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Zero-energy edge states and solitons in strained photonic graphene
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Photonic graphene is a form of graphene in optic platforms that is important for fabrication of photonic
topological insulators, which may lead to novel techniques to realize various types of light manipulation. Among
a plethora of schemes to reform photonic graphene to meet the desired specifications, the significance of strain
operations has not received sufficient attention. Here, we theoretically and numerically report zero-energy edge
states in strained photonic graphene. After applying strain, photonic graphene can be regarded as a stack of
Su-Schrieffer-Heeger chains, which can be considered to be a convincing cause of the appearance of zero-energy
edge states. In addition, the topological origin is analyzed based on the tight-binding method, and we find that the
Zak phase is π when there is a zero-energy edge state. In reference to the dispersive nature of zero-energy edge
states, the self-action effect of nonlinearity is introduced to balance the dispersive broadening of these states to
form both bright and dark zero-energy edge solitons. We believe that the results obtained may provide deeper
understanding of the role of strain in two-dimensional lattices and may find potential applications in fabricating
future on-chip on-demand photonic devices.

DOI: 10.1103/PhysRevA.107.043504

I. INTRODUCTION

Photonic graphene, which is also called the honeycomb
lattice, is a form of graphene that can be easily adopted to
manipulate the propagation of light [1–3]. It also provides
an ideal platform for realizing photonic topological insulators
[4–7]. It is well known that photonic graphene can be elabo-
rately cut to realize zigzag, bearded, and armchair boundary
terminations. Without any procedure to break the original
symmetry of photonic graphene, only zigzag and bearded
terminations can support edge states [8]. The edge state of
the zigzag termination is at the boundary of the first Brillouin
zone (BZ), while that of the bearded termination is in the
middle of the zone. That means that the edge state of a single-
type termination does not completely fill the full width of the
first BZ of photonic graphene, even though certain symme-
tries are broken [4,9,10]. However, we occasionally find that
photonic graphene strained in certain fashions may reverse
this traditional perception. The counterintuitive appearance of
the edge state in the whole first BZ that we discuss later can
be explained by using the Su-Schrieffer-Heeger (SSH) model
[11–13], which is the simplest model and also well recognized
for topological insulators.

It has been demonstrated in many fields of physics that
straining a lattice can produce a pseudomagnetic field (also
referred to as an artificial magnetic field, synthetic magnetic
field, effective magnetic field, or gauge field) and also Landau
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levels [14–22]. It has also been reported that the straining
operation may help restore the parity-time symmetry [23,24].
Especially, it was reported that edge states are created on
the zigzag edge and destroyed on the bearded edge by com-
pression in the vertical direction of photonic graphene [25].
Without a doubt, strain is a useful tool for studying topological
physics [26–28] and deserves more attention.

In this work, we investigate zero-energy edge states
[29–32] in strained photonic graphene and report bright and
dark zero-energy edge solitons. We regard photonic graphene
as a stack of horizontal or vertical chains, and to strain pho-
tonic graphene, we decrease the separation distance between
the chains. In this way, the coupling strengths of one site
and its three nearest-neighbor sites, which are identical before
straining, are not the same any longer. If the strained photonic
graphene is still regarded as a stack of horizontal chains,
one finds that the coupling strength of each pair of nearest-
neighbor sites alternately changes between strong and weak
values. This staggered coupling strength is the same as that of
an SSH chain, so the strained photonic graphene is equivalent
to the stacked SSH chain. This operation is different from
strain reported in previous studies [25,33], even though it
can also lead to merging and annihilation of Dirac points.
For photonic graphene with zigzag-bearded terminations (that
support edge states on both terminations simultaneously be-
fore straining) one may expect only one of them (either the
zigzag termination or the bearded termination) to support edge
states after straining. We believe this is another counterintu-
itive phenomenon unveiled in this work. To understand the
topological origin of such zero-energy edge states, the tight-
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FIG. 1. (a) Regular photonic graphene. (b) The regular photonic graphene is regarded as a formation of stacked horizontal chains
represented in red and blue. The separation distance between two neighboring chains is d = √

3a, with a being the lattice constant of each
chain. Typical vectors for the tight-binding method are e1 = [a, 0], e2 = [−a/2, d/2], and e3 = [−a/2, −d/2], and the basis vectors of the
Bravais lattice are v1 = [0, d] and v2 = [3a, 0]. As shown by the cyan and magenta rectangles, the four sites in one unit cell can be chosen in
two different ways. The coupling strength between sites connected by red and blue bonds is t1, and that with green bond is t2. (c) The separation
distance between horizontal chains is squeezed, and SSH chains are established (highlighted with shading), so that the zero state will appear
on the right bearded termination of the lattice. (d) The regular photonic graphene is regarded as a formation of stacked vertical chains with a
separation distance of 1.5a. (e) Decreasing the separation distance also leads to SSH chains with the zero-energy state appearing on the left
zigzag termination.

binding method is utilized to analyze the strained photonic
graphene. Based on the zero-energy edge states, we superpose
soliton envelops on them and obtain bright and dark zero-
energy edge solitons. The stability of these zero-energy edge
solitons is also discussed by introducing a small perturbation
and monitoring long-distance propagation.

We would like to note that the tight-binding method is used
only to understand the topological origin of the zero-energy
edge state, and other results shown in this work are obtained
directly based on the continuous model (i.e., the Schrödinger-
like paraxial wave equation), which is closer to real-world
conditions and more useful for experimentalists.

II. RESULTS AND DISCUSSION

A. Theoretical model

Generally, the propagation dynamics of a light beam can
be well described by the nonlinear Schrödinger-like equa-
tion with focusing cubic nonlinearity for the dimensionless
light field amplitude ψ :

i
∂ψ

∂z
= −1

2

(
∂2

∂x2
+ ∂2

∂y2

)
ψ − R(x, y)ψ − |ψ |2ψ. (1)

Here, x and y are the normalized transverse coordinates, and
z is the propagation distance. The function R(x, y) describes
the waveguide array, which is independent of z (namely, the
waveguide array is straight along z axis), and it can be written
as

R(x, y) = p
∑
m,n

exp

[
− (x − xm)2 + (y − yn)2

σ 2

]
, (2)

where (xm, yn) are the coordinates of the lattice sites, p is the
depth of the lattice that is proportional to the refractive index
modulation depth, and σ is the waveguide width. Photonic
graphene with zigzag-bearded terminations in x is displayed
in Fig. 1(a), in which a is the lattice constant and d = √

3a is
the period in y. We use the parameters a = 1.6, σ = 0.5, and
p = 8, which are representative of femtosecond laser-written
waveguide arrays [13,34–36]. Note that the waveguide array
can also be induced in photorefractive crystals [37–39] and
atomic vapors [40–42], where one has to switch the nonlin-
earity in Eq. (1) from cubic type to saturable type. Taking
the potential sample fabricated by using the femtosecond
laser-direct-writing technique as an example, real physical pa-
rameters for a, σ , and p are ∼16 µm, ∼5 µm, and a refractive
index change of ∼0.9 × 10−3, respectively, if a beam with a
wavelength of 800 nm is adopted.

First, photonic graphene can be regarded as a stack of
horizontal armchair chains. To better illustrate this idea, we
mark the horizontal armchair chains in red and blue, as shown
in Fig. 1(b). Since we do not deform the photonic graphene in
Fig. 1(b), the period in y is still d , which can be referred to
as the separation of neighboring horizontal armchair chains.
Now, we decrease the separation and meanwhile keep the pro-
file of each chain unchanged. The resultant strained photonic
lattice is exhibited in Fig. 1(c), which is C2 symmetric. We
find that the top sites from the red chain are closer to the
bottom sites from the blue chain, and the top sites from the
blue chain are closer to the bottom sites from the red chain.
If we rearrange the components of stacked chains, e.g., top
sites from the red (blue) chain and bottom sites from the blue
(red) chain, as highlighted by light blue shading in Fig. 1(c),
the coupling strength between two neighboring sites in each
chain alternately becomes strong and weak. Obviously, each
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FIG. 2. (a) Band structure corresponding to the case shown in Fig. 1(c) with d = √
2a. The lattice is periodic along y but limited along x

with bearded terminations. There are two degenerate zero-energy states (red curve) in the band gap. (b) Same as (a), but for the lattice with
zigzag terminations. There is no zero-energy state in the band gap. (c) Modulus profiles of the selected zero-energy edge state that correspond
to the dots in (a). (d) Band structure corresponding to the case shown in Fig. 1(e) with a separation of 1.25a. The lattice is periodic along y but
limited along x with bearded terminations. There is no zero-energy state in the band gap. (e) Same as (d), but for the lattice with a zigzag on
both terminations. There are two degenerate zero-energy states (red curve) in the band gap. (f) Modulus profiles of the selected zero-energy
edge state that correspond to the dots in (e). Panels in (c) and (f) are shown in regions where −48 � x � 48 and −7 � y � 7.

chain is, in essence, an SSH chain. It is well known that a
topological state can be found at the end of the SSH chain
where the coupling between two end sites is weak, and the
corresponding topological phase transition can be depicted by
the winding number [11]. Therefore, one expects an edge state
at the bearded termination.

Second, photonic graphene can also be regarded as a stack
of vertical zigzag chains, as shown in Fig. 1(d). Upon decreas-
ing the separation among vertical zigzag chains from 1.5a,
similar strained SSH chains can be established, as shown in
Fig. 1(e). Different from the case in Fig. 1(c), one expects an
edge state at the zigzag termination.

B. Band structures and zero-energy edge states

One significant step is to check the band structure of
the strained photonic graphene in Figs. 1(c) and 1(e). To
this end, we neglect the nonlinear term in Eq. (1) and
search for the eigenmodes of the structure in the form ψ =
u(x, y) exp(ikyy + ibz), with b being the propagation constant
(an eigenvalue); −0.5 K � ky � 0.5 K, where K = 2π/d , be-
ing the width of the first BZ; and u(x, y) being the modal
field. As a result, we obtain from Eq. (1) the linear eigenvalue
problem

bu = 1

2

(
∂2

∂x2
+ ∂2

∂y2
+ 2iky

∂

∂y
− k2

y

)
u + Ru, (3)

which can be solved numerically using the plane-wave expan-
sion method.

We first consider a case similar to that shown in Fig. 1(c).
In Fig. 2(a), we display the band structure of the lattice with
bearded-bearded terminations. We find that there are zero-
energy edge states in the band gap, as highlighted by the red
curve. As a comparison, we also display the band structure
of the same lattice but with the zigzag-zigzag terminations
in Fig. 2(b), and we find a vacant band gap. The numerical
results agree with our previous qualitative analysis that the
zero-energy edge state appears only at the bearded and not
at the zigzag terminations. The panels in Fig. 2(c) represent
modulus profiles of the selected zero-energy edge states that
correspond to the dots in Fig. 2(a). We find that the localiza-
tion of the zero-energy edge state in the boundary area of the
first BZ is not as good as that in the middle area since it is
closer to the bulk band. For a case similar to that shown in
Fig. 1(e), we display the results in Figs. 2(d)–2(f). Again, the
numerical results are in accordance with what was analyzed
before; that is, the zero-energy edge state appears only at the
zigzag terminations [Fig. 2(e)] and is absent at the bearded
terminations [Fig. 2(d)]. The localization of the zero-energy
edge state in Fig. 2(e) is also the opposite of that in Fig. 2(a)—
the localization is better in the boundary area of the first BZ.

C. Topological origin of the zero-energy edge state based on the
tight-binding method

We take the lattice type displayed in Figs. 1(c) as an
example. According to the quantities set in Fig. 1(b), the bulk
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Hamiltonian can be written as

H =

⎡
⎢⎢⎣

0 t1e−ik·e3 + t2e−ik·e2 0 t1e−ik·e1

t1e+ik·e3 + t2e+ik·e2 0 t1e+ik·e1 0
0 t1e−ik·e1 0 t1e−ik·e2 + t2e−ik·e3

t1e+ik·e1 0 t1e+ik·e2 + t2e+ik·e3 0

⎤
⎥⎥⎦, (4)

with k = [kx, ky] if only the nearest-neighbor coupling is considered. The Hamiltonian can also be written as

H =

⎡
⎢⎢⎣

0 t1 0 t2e+ik·v2 + t1e+ik·(v1+v2 )

t1 0 t2 + t1e+ik·v1 0
0 t2 + t1e−ik·v1 0 t1

t2e−ik·v2 + t1e−ik·(v1+v2 ) 0 t1 0

⎤
⎥⎥⎦ (5)

if the unit cell is chosen to be the magenta rectangle with Bravais vectors v1,2 in Fig. 1(b) or

H =

⎡
⎢⎢⎣

0 t1e−ik·v1 + t2 0 t1e+ik·v2

t1e+ik·v1 + t2 0 t1 0
0 t1 0 t1e+ik·v1 + t2

t1e−ik·v2 0 t1e−ik·v1 + t2 0

⎤
⎥⎥⎦ (6)

if the unit cell is chosen to be the cyan rectangle with Bravais vectors v1,2 in Fig. 1(b).

Clearly, the bulk Hamiltonian is translationally invariant,
and there is chiral symmetry, which is a condition for the
existence of zero-energy edge states [29]. By diagonalizing
the bulk Hamiltonian, we obtain the eigenvalues

b1∼4(kx, ky) = ±
√

f 2 ± 2 f t1 cos

(
3

2
akx

)
+ t2

1 , (7)

with f 2 = 2t1t2 cos(
√

3aky) + t2
1 + t2

2 , which are band struc-
tures of the lattice system. Considering that b2,3 touch each
other through Dirac points if strain is not strong, the value
of b2,3 is zero at the Dirac points. According to Eq. (7), it
is simple to conclude that the Dirac points distribute along
kx = 0. As a result, we obtain the following relation from
b2,3 = 0:

t2
2t1

= − cos(
√

3aky), (8)

which reflects that Dirac points always exist for the case
with t2 < 2t1 if |ky| > π/2

√
3a is properly chosen. The Dirac

points move toward the boundary of the Brillouin zone with
t2/2t1 increasing gradually and disappear if t2/2t1 > 1. In
other words, a band gap always exists if t2 > 2t1, where a
zero-energy edge state can be expected for certain boundaries.
Numerical simulations demonstrate the above deduction. In
light of the above discovery, it is safe and also reasonable to
set t1 = 0.5 and t2 = 1.5 for further discussion.

According to the bulk-edge correspondence principle [29],
we choose the unit cell shown by the magenta rectangle in
Fig. 1(b) [the corresponding Hamiltonian is given in Eq. (5)]
for the case with bearded-bearded boundaries and the cyan
rectangle [the corresponding Hamiltonian is given in Eq. (6)]
for the case with zigzag-zigzag boundaries. We calculate the
corresponding Zak phase of the strain lattice with certain
boundaries by scanning the Bloch momentum ky, which is
similar to a one-dimensional system [30]. The Zak phase
Z (ky) can be calculated by using the Wilson-loop method
[43]. It is simple to check that there are two bands below
the band gap, so we have to construct a 2 × 2 matrix with

elements

F
kx, j ,kx, j+1

mn = 〈um(kx, j )|un(kx, j+1)〉, (9)

where |um,k j 〉 is the Bloch function corresponding to the mth
band, where kx, j ∈ [−π/3a, π/3a], kx, j+1 = kx, j + δk, δk =
(2π/3a)/N , j ranges from 1 to N , and kx,N+1 = kx,1 if the
Brillouin zone is equally divided into N sections. The Berry
phase for a loop in the Brillouin zone [−π/3a, π/3a] can be
obtained by the matrix product of the 2 × 2 matrices for the
small segments in the loop with the following form:

W =
j=N∏
j=1

F
kx, j ,kx, j+1

mn . (10)

Diagonalizing the matrix in Eq. (10), we obtain the cor-
responding eigenvalues exp(iθ1) and exp(iθ2), and the Zak
phase is Z = θ1 + θ2. We show the results in Fig. 3 for
the system with different boundaries. If the boundary is the
bearded-bearded type, there is always a zero-energy edge state
in the band gap, and the Zak phase should always be π for any
ky, which is indeed the case, as shown in Fig. 3(a). However, if

FIG. 3. (a) Zak phase of the system with bearded-bearded bound-
aries and t2 = 3t1. (b) Zak phase of the system with bearded-bearded
boundaries and t2 = 1.5t1. (c) Zak phase of the system with zigzag
boundaries and t2 = 3t1. (d) Zak phase of the system with zigzag
boundaries and t2 = 1.5t1.
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FIG. 4. (a) First-order b′ (solid curve) and second-order b′′

(dashed curve) derivatives of the zero-energy edge state [corre-
sponding to Fig. 2(a)]. Red and blue dots are at ky = −0.16 K and
ky = −0.29 K, respectively. (b) Same as (a), but corresponding to
Fig. 2(e).

the boundary is the zigzag-zigzag type, there is no zero-energy
edge state in the gap, and the Zak phase is always zero, as
shown in Fig. 3(c). In Figs. 3(b) and 3(d), we show two cases
with t2 < 2t1 in which there are still Dirac points. We find that
zero-energy edge states can appear at both bearded and zigzag
boundaries, but their existence ranges are complementary.

D. Zero-energy edge solitons

The zero-energy edge state is so named in this work due
its energy being zero, and meanwhile, it is dispersion free
if it is analyzed by the tight-binding method with only the
nearest-neighbor coupling being considered. However, the
zero-energy edge state is generally dispersive when it is based
on the continuous model (i.e., the Schrödinger-like equation),
which can be seen from the red curves in Figs. 2(a) and
2(e). We calculate the first-order derivative b′ = db/dky and
the second-order derivative b′′ = d2b/dk2

y of the zero-energy
edge state with respect to the Bloch momentum ky, and the
results are shown in Fig. 4. We find that the second-order
derivative b′′ can be either positive or negative for lattices with
both bearded-bearded terminations [Fig. 4(a)] and zigzag-
zigzag terminations [Fig. 4(b)], depending on the Bloch
momentum. As demonstrated previously, one can expect to
have bright edge solitons if b′′ < 0 and dark edge solitons
if b′′ > 0 [9,10,37,44,45]. Here, we take the first case with
bearded-bearded terminations as the topic of investigation and
construct a bright zero-energy edge soliton on the bearded
termination and a dark zero-energy edge soliton on the other.

To construct zero-energy edge solitons, we adopted the
method developed in previous studies [44,46], according to
which the soliton can be prepared by superposing the en-
velopes onto the linear zero-energy edge state. The envelope
equation corresponding to Eq. (1) can be written as

i
∂A

∂z
= b′′

2

∂2A

∂Y 2
− χ |A|2A, (11)

where A is the slowly varying envelope;

χ =
∫ +∞

−∞
dx

∫ L

0
|φ|4dy

FIG. 5. (a) Bright zero-energy edge soliton envelope with bnl =
0.0015. (b) Same as (a), but for the dark zero-energy edge soliton.
(c) Peak amplitude of the bright envelope versus bnl (red curve and
left y axis) and FWHM of the envelope (blue curve and right y axis).
(d) Amplitude of the background of the dark envelope versus bnl (red
curve and left y axis) and FWHM of the envelope (blue curve and
right y axis). Dashed lines in (d) represent unstable zero-energy edge
solitons constructed based on these envelopes.

is the nonlinearity coefficient, with L being the period in
y; and Y = y + b′z. The soliton solution can be written
in the form ψ (x, y, z) = A(Y, z)φ(x, y) exp(ibz), in which
φ(x, y) exp(ibz) is the linear Bloch state. Equation (11) is the
well-known nonlinear Schrödinger equation with third-order
nonlinearity (i.e., Kerr nonlinearity), and it possesses numer-
ous solutions. We are interested in the soliton solutions that
can be written as [10,44,45]

A(y, z) =
√

2
bnl

χ
sech

(√
−2

bnl

b′′ (y + b′z)

)
exp(ibnlz) (12)

for bright solitons and

A(y, z) =
√

bnl

χ
tanh

(√
bnl

b′′ (y + b′z)

)
exp(ibnlz) (13)

for dark solitons, where bnl is the nonlinearity-induced phase
shift, which should be sufficiently small. In Figs. 5(a) and
5(b), we show exemplary envelopes for the bright and dark
solitons with bnl = 0.0015, respectively. Furthermore, we also
display the peak amplitude and the FWHM of the bright
envelope as a function of bnl in Fig. 5(c). We find that the peak
amplitude of the envelope increases with bnl, but the FWHM
decreases. In Fig. 5(d), the background amplitude of the dark
envelope and the FWHM are shown, and we find that the notch
will become narrower with larger bnl.

Zero-energy edge solitons are obtained by superposing
these envelopes onto the normalized linear zero-energy edge
states for proper Bloch momenta. In Fig. 6(a), we display
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FIG. 6. (a) Constructed bright and dark zero-energy edge solitons at two bearded terminations. (b) Peak amplitude of the bright zero-energy
edge soliton during nonlinear propagation (αnlin; black curve) and linear propagation (αlin; red curve). (c) Peak amplitude of the dark
zero-energy edge soliton during nonlinear propagation (αnlin; black curve) and linear propagation (αlin; red curve). (d) Amplitude distribution
of the bright zero-energy edge soliton [along the white dashed line in (a)] during propagation at ky = −0.16 K with b′′ = −0.2549. (e)
Amplitude distribution of the dark zero-energy edge soliton [along the green dashed line in (a)] during propagation at ky = −0.29 K
with b′′ = 0.2644. Two dark zero-energy edge solitons are indicated by cyan ellipses. (f) and (g) Same as (d) and (e), but for linear
propagation. bnl = 0.0015.

one bright zero-energy edge soliton and one dark zero-energy
edge soliton on strained photonic graphene with bearded-
bearded terminations. The bright zero-energy edge soliton
corresponds to the red dot (ky = −0.16K) in Fig. 4(a),
while the dark zero-energy edge soliton corresponds to the
blue dot (ky = −0.29K) in Fig. 4(a). We inspect the non-
linear propagation dynamics of the bright (dark) soliton
and record the corresponding peak amplitude (the back-
ground amplitude) αnlin during propagation, as shown by
the black curve in Fig. 6(b) [Fig. 6(c)]. Clearly, the peak
amplitude does not change even after a long propagation
distance z ∼ 6000, which verifies the self-trapping of the
beam due to the self-action effect of the cubic nonlinearity.
If the nonlinearity is lifted, the beam will undergo a lin-
ear propagation, and the corresponding peak amplitude (the
background amplitude) αlin is indicated by the red curve
in Fig. 6(b) [Fig. 6(c)]. For the linear propagation of the
bright soliton, the peak amplitude decreases with distance,
while for the dark soliton the background increases. Both red
curves imply broadening of the incident localized structures
during propagation.

To better see the comparison between nonlinear propa-
gation and linear propagation, we record the beam in cross
sections indicated by the dashed lines in Fig. 6(a). Figure 6(d)
is the bright soliton, and we find that the pattern does not
change during propagation. The bright soliton exhibiting a
section-by-section dynamics is due to the propagation method
we utilized, which is the split-step Fourier method. The soli-
ton propagates in the direction indicated by the cyan arrow
in Fig. 6(d), and it will reappear in the opposite boundary
when it reaches the boundary of the calculation window. The
dark soliton in the cross section shown in Fig. 6(e) behaves
similarly—the two dark notches that are marked with cyan
ellipses maintain their shapes very well during propagation.
The linear counterparts are shown in Figs. 6(f) and 6(g); we

find that the hump or the notch of the beam broadens explic-
itly during propagation, which is different from the nonlinear
propagation in Figs. 6(d) and 6(e).

Last, but not least, we check the stability of zero-energy
edge solitons by superposing a random noise on incident
beams and then propagating over a long distance z ∼ 6000.
The maximum strength of the perturbation is 10% of the
peak amplitude (or the background amplitude) of the beam.
If the profile of the soliton does not change, then we call
it the stable soliton [47]. Otherwise, it is unstable. Results
are shown in Figs. 5(c) and 5(d), and unstable solitons are
illustrated by dashed lines. We find that the bright zero-energy
edge soliton is always stable, while for the dark zero-energy
edge soliton the threshold value is bth

nl ∼ 0.0028, above which
the dark zero-energy edge soliton is unstable. We would like
to note that the metastable region of zero-energy edge solitons
is also affected by the Bloch momentum, and zero-energy
edge solitons corresponding to other Bloch momenta can be
analyzed in the same way.

III. CONCLUSION

In conclusion, we have investigated the zero-energy edge
states and zero-energy edge solitons in photonic graphene
after a strain operation which makes the photonic graphene
equivalent to a stack of SSH chains. The appearance of such
zero-energy edge states can be well predicted by the properties
of the SSH model. Based on the zero-energy edge state, bright
and dark zero-energy edge solitons are obtained by super-
posing corresponding envelopes. Since the same termination
supports both bright and dark zero-energy edge solitons, the
strained photonic graphene reported in this work would also
be effective in the search for various vector zero-energy
edge solitons [44–46,48,49]. It is worth noting that strained
photonic graphene can also be useful for investigating higher-
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order topological insulators, which possess zero-dimensional
corner states [34,50,51] that are crucial for developing corner
lasing [52–55] and preparing high-quality topological cavities
[56,57]. We believe that our results not only provide an ideal
platform for investigating topological physics phenomena but
also exhibit potential applications for developing compact
optical functional devices.
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