactly, the gap-edge-mode
frequencies were determined by curve fitting to the original
reflection spectra because their spectra were large enough and
the subtraction of the averaged spectra of PhC-t and PhC-n
may result in a large spectral shift.

Now, we plotted the resonance frequencies of the p- and
s-active mid-gap modes thus obtained against the lateral com-
ponent of the incident wave vector in Fig. 10. In this figure,
two gap-edge bulk-mode frequencies found in Fig. 8 are also
plotted. Because there was a 28.3-cm−1 difference between
calculated and observed E1- and E2-mode frequencies on av-
erage for PhC-t and PhC-n due to numerical and fabrication
errors as shown in Sec. V A, this amount was subtracted from
the observed frequencies. Then, Fig. 10 shows a good agree-
ment between the observed and calculated dispersion relations
for both edge modes and gap-edge modes. The discrepancy
between the observed and calculated frequencies was smaller
than 0.9% for the former and 2.0% for the latter. In addition,
we should note that the lower (upper) branch of the edge
modes is linearly polarized in the x (y) direction [p (s) po-
larized] in the vicinity of the � point due to a 1:1 mixture
of right and left circular polarizations, which was confirmed
by numerical analysis of their far-field pattern. Therefore, the
above observation that the lower (upper) branch was p-active
(s-active) is also consistent with our numerical calculation.

We make a remark here. Imperfections like air voids may
cause the backscattering and/or additional diffractions of the
edge modes. Although their precise evaluation is beyond the

scope of the present study, we may estimate them by the
spectral width of the edge-mode reflection dips. The ob-
served spectral widths were larger than the calculated ones by
approximately 50%, which implies the increase in the scatter-
ing and/or diffraction channels caused by the imperfections.
However, the imperfections may include not only the defects
but also the small number (20) of unit cells in the alignment
direction of the trivial and nontrivial PhCs. So, the rigorous
examination of this matter remains as a future problem.

VI. CONCLUSION

We presented a design of symmetric PhC slabs to mate-
rialize a complete photonic band gap for symmetric TE-like
modes common to topologically trivial and nontrivial PhCs
and revealed the presence of the topological edge modes on
the boundary between the two PhCs. We successfully fabri-
cated those PhC slabs by EB lithography of the top Si layer of
SOI wafers and successive PECVD of a SiO2 capping layer.
The formation of the complete common band gap and the
edge-mode dispersion were detected by angle-resolved reflec-
tion spectroscopy in the mid-IR range, which agreed well with
numerical calculations. The common band gap was 3.1% wide
experimentally and 4.1% wide theoretically, which is com-
parative to PhC membranes previously reported, although the
refractive-index contrast of our specimens was considerably
smaller than that of the PhC membranes.

ACKNOWLEDGMENTS

This work was supported by the Innovative Science and
Technology Initiative for Security, Grant No. JPJ004596,

043507-7



AFSHAN BEGUM et al. PHYSICAL REVIEW A 107, 043507 (2023)

FIG. 8. Angle-resolved reflection spectra for the combination
specimen of PhC-t and PhC-n of 20 unit cells each. The incident
beam was tilted in the x direction (along the boundary between the
two PhCs). For p polarization in the left panel, 27 spectra were mea-
sured for different incident angles in 0.292◦ steps from θ = −3.79◦

to 3.79◦. The upper and lower limits of the lowest reflection spectrum
are 1 and 0, respectively. Other spectra are drawn in the same scale
and shifted by 0.1 in the vertical direction. For s polarization in the
right panel, 13 spectra were measured from θ = −2.045◦ to 2.045◦

in 0.292◦ steps. The spectra were shifted by the same amount for
each incident angle as in the left panel.
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APPENDIX

Because PhC waveguide modes are confined in and around
the top Si layer of SOI wafers, the influence of outer regions,
that is, the Si substrate below the PhC and the air above
the PhC, is negligible when the SiO2 cladding and capping
layers are sufficiently thick. To demonstrate this property, we
examined the influence of the Si substrate as an example. For
this purpose, we calculated the dispersion relation of the Si
planar waveguide in the geometry of Figs. 11(a) and 11(b) to
show that their dispersion relations are practically the same
when the thickness of the SiO2 cladding layer is 2 µm or
larger.

In what follows, we assume that the air and SiO2 layers in
Fig. 11(a) and the air layer and the Si substrate in Fig. 11(b)
are infinitely thick for simplicity. For the SiO2 cladding layer
in Fig. 11(b), we assume that it is 2 µm thick.

For the three-layer model, the secular equation for the TE
polarization is given by

kz(γ1 + γ3) cos kzd2 − (
k2

z − γ1γ3
)

sin kzd2 = 0, (A1)

FIG. 9. An example of the curve-fitting procedure (s polariza-
tion, θ = 0◦). (a) Blue line: Original reflection spectrum of the
combination specimen. Black line: Difference spectrum after sub-
tracting the average of bulk PhC-t and PhC-n spectra at θ = 0◦. Red
line: Result of the curve fitting. Arrows on the horizontal axis denote
the resonance frequency obtained by the curve fitting. (b) Magnified
view of the fitted curve, and (c)–(e) its three components.

which was obtained from the Maxwell wave equation and the
natural boundary conditions. In Eq. (A1), d2 is the thickness
of the Si layer. γ1 and γ3 denote the spatial decay rates in the z
direction in the air and SiO2 layers, respectively, and kz is the
propagation constant in the z direction in the Si layer; these
values are given as follows:

γ1 =
√

k2 − ε1ω2

c2
, (A2)

kz =
√

ε2ω2

c2
− k2, (A3)

γ3 =
√

k2 − ε3ω2

c2
, (A4)

where ω is the eigenfrequency of the waveguide mode, k is its
wave number in the x-y plane, and εi (i = 1, 2, and 3) is the
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FIG. 10. Enlarged view of the edge-mode dispersion relation
(maroon solid line) and the frequency range of the bulk modes
(gray color) [Fig. 3(b)] together with mid-gap-mode frequencies (red
closed circles are for p-active modes and blue closed triangles are for
s-active modes) and gap-edge-mode frequencies (open circles) found
in Fig. 8.

dielectric constant of each layer. We solved Eq. (A1) by the
bisection method, assuming all εi were real.

On the other hand, we dealt with the same problem in the
four-layer model in Fig. 11(b) by assuming a finite thickness
for the SiO2 cladding layer. In this case, the secular equation is
given by

f (ω, k) = (γ3 + γ4)e2γ3d3
{
(γ1 + γ2)(γ2 + γ3)e2γ2d2

+ (γ1 − γ2)(γ2 − γ3)
}

+ (γ3 − γ4)
{
(γ1 + γ2)(γ2 − γ3)e2γ2d2

+ (γ1 − γ2)(γ2 + γ3)
}

= 0. (A5)

In Eq. (A5),

γ2 =
√

k2 − ε2ω2

c2
, (A6)

γ4 =
√

k2 − ε4ω2

c2
, (A7)

where ε4 and γ4 are the dielectric constant and the decay rate
in the z direction of the Si substrate. d3 denotes the thickness
of the SiO2 cladding layer. Equation (A5) was also derived
from the Maxwell wave equation and the natural boundary
conditions. Note that all waveguide modes are virtual modes

FIG. 11. (a) Three-layer and (b) four-layer models for the calcu-
lation of the dispersion relation of the Si planar waveguide.

FIG. 12. Comparison of the three- and four-layer models. Black
lines: Dispersion relation of TE modes calculated by the three-
layer model. Blue dots: Eigenfrequency calculated by the four-layer
model. The horizontal and vertical axes denote the dimensionless
wave vector and the frequency normalized with the light velocity
c and a length unit a = 1 µm. εSi = 11.74, εSiO2 = 2.074, d2 =
400 nm, and d3 = 2.0 µm. Note that the eigenfrequency for the
four-layer model is complex and its real part is plotted.

for the four-layer model because they can escape to the Si
substrate across the SiO2 layer, although the escape rate may
be low. This feature is represented by imaginary γ2 and γ4, and
the eigenfrequency obtained by the four-layer model is gener-
ally complex. So, the bisection method is not applicable. We
solved Eq. (A5) by a complex contour integral as described
below.

When we derive the dispersion relation of the planar
waveguide modes, we first specify the value of k and calculate
the corresponding ω. When the eigenvalue is nondegenerate,
which is the usual case for the planar waveguide dispersion,
we can find the solution of Eq. (A5), ωk , by the following
contour integral in the complex ω plane based on the residue
theorem:

ωk = 1

2π i

∮
C

dω
ω f ′(ω, k)

f (ω, k)
, (A8)

where prime means differentiation with respect to ω and con-
tour C encloses ωk in the complex ω plane. This equation can
be verified by the Taylor expansion of f (ω, k) around ωk . We
need the first guess of ωk to set the contour, for which the
solution of the three-layer model can be used, for example.
Once the first solution has been obtained, we may gradually
change k to calculate the dispersion by setting contour C to
enclose the latest solution.

The dispersion curves calculated by both three-layer and
four-layer models are shown in Fig. 12, where the former
results are represented by black lines and the latter results are
denoted by blue dots. Their agreement is pretty good, which
means that the influence of the Si substrate on the dispersion
relation is negligible when the SiO2 cladding layer is 2 µm or
thicker.

043507-9



AFSHAN BEGUM et al. PHYSICAL REVIEW A 107, 043507 (2023)

[1] C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in
Graphene, Phys. Rev. Lett. 95, 226801 (2005).

[2] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Quantum spin
Hall effect and topological phase transition in HgTe quantum
wells, Science 314, 1757 (2006).

[3] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and
M. Z. Hasan, A topological Dirac insulator in a quantum spin
Hall phase, Nature (London) 452, 970 (2008).

[4] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[5] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[6] L. H. Wu and X. Hu, Scheme for Achieving a Topological
Photonic Crystal by Using Dielectric Material, Phys. Rev. Lett.
114, 223901 (2015).

[7] S. Barik, A. Karasahin, C. Flower, T. Cai, H. Miyake, W.
DeGottardi, M. Hafezi, and E. Waks, A topological quantum
optics interface, Science 359, 666 (2018).

[8] S. Barik, H. Miyake, W. DeGottardi, E. Waks, and M. Hafezi,
Two-dimensionally confined topological edge states in photonic
crystals, New J. Phys. 18, 113013 (2016).

[9] N. Parappurath, F. Alpeggiani, L. Kuipers, and E. Verhagen,
Direct observation of topological edge states in silicon pho-
tonic crystals: Spin, dispersion, and chiral routing, Sci. Adv. 6,
eaaw4137 (2020).

[10] A. M. Dubrovkin, U. Chattopadhyay, B. Qiang, O. Buchnev,
Q. J. Wang, Y. Chong, and N. I. Zheludev, Near-field mapping
of the edge mode of a topological valley slab waveguide at λ =
1.55 µm, Appl. Phys. Lett. 116, 191105 (2020).

[11] S. Arora, T. Bauer, R. Barczyk, E. Verhagen, and L. Kuipers,
Direct quantification of topological protection in symmetry-
protected photonic edge states at telecom wavelengths, Light:
Sci. Appl. 10, 9 (2021).

[12] S. Shamim, W. Beugeling, P. Shekhar, K. Bendias, L. Lunczer,
J. Kleinlein, H. Buhmann, and L. W. Molenkamp, Quantized
spin Hall conductance in a magnetically doped two-dimensional
topological insulator, Nat. Commun. 12, 3193 (2021).

[13] C. Liu, D. Culcer, Z. Wang, M. T. Edmonds, and M. S. Fuhrer,
Helical edge transport in millimeter-scale thin films of Na3B,
Nano Lett. 20, 6306 (2020).

[14] J. A. Vaitkus, C. S. Ho, and J. H. Cole, Effect of magnetic
impurity scattering on transport in topological insulator, Phys.
Rev. B 106, 115420 (2022).

[15] M. McGinley and N. R. Cooper, Elastic backscattering of quan-
tum spin Hall edge modes from Coulomb interactions with
nonmagnetic impurities, Phys. Rev. B 103, 235164 (2021).

[16] B. Orazbayev and R. Fleury, Quantitative robustness analysis
of topological edge modes in C6 and valley-Hall metamaterial
waveguides, Nanophotonics 8, 1433 (2019).

[17] B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C.
Felser, M. I. Aroyo, and B. A. Bernevig, Topological quantum
chemistry, Nature (London) 547, 298 (2017).

[18] L. Elcoro, B. J. Wieder, Z. Song, Y. Xu, B. Bradlyn, and
B. A. Bernevig, Magnetic topological quantum chemistry,
Nat. Commun. 12, 5965 (2021).
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