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Transverse modes and beam spatial quality in microchip lasers
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We analyze the transverse modes in flat-flat mirror microchip-laser resonators, which occur due to the gain
guiding and the thermal lensing. We rigorously calculate the transverse-mode functions, their eigenfrequencies,
and their generation-threshold conditions. We apply a plausible assumption that the mode amplitudes in multi-
transverse-mode emission are proportional to the individual gain factors of each mode, and we estimate the
beam quality factor for the multi-transverse-mode emission. This simple and intuitive approach leads to the
beam quality estimations corresponding well to the experimental measurements performed here.
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I. INTRODUCTION

The well-established classical optical resonator theory ex-
plicitly defines the transverse modes arising in resonators
built from curved mirrors. In that case, the solutions satisfy
the paraxial approximation of the scalar wave equation and
take the shape of the Gauss-Hermite or Gauss-Laguerre func-
tion. These mode solutions, mathematically speaking, are the
eigenfunctions of the resonator wave equations and, physi-
cally speaking, reproduce themselves after each round trip
in a resonator (see, e.g., [1,2] for a review). The classical
theory considers an idealized resonator operating close to the
generation threshold without gain-saturation and gain-guiding
effects. The transverse light dynamics in such resonators is
analogous to the dynamics of a wave function in a parabolic
potential well (the solution of the Schrödinger equation for
a quantum harmonic oscillator) as described in textbooks of
quantum mechanics.

In many relevant cases, particularly for large pump powers,
i.e., highly nonlinear regimes, the transverse-mode descrip-
tion becomes very approximate or even ceases to work [3–5].
The investigation of transverse modes in the nonlinear regime
is still the subject of current research [6,7]. For some spe-
cial lasers, like microchip lasers, the classical mode theory
is barely applicable from the very beginning because their
resonators consist of plano mirrors (see Fig. 1). The parabolic
trapping potential is then absent, and the electromagnetic ra-
diation is confined in the transverse space of the resonator
by other mechanisms, predominantly by the gain guiding.
Thermal lensing also appears to play an important role in
confining the radiation in a microchip laser under strong pump
power.

The wave-equation solutions for nonspherical mirror res-
onators were introduced by Siegman [8] even before the
concept of a microchip laser was established. After the ex-
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perimental demonstration of the effectiveness of microchip
lasers [9], a dedicated theoretical investigation of end-pumped
solid-state microchip lasers began [10]. In order to reduce
the problem complexity, the transverse pumping profile was
approximated as an infinite parabola, which authors himself
described as unphysical. Further investigations [11–14] con-
sidered transverse-mode behavior with localized gain profiles
and treated the problem only in one dimension. The signifi-
cant works in [15,16] combined the theoretical investigation
with experiment, in which the gain and index profiles were
approximated as Gaussian and parabolic, respectively. The
latter approach does not help to find the solutions analytically;
eigenstates have to be calculated purely numerically. Also,
the thermally induced lens modulates the phase logarithmi-
cally outside the pumping region [17], and the parabolical
approximation is rather ideally suited for a resonator with
curved output couplers. It is worth mentioning that in addition
to the solid-state microchip, vertical-cavity surface-emitting
lasers can have a plano-plano mirror configuration. The the-
oretical investigation of such lasers [18–20] calculated the
gain profile numerically from the carrier-diffusion equation.
Then the transversal modes were calculated numerically as in

FIG. 1. Schematic drawing of an end-pumped microchip laser
with the guiding section induced by the pump beam.
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a solid-state microchip [15]. However, the severest drawback
of the mentioned investigations [10–16,18–20] is the failure
to provide a plausible picture of the multimode emission of
such a laser. Rigorous nonlinear calculations are very com-
plicated even in the single-longitudinal-mode case (so-called
mean-field approximation; see, for instance, [4]) and are
hardly possible in full multi-transverse-, multi-longitudinal-
mode description. Therefore, the absence of a simple method
to calculate the beam-radiation profiles forces laser engi-
neers to use some intuitive assumptions about the number of
modes supported by the resonator, relating it to the Fresnel
number.

This paper aims to fill the gap by providing an an-
alytical and numerical treatment of transverse modes in
microchip lasers in two dimensions. Using the cylindrical
(flat-top) pumping-profile approach, we provide a simple the-
ory of the gain-guided and thermal-lens-supported modes
in such plano-plano mirror resonators. We rigorously calcu-
late the transverse-mode functions, their eigenfrequencies and
generation-threshold conditions, and the beam quality factor
M2. All this allows us to estimate the multimode beam (com-
posite) M2 dependence on pumping strength. Importantly, we
apply the assumption of the multi-transverse-mode case con-
sidering that the mode amplitudes in multi-transverse-mode
emission are proportional to the individual gain of each mode.
In this way, we estimate the beam quality factors in the
multi-transverse-mode emission depending on the pumping
strength. This simple and intuitive approach leads to the beam
quality estimations corresponding well to the experimental
measurements performed and reported here.

Finally, we note that, usually, reported microchip lasers are
made of short resonators with plano-plano mirrors [9–12,21].
However, several reports refer to microchip lasers with
short crystals placed in cavities with curved output cou-
plers [15,16,22], with side pumping and moderate cavity
length [23]. Such resonators can be dominated by classical
phase modulation, where the pumping profile overlaps the
classical Gauss-Laguerre modes. For such cases, the gain
guiding and thermal lens are only perturbations of classical
theories [1,2], and our treatment provided here is not very
useful.

II. LINEAR FIELD EQUATION IN TWO DIMENSIONS

We consider a simplified model for the laser resonator,
where the gain-guiding and thermal-lensing effects are uni-
formly distributed over the whole crystal length. In this
case, the linear evolution equation for the slowly varying
electric-field envelope A(r, φ, t ) in two transversal dimensions
reads

∂A

∂t
= −ρA + id∇A + iσ (r)A + γ (r)A. (1)

Here time t is normalized to the cavity round-trip time. The
coefficient ρ signifies the total losses per one resonator round
trip, with diffraction coefficient d = L/k, where L and k are
the resonator length and wave number, respectively. Further,
we consider the axisymmetrical case, where the thermal σ (r)
and gain γ (r) functions depend only on the radius r.

Equation (1) contains no gain-saturation term, which
would allow evaluating the nonlinear dynamics of laser ra-
diation adequately [4]. With this term included, the problem
is not universally solvable even in the simplest single-
longitudinal-mode approximation. We consider the linear,
simplified, nonsaturated laser light dynamics (1), which al-
lows us to calculate exponentially growing and decaying
eigensolutions, the transverse modes of the resonator. The
calculated eigenvalues allow us to define the threshold and
beam quality M2 of the multimode beam, which consists of
individual transverse modes with unequal weights, depending
on their growth rates.

We solve Eq. (1) in the polar coordinate system using
the usual separation of radial and angular variables in the
following form:

A(r, φ) = Ale
λtv(r)eiφl , (2)

where l stands for the orbital number l = 0,±1,±2, . . . and
λ is the separation constant. Substituting (2) into (1), we get

r2 ∂2v

∂r2
+ r

∂v

∂r
+ r2v

(
iσ (r) + γ (r) − λ − ρ

id

)
− l2v = 0.

(3)

The solution v(r) depends on thermal lens and gain functions
σ (r) and γ (r). In order to get the analytical form of v(r) we
approximate σ (r) and γ (r) by adequate functions. Specif-
ically, for the end-pumped microchip laser, due to strong
localization and the multimode character of the laser diode
pump, the gain profile is approximate to a flat top. The index
profile is a solution of the heat equation and depends on the
pumping profile. In our case, the index profile is parabolic
inside the pumped region and logarithmic outside of it [17].
In order to facilitate the semianalytical treatment, we go with
the assumption that the index and gain profiles are flat-top
functions:

σ (r) =
{
ρ0 if r < R,

0 if r > R,
γ (r) =

{
G0 if r < R,

0 if r > R.
(4)

The step-index profile may seem counterintuitive because the
ideal lens contains parabolic phase modulation. Indeed, the
parabolic approximation is ideal for the internal pumping
region but undergoes rising deviations moving away from it.
The step-index approximation should be a reasonable compro-
mise inside and outside the pumping region. The calculated
modes and modal eigenvalues are similar to the ones with the
parabolic approximation. However, due to the infinite endings,
the parabolic approximation predicts too many modes.

One should note that after introducing the thermal lens and
gain cylindrical functions (4) into the linear field equation (3),
it becomes analogical to the Schrödinger wave equation with
a finite and complex-valued potential well. The separation
constant λ also becomes a complex number, and the sign of its
real part Re(λ) defines whether the appropriate solution of (2)
will grow or decrease. The laser modes are above generation
threshold if Re(λ) > 0.

Normalizing the radial coordinate r to the radius of the gain
profile as ξ = r/R, from (4) and (3) we get the two Bessel
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differential equations of the form

ξ 2 ∂2v

∂ξ 2
+ ξ

∂v

∂ξ
+ ξ 2vα2 − l2v = 0 if ξ < 1,

ξ 2 ∂2v

∂ξ 2
+ ξ

∂v

∂ξ
− ξ 2vβ2 − l2v = 0 if ξ > 1, (5)

where complex coefficients α and β are given by

α2 = R2 iρ0 + G0 − λ − ρ

id
, β2 = R2 λ + ρ

id
. (6)

An additional complex-valued coefficient ζ characterizes the
complex potential-well depth:

ζ 2 = R2 iρ0 + G0

id
. (7)

The three coefficients are interrelated by the equality

ζ 2 = α2 + β2. (8)

The solution of (5) should be finite inside the cylinder (ξ <

1) and tend to zero if ξ → ∞ outside the cylinder (ξ > 1).
The proper solutions are the Bessel function of the first kind
Jl (αξ ) and the modified Bessel function of the second kind
Kl (βξ ), respectively. Both Bessel functions should be equal
at ξ = 1:

v(ξ ) = Jl (αξ ) if ξ < 1,

v(ξ ) = Jl (α)

Kl (β )
Kl (βξ ) if ξ > 1. (9)

The derivatives of v(ξ ) at ξ = 1 should be equal as well.
We can use the recurrence relation [24] to calculate the
derivatives:

J ′
l (αξ ) = αJl−1(αξ ) − l

ξ
Jl (αξ ) if ξ < 1,

K ′
l (βξ ) = −βKl−1(βξ ) − l

ξ
Kl (βξ ) if ξ > 1. (10)

Combining (9) and (10), we obtain the transcendental
equation relating the α and β eigenvalues:

αJl−1(α)

Jl (α)
= −βKl−1(β )

Kl (β )
. (11)

Eigenvalues α and β in (11) are complex valued, and they can
be found numerically.

III. EIGENVALUES, MODE SHAPES, AND BEAM
QUALITY FACTORS M2

We calculate the complex eigenvalue pairs (ζ , β ) numer-
ically from (11), the transcendental equation, expressing α

through β and ζ in (8). Due to the orbital number l in (11),
one eigenvalue of ζ can correspond to several eigenvalues of
β. Furthermore, due to the Bessel oscillatory behavior, each
ζ can correspond to several β with the same l . Thus, each
eigenvalue β is characterized by two mode numbers (l, m).
The physical meaning of the potential depth |ζ | is related
to pumping power. β has no clear physical meaning, while
Re(iβ2) is proportional to the growth factor of each single
mode λre + ρ. On the other hand, Im(iβ2) is proportional to
the frequency of each single mode λim.

We neglect eigenvalues with no physical meaning. The
modified Bessel function of the second kind Kl (ξβ ) tends
to zero as ξ → ∞ only if |arg(β )| < π

2 [24]. On the other

hand, β = R
√

λ+ρ

id , where R, ρ, and d are real and positive.
The laser generates only if Re(λ) > 0; therefore, the β argu-
ment is restricted to −π

2 < arg(β ) < 0 and π
2 < arg(β ) < π .

Combining these results with the previous restriction, we can
finally state that β is valid only if −π

2 < arg(β ) < 0.

The potential-well depth ζ = R
√

ρ0

d − i G0
d depends on the

real-valued positive G0 and the real-valued (but not neces-
sarily positive) ρ0. Therefore, the phase of ζ is restricted to
areas of −π

2 < arg(ζ ) < 0 and π
2 < arg(ζ ) < π . However,

only the area of −π
2 < arg(ζ ) < 0 is relevant because the

two areas overlap using the square of ζ in Eq. (8). One can
distinguish several important cases determined by the phase
of the potential depth ζ :

(i) If ρ0 = 0, then arg(ζ ) = −π
4 is a pure-gain-guiding

case, where no phase modulation (lens) is present.
(ii) If ρ0 > 0, then −π

4 < arg(ζ ) < 0. This case is a mix of
gain guiding and focusing lens (approximated as a cylinder).
The focusing lens starts to dominate as the phase approaches
zero.

(iii) If ρ0 < 0, then −π
2 < arg(ζ ) < −π

4 . This case corre-
sponds to a mix of a defocusing lens with gain guiding. The
defocusing-lens effect gets stronger as the phase approaches
−π

2 .
In order to grasp the dynamics, we treat special

cases when arg(ζ ) = −π
4 ,−π

8 ,− 3π
8 , corresponding pure-

gain-guiding [case (i)], the focusing thermal lens with gain
guiding [case (ii)], and the defocusing lens with gain guid-
ing [case (iii)]. The eigenvalues (ζ , β ) for all three cases
were calculated numerically, and the dependences of their
real and imaginary parts (corresponding to the growth factor
and frequency of every single mode) on the potential depth
are shown in Fig. 2. We have calculated the first 10 modes
(l, m) beyond the threshold. The first column in Fig. 2 rep-
resents a pure-gain-guiding case, where no lens is present.
Each mode starts to exist when Re(iβ2) > 0. Increasing the
potential depth (or pump power) from zero to |ζ | ≈ 1, 5, the
laser starts to generate the fundamental mode (0,0). Increas-
ing the pump further, the growth rate Re(iβ2) increases, and
the frequency decreases in the fundamental mode, while new
modes (1, 0), (2, 0), (0, 1), (3, 0), (1, 1), (4, 0), (2, 1), (0, 2),
and (5,0) start to emerge one after the other. More and more
modes can potentially coexist together. Each new mode has a
lower growth ratio Re(iβ2) and higher frequency Im(−iβ2)
than the one before. Similar to the first column in Fig. 2,
the second and third columns represent cases where the
thermal lens is focusing and defocusing (G0 = ρ0, G0 =
−ρ0, respectively). The tendencies are similar to those in
the pure-gain-guiding case. The focusing lens reduces the
generation threshold of the first mode, while the defocus-
ing lens increases it (|ζ | ≈ 1 and |ζ | ≈ 2, respectively). The
frequency of every single mode tends to increase and de-
crease for focusing and defocusing cases while increasing the
pumping.

We depict the mode shape and the dependence of its beam
quality factor M2 on the potential-well depth |ζ | in Fig. 3. In
the second row of Fig. 3 we represent the potential-well-depth
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FIG. 2. The gain Re(iβ2) and frequency Im(−iβ2) dependences of the individual modes on the potential-well depth |ζ |. In the columns
three cases are shown: (a) and (d) without a thermal lens ρ0 = 0, (b) and (e) with a focusing lens ρ0 = G0, and (c) and (f) with a defocusing
lens ρ0 = −G0.

value |ζ | by a red dashed vertical line, and the ordinate axis
scales only it. Meanwhile, the mode amplitudes are scaled to
a fixed numerical value and are stacked vertically according
to the sequence in which they come into existence, deepen-
ing the potential value of |ζ |. Each value of |ζ | supports a
unique set of transverse modes, which differ by amplitude and
phase distribution. The abscissa axis scale is valid for both the
potential well and mode amplitude, where the potential-well
radius coincides with the pumping-cylinder radius. Here the
corresponding eigenvalue pair (α, β ) calculated from (11)
represents the radial mode shape in (9). The radial part should
be inserted into (2), so both the angular and radial parts can
be represented. Once we know the electric-field distribution,
we can apply the methodology provided in the Appendix and
calculate the beam quality factor M2.

In the first column of Fig. 3, we can see the beam quality
factor M2 and mode-shape dependence on the potential depth
|ζ | because no lens is present, only gain. The mode shape
in Fig. 3(d) is represented by the normalized electric-field
absolute value |A| and phase. The phase value is indicated by
color in the radial part. We can see that the higher potential
depth |ζ | means a higher quantity of modes localized in the
well. If we increase the pump up to |ζ | ≈ 1, 5, the laser starts
to generate the fundamental mode (0,0). The mode is spread

widely, and its beam quality factor M2 is high. With a further
increase of the potential depth, the fundamental mode starts
to localize better, and its beam quality factor M2 reduces
significantly, while its endings become steep. The higher
modes (1, 0), (2, 0), (0, 1), (3, 0), (1, 1), (4, 0), (2, 1), (0, 2),
and (5,0) follow the same pattern; they localize from infinity
with high M2, and their endings become steep as the pump
increases.

Very similar to the first column in Fig 3, the second and
third columns represent cases where the thermal lens is fo-
cusing and defocusing (G0 = ρ0, G0 = −ρ0, respectively).
We see very similar tendencies as in the pure-gain-guiding
case. In the case of the focusing lens, the mode endings are
of weaker phase modulation than in the pure-gain-guiding
case. Also, the modes are better localized at the same |ζ |. The
defocusing lens brings more phase modulation to the endings.
The focusing lens reduces the generation threshold of the first
mode.

IV. COMPOSITE BEAM QUALITY FACTOR M2

In the previous section, we gave estimates of the depen-
dence of the beam quality factor M2 on the possible depth
of |ζ | for each transverse mode (l, m). Here we calculate
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FIG. 3. The beam quality factors and beam shapes of each individual mode depending on potential-well depth |ζ |. The mode shape is
represented by the normalized electrical-field absolute value |A| and phase, which is indicated by color in the range (−π ; π ). The red dashed
lines in (d)–(f) signify the potential well |ζ | in which the modes are localized, and the ordinate axis scales only it. Meanwhile, the mode
amplitudes are scaled to a fixed numerical value and are stacked vertically according to the sequence in which they come into existence while
deepening the potential |ζ |. The abscissa axis scale is valid for both the potential well and mode amplitude, where the potential-well radius
coincides with the pumping-cylinder radius. The plots in three columns represent the same cases as in Fig. 2.

the beam’s composite beam quality factor M2, consisting of
multiple modes overlapping each other. We assume that our
laser is of class B [25] and modes compete very weakly with
each other. This assumption is only empirical and should also
be verified with nonlinear analysis, which is beyond the scope
of this paper. Following this assumption, we introduce an
equation that could help with the preliminary estimate of the
composite beam quality factor:

M2 =
∑∞

l,m M2
lm(λre)lm∑∞

l,m (λre)lm
, (12)

where only the modes with positive (λre)lm are considered.
We have summed up the beam quality factor of every single
mode M2

lm multiplied by its growth ratio (λre)lm and normal-
ized the result to the sum of the growth ratios. Equation (12)
estimates the composite M2 dependence on pumping for dif-
ferent resonator lengths and spots. Note that the eigenvalues
of (ζ , Re(iβ2)) (already calculated in the previous section for
three beam-guiding cases) along with relations (6) and (7) can
be used to find growth rates (λre)lm and beam quality factors
M2

lm for every single mode.

In our experiment, we use a microchip laser with two
different resonator round-trip lengths: L1 = 5 mm and L2 =
15 mm. Other parameters are as follows: pumping spot ra-
dius R = 140 µm, laser wavelength of 1064 µm, Nd:yttrium
aluminum garnet (YAG) crystal length of 2.3 mm (the same
crystal is used in both cavities), refractive index n = 1.81,
and losses per round trip ρ = 0.0825; the diffraction coef-
ficient depends on the resonator round-trip length, so d1 =
4.67 × 10−10 m2, d2 = 2.16 × 10−9 m2. We estimate that in
our experiments, the thermal-lens-induced phase modulation
is negligible compared with gain per round trip (ρ0 � G0) and
assume these are pure-gain-guiding cases. The λre and gain G0

values calculated for this case are shown in the first column
of Fig. 4 for both resonator lengths. The beam quality factor
M2 of every single mode is also recalculated analogically, and
the results are shown in the middle column of Fig. 4. Here
the dashed lines represent the states where no generation is
present due to the negative growth factor λre < 0 of this par-
ticular transverse mode. The red squares represent the point
where the mode starts to exist physically.

Now, considering the pumping power P is directly pro-
portional to gain G0, we normalize both parameters to their
threshold values. This assumption allows us to relate our
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FIG. 4. (a) and (d) Growth ratio λre, (b) and (e) single-mode beam quality factor, and (c) and (f) composite beam quality factor dependences
on gain G0 and pump power P/Pth over the generation threshold Pth. The first and second rows correspond to different resonator round-trip
lengths, L = 5 mm and L = 15 mm, respectively. The gray curves in (c) and (f) represent the theoretically estimated M2, while the black stars
with error bars show experimentally measured values. The dashed lines in (b) and (e) represent the states where no generation is present due
to the negative growth factor λre < 0 of this particular transverse mode. The red squares represent the point where the mode starts physically
to exist.

experiment to theory. Calculated from (12), the dependence
of the composite beam quality factor M2 on pump power
is provided in the third column of Fig. 4 as the gray curve
for both resonator lengths. Measured according to Interna-
tional Organization for Standardization Standard 11146 [26],
the beam quality factor M2 is depicted here as black stars
with error bars. The shorter-cavity experimental data find
better agreement with the theoretical curve than the data for
the longer one. One can recognize the slight vertical shift
and undulations. In our understanding, the longer resonator
generates modes of weaker localization and higher beam
quality factors at the threshold. Weakly localized modes con-
tain higher M2 factors and make a rapid contribution to the
composite beam quality factor, increasing the pump power.
Accordingly, the major undulations are observed in the longer
cavity’s theoretical and experimental curves. On the other
hand, less localized modes are more sensitive to crystal aper-
ture, which is not included in the theoretical model. That could
contribute to the vertical offset. It is worth mentioning that
the mean-field approximation fits the shorter cavities better.
Due to the large contribution of free space in the longer cavity

(4.6-mm Nd:YAG crystal and 10.4-mm free space), the gain is
distributed very unevenly along the cavity axis, and this is not
included in our theoretical model. Despite the discrepancies
noted, the theoretical and experimental results overlap ade-
quately and allow us to claim that the method is suitable for
a rough estimation of laser beam quality factor M2 at various
pump powers in a microchip laser.

V. CONCLUSIONS

In conclusion, we have investigated the influence of several
physical effects and parameters on the beam quality of the
flat-flat mirror microchip laser analytically. For this reason,
the two-dimensional linear field equation was introduced us-
ing cylindric symmetry and a mean-field approximation. The
physical effects accounting for this analysis of laser beam
formation were the gain, thermal lens, diffraction, and losses.
In this case, the equation becomes similar to the Schrödinger
wave equation with a finite potential barrier, which is complex
in our case. We found the eigenvalues and eigenfunctions
(corresponding to mode shapes) for three specific cases and
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evaluated beam quality factors M2 and growth ratios λre for
each separate mode. For simplicity, we introduced an equa-
tion that allows a rough estimation of the composite (multiple
modes) beam quality factor M2, disregarding the competition
of generated modes. Calculated M2 values were compared to
experimental ones, and satisfactory agreement was found.
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APPENDIX: BEAM QUALITY M2 OF THE SINGLE-MODE
CALCULATION IN A MICROCHIP LASER

Here we estimate the single-mode beam quality M2 from
the phase and amplitude distribution in the transverse plane
of a particular mode electric field A(r, φ). The task would be
easy if the electric field were in the waist plane and we could
calculate it using M2 = 4πσ0σs [27], where σ 2

0 and σ 2
s are

the field second moments in the space and Fourier domains,
respectively. However, in our case, the field distribution is
complex (α and β coefficients are complex), and the field

distribution given is outside the waist. The analytical way to
calculate the beam quality in two dimensions outside the waist
was suggested by Yoda et al. [28]. Briefly, instructions are as
follows: one should calculate the first and second moments,

〈x〉 =
∫∫

xdxdy|A(x, y)|2, (A1)

σ 2
x =

∫∫
dxdy(x − 〈x〉)2|A(x, y)|2. (A2)

Additionally, one should calculate the auxiliary integrals A
and B:

A =
∫∫

dxdy(x − 〈x〉)

[
A(x, y)

∂A(x, y)∗
∂x

− c.c.

]
, (A3)

B =
∫∫

dxdy

∣∣∣∣∂A(x, y)

∂x

∣∣∣∣
2

+ 1

4

×
(∫∫

dxdy

[
A(x, y)

∂A(x, y)∗
∂x

− c.c.

])2

. (A4)

One should note that the complex-conjugate member
should be calculated only in the square brackets. Finally, one
should use the A, B, and σ 2

x values in the final M2
x expression:

M2
x =

√
4Bσ 2

x + A2. (A5)

Equation (A5) is valid for beams out of the waist plane. If it
is applied to the waist plane where the electric field is real,
the calculations will simplify because the last term in the B
expression (A4) vanishes.
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