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The introduction of long-range interaction (LRI) in models that describe topological systems has unveiled
previously unknown topological phases and states. Recently, in higher-order topological insulators, consideration
of LRI via next-nearest-neighbor (NNN) hopping led to the discovery of unconventional confined corner states;
however, their study is still limited in photonic prospects. In this paper, we bring the concept of type-III corner
states into the photonic regime and reveal that their existence depends on LRI in photonic lattices, mimicking
an extended two-dimensional Su-Schrieffer-Heeger (SSH) model with an asymmetric coupling. The extension
of the SSH model is performed by considering a variety of NNN hopping in square lattices, and an asymmetry
coupling in the intercellular NNN hopping terms of the Hamiltonian describing the system. Subsequently, we
identify type-I, type-II, and type-III corner states in the analytical tight-binding model, revealing that the type-II
and type-III corner states are split from the edge states. Based on the obtained results, we propose a photonic
model that mimics the asymmetric coupling and find the existence of type-II and type-III corner states in the
photonic model. The results presented here extend the knowledge we have about topological corner states in
photonic systems and highlight the role played by LRIs in the generation of topological confined modes.
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I. INTRODUCTION

Topological physics has been an exciting research area and
has gained remarkable development [1–3]. Several topolog-
ical phases have been extensively studied in quantum and
classical systems such as photonics, phononics, and elec-
tric circuits [4–11]. In this regard, topological insulators
host topologically protected states with (D–1) dimensionality
within the band gap, governed by the celebrated bulk-
boundary correspondence [7–11]. Inspired by these discover-
ies, higher-order topological insulators (HOTIs) emerged as a
new class of topological systems with robust confined states,
generalizing the bulk-boundary correspondence of topological
phases, so that an nth-order topological phase in D dimensions
has protected features, at its (D−n)-dimensional boundaries
[12–27]. These confined states known as corner states in
two-dimensional material, governed by the generalized bulk-
boundary-corner correspondence, are promising candidates
for topological resonators and lasers [28–31]. In most cases,
corner states manifest within a band gap, but they can also
appear even if they are spectrally degenerate with the bulk
bands [32–34].

In general, the physics of such topological systems can
be understood by tight-binding models, which involve only
nearest-neighbor (NN) interactions. However, it is not appro-
priate to consider only NN interactions in the photonic case
since long-range interaction (LRI) can significantly alter the
band structure [35,36]. Recently, LRIs have been introduced
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into systems describing HOTI phases [37–42]. In this sense,
there has been significant interest in how LRIs play their role
in dictating the behavior of topological phases. For instance,
in the presence of weak LRI, type-II corner states have been
observed in photonic crystals (PhCs) with kagome lattices
[35]. Meanwhile, the addition of LRI by means of additional
next-nearest-neighbor (NNN) hopping terms has led to the
localization of zero-energy corner states isolated from any
bulk or edge band in electronic networks [40]. Therefore,
several investigations have pointed out that the addition of
higher-order couplings, such as the coupling between NNNs,
can preserve the topological protection of the corner states
even when the chiral symmetry is broken [43–47]. As an
extension of higher-order states and the role played by LRIs,
recently, the first identification of type-III corner states in
kagome electrical circuits, produced by the splitting of edge
states, was achieved [48]. Nevertheless, type-III corner states
have not been observed in square lattices or photonic systems.
Additionally, the great success of electrical circuit lattices
has overshadowed the study of LRI in the HOTI phases of
photonic systems.

In this paper, we study the effect of LRIs in an extended
two-dimensional Su-Schrieffer-Heeger (SSH) model with a
square lattice. We find that introducing asymmetric hopping
terms between NNNs can lead to the existence of type-II and
type-III corner states in square lattices. We also compared
the asymmetric coupling between NNNs with a symmetric
coupling, demonstrating that in the latter only the type-I and
type-II corner states exist, as other works report [35]. As
the coupling strength between the NNNs decreases, we find
that also the type-II corner states disappear, merging with
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FIG. 1. Schematic representation of the extended 2D SSH model
on a square lattice, represented by the Hamiltonian of Eq. (1). On
the right is shown an amplification of a unit cell, delimited with
a square of dashed lines, and consisting of four sites per unit cell
(A–D). The red line stands for asymmetric intercellular coupling.
(b) The amplitude of the hopping is represented by lines whose
thickness indicates the coupling strength being α the strongest and γ

the weakest. (c) Band diagram obtained from the tight-binding model
and the extended SSH Hamiltonian with the asymmetric coupling ρ.

the topological edge states, leaving only the type-I corner
states. Having confirmed the existence of type-III corner states
in the tight-binding model, we propose a simple design that
allows finding the corner states in PhCs using first-principles
calculations. The photonic structure under study consists of a
PhC slab with a square lattice and elliptical air holes. Here,
the elliptical geometry facilitates the coupling between the
NNNs. We confirm that in the designed PhC slab, the type-III
corner states arise as confined states around the topological
corner of the proposed photonic systems. In addition, the field
distribution coincides with the probability density calculated
by means of the tight-binding model. The results we present
here broaden the concept of corner states in photonic systems
and provide ideas for the generation of confined states in
topological systems.

II. EXTENDED SSH MODEL

The extended SSH model with a square lattice considered
in this paper is shown in Fig. 1(a). The lattice geometry
applies easily to a wide variety of physical systems. This
extended model differs from the original SSH model, where
only the coupling between NNs is considered. Here, we also
consider the couplings between the NNNs, as shown in the
amplification of the proposed topological lattice shown in
Fig. 1(a). In topological systems, NNN hopping terms can
be regarded as LRIs since higher-order terms beyond NNN
can only contribute to negligible effects [35,39]. The cou-
pling strength is represented by the hopping terms, which
have different values depending on the type of interaction be-
tween neighbors. This extended SSH model is described by an

analytical tight-binding model, whose Hamiltonian has the
form

H = H0 + HNNN (1)

where H0 represents the coupling Hamiltonian between the
NNs and intracellular NNNs, and HNNN is the coupling
Hamiltonian between the NNNs and the intercellular NNNs.
Importantly, the intercellular coupling (highlighted with the
red line in Fig. 1) is considered asymmetric, where the hop-
ping occurs only on one of the diagonals describing the first
Brillouin zone. In real systems, this results in a slightly asym-
metric geometry of the meta-atoms describing the topological
system sublattice. The matrix of the Hamiltonian H0 is given
by

H0 =

⎛
⎜⎜⎜⎜⎝

0 γ + αe−ikx γ + αeiky βe−ikx+iky

γ + αeikx 0 βeikx+iky γ + αeiky

γ + αe−iky βe−ikx−iky 0 γ + αe−ikx

βeikx−iky γ + αe−iky γ + αeikx 0

⎞
⎟⎟⎟⎟⎠

(2)

where γ and α are the hopping between the inter- and in-
tracellular NNs, respectively, and β is the hopping between
the intracellular NNNs. Next, the matrix Hamiltonian HNNN is
written as

HNNN =

⎛
⎜⎜⎜⎝

0 0 0 Q1

0 0 Q2 0

0 Q∗
2 0 0

Q∗
1 0 0 0

⎞
⎟⎟⎟⎠ (3)

with the matrix elements

Q1 = λ(eikx+iky + e−ikx−iky ),

Q2 = ρe−ikx−iky + λ(e−ikx+iky + eikx−iky ). (4)

Here, λ and ρ represent the hopping between the remaining
NNNs, shown in Fig. 1. In the proposed tight-binding model,
we set the strongest hopping term α, while the other hopping
terms decay progressively, as shown in the table in Fig. 1(b).
In order to split the edge states into type-II and -III corner
states, the value of ρ is 0.5α. Figure 1(c) displays the band
structure obtained from the extended SSH model with the
asymmetric intercellular coupling ρ and the hopping term
relationship of Fig. 1(b). This coupling ratio allows obtaining
the HOTI phase in the model, which is confirmed by analyzing
the topology of the bands below the gap. In this case, only one
band is below the gap and the topological characteristics are
obtained by the topological invariant

θZak =
∫

BZ
dkxdkyTr[Aj (kx, ky)], (5)

where Aj (kx, ky) = i〈ψ j |∂k|ψ j〉 is the Berry connection, |ψ j〉
represents the periodic parts of the Bloch function, and j rep-
resents the band index. Using Eq. (5) for the first band below
the gap, we obtained a θZak = (π, π ), which indicates that
this system is in a nontrivial configuration of the HOTI phase
[13,45,49]. Subsequently we can calculate the 2D polarization
related to the Zak phase by means of the relation θZak = 2πP
and thus predict the existence of the corner states by means of
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FIG. 2. Characterization of the extended 2D SSH model. (a)
Density of states (DOS) of the finite model, where the bulk states
(BS), edge states (ES), and different types of corner states are identi-
fied. Here the type-I corner states are located near zero energy, while
the type-II and -III corner states are found splitting from the edge
states continuum. (b) Probability density in a finite model consisting
of 8 × 8 unit cells. The panels from left to right show the corner
states type I, type II, and type III, respectively.

the corner charge qcorner, defined as [13,45,49]

qcorner = 4PxPy. (6)

Therefore, the corner charge we obtained is 1, indicating
the presence of midcorner states of the band gap. The density
of states (DOS) for our model with 8 × 8 unit cells is shown
in Fig. 2(a) and reflects the bulk bands and edge bands, in
addition to the spectral position of the corner states. Here, we
show that the type-I corner states are located at zero energy,
while the type-II and -III corner states are located near the
energy of the edge states. Due to the asymmetry provided by
the hopping term ρ, the type-I states are spectrally separated
in pairs: two at zero energy and two very close to zero energy.
Notably, as the hopping amplitude ρ < α, β, γ , λ, only the
type-I corner states arise. Meanwhile, as the strength of ρ gets
larger, the type-II corner states emerge and are located near
the edge bands within the band gap. In contrast, as the hopping
term ρ becomes sufficiently large, type-III corner states arise
by splitting from the continuum of edge states found within
the band gap.

The probability densities for the three types of corner states
in the extended SSH model are shown in Fig. 2(b). Here,
the probability density of the type-I corner states is strongly
localized at the first site of the topological corner of the lat-
tice. Meanwhile, the type-II corner states exhibit a probability
density mostly located in the second unit cells around the
topological corner of the square lattice, which agrees with
the results presented in other works [35,48]. In contrast, as
the hopping term ρ becomes sufficiently large, type-III corner
states arise around the topological corner, mainly in the third
unit cells, as shown by the probability density in the last panel
of Fig. 2(b).

To gain a deeper insight into the origin of the type-III
corner states, we add an additional term to the matrix element
Q1, equivalent to ρ1eikx−iky . With this new term, the extended
SSH model is represented by the inset in the upper panel
of Fig. 3(a). In this case, the coupling between the NNN is
symmetric. By adding the new hopping term ρ1 and making it
equal to ρ, the type-III corner states no longer exist, as shown
by the DOS in Fig. 3(a). Only type-II corner states arise in
the system only if the values of ρ1 and ρ are equal and large
enough to split the corner states from the edge states. As ρ

and ρ1 become smaller, only type-I corner states are present,
as shown in the lower panel of Fig. 3(a). Subsequently, we
generalize these results in Figs. 3(c) and 3(d), showing the
spectrum of eigenenergies as a function of the ratio ρ/ρ1, and
for the case where ρ = ρ1, respectively. Thus, we observe how
type-III corner states arise as they split from the continuum
of edge states only when the difference between ρ and ρ1

is very large, i.e., when the coupling provided by ρ is much
stronger than that of ρ1. On the other hand, if the equality
between ρ and ρ1 is preserved, type-III corner states do not
emerge in this extended SSH model with a square lattice;
only type-II states are effectively separated from the edge
states. Here, the symmetry breaking in the coupling strength
provided by the hopping terms ρ and ρ1 extracts the type-II
corner state branches from the edge state boundaries and the
type-III corner state branches from the continuum of edge
states. This result shows not only that the addition of coupling
between NNNs is necessary to generate type-III corner states,
but also an asymmetry in the hopping terms can help generate
type-III corner states. Additionally, these results are supported
by works that have recently found that 2D square lattices with
low symmetry could form HOTIs with corner states, as long
as the values of intercellular hopping terms (γ ) between NNs
are sufficiently small [50,51].

III. EXTENDED PHOTONIC SSH MODEL

PhCs, considered as arrays of artificial atoms, are widely
used to modulate electromagnetic waves. In addition, they
have recently been used to study topological effects as they
have a photonic band structure. Therefore, we have imple-
mented our photonic model in a square lattice PhC slab with a
dielectric permittivity ε = 12.32, readily available for exper-
imental fabrication. The tight-binding model we propose in
this paper has an asymmetric coupling that causes the splitting
of the edge states to generate the type-II and type-III corner
states. For this reason, it is imperative to generate this feature
in our photonic system.

Let us consider a regular square lattice of circular air holes
in a dielectric material, as shown in Fig. 4(a). The unit cell
of this system would be described by the four sites shown in
the second panel of Fig. 4(a). Here, due to the separation of
the holes, coupling between intercellular NNNs is not consid-
ered, unlike the strong couplings between intracellular NNNs,
which are taken into account. This symmetric picture can be
modeled with the extended SSH Hamiltonian without the in-
tercellular NNN couplings. Afterward, to induce the coupling
that mimics the hopping term ρ, we extend a semimajor axis,
transforming the circular geometry of the air hole to an elliptic
one [see third and fourth panels of Fig. 4(a)]. Therefore,
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FIG. 3. (a) Upper panel: DOS of the extended 2D SSH model with the hopping terms ρ = ρ1. In this model, only the type-II corner
states split from the corner states, while the type-I corner states remain near zero energy. Lower panel: DOS of the extended 2D SSH model
preserving the equality between ρ and ρ1; however, they now have a value that approximates to λ. (b) The spectrum of eigenenergies as a
function of the ratio ρ/ρ1, where ρ1 = 1. The red (circle), orange (square), green (asterisk), and gray curves represent the states of type-I
corner, type-II corner, type-III corner, and bulk-edge states, respectively. (c) Eigenenergy spectrum as a function of the equality ρ = ρ1. Here,
only the type-I corner and type-II corner states are predicted.

by increasing the semimajor axis of the elliptical air hole,
we would be increasing the coupling related to the hopping
term ρ.

A regular PhC with the UC1 shown in the first panel of
Fig. 4(b) describes a trivial topology. By choosing a UC2,
as the one shown in the first lower panel of Fig. 4(b), a
PhC with nontrivial topology is obtained. This is demon-
strated by analyzing the topological properties of the band
structure obtained for both UCs. Both UCs show an identical

FIG. 4. Photonic model mimicking the extended 2D SSH model
with asymmetric coupling. (a) Representation of the PhC design pro-
cess featuring an asymmetric coupling by extending the semimajor
axis of an elliptical geometry of an air hole. The semimajor axis is
represented by ra, while the semiminor axis is rb. (b) Selection of
the unit cells (UC1 and UC2) used for the topological PhC design.
The central panel shows the photonic band structure corresponding
to UC1 and UC2, where the parities at the high-symmetry points �

and X are indicated. These parities are determined from the Hz field
distribution shown to the right of the band structure. The top two
modes correspond to UC1 at the X points for the first and second
bands. The bottom two modes correspond to the UC2.

photonic band structure, which is shown in the central panel
of Fig. 4(b). Here, the band structure has frequency units
normalized to the lattice parameter (a) and λ is a wavelength.
For this band-structure calculation, we consider only the TE
modes (i.e., the modes with electric components parallel to
the PhC plane). We performed numerical simulations of the
band structure by the COMSOL MULTIPHYSICS software, using
the finite element method (FEM), and we solve the eigenvalue
problem for the harmonic mode with frequency ω derived
from Maxwell’s equations [22]:

[∇2 + (ω2/c2)ε(r)]E = 0 (7)

where E is the electric field, ε(r) is the position-dependent
permittivity, and c is the speed of light. The Faraday re-
lation gives the magnetic field H = −[i/μ0ω]∇ × E, where
the permeability μ0 is that of the vacuum. Next, we im-
pose periodic boundary conditions at the edges of both unit
cells. The lattice parameters describing the PhC of both UCs
have lattice parameter a, while the ellipse has a semimajor
axis ra and a semiminor axis rb = 0.65ra, and is inclined at
45◦. For the three-dimensional model, the thickness of the
PhC slab is 0.53a; however, the model can be reduced to
a two-dimensional one by considering an effective dielectric
permittivity of εeff = 11.5.

Having computed the band structure of the PhC, we ob-
tained the topological invariant of interest. In this case, we
are again interested in the 2D Zak phase or 2D polarization
P. Applying group theory to Eq. (5), one finds that the values
of P are quantized and can only take values of 0 and 1/2,
determined by the parity of the bulk states at the points of high
symmetry in the first Brillouin zone [45,52]. Hence, Eq. (6)
takes the form

Pm = 1

2

⎛
⎝∑

j

q j
m mod 2

⎞
⎠, (−1)q j

m = η(χm)

η(�)
, (8)

where the summation is taken over all occupied bands, η

denotes the parity with π rotation, and m stands for x or y.
Since there is only one band below the gap, Eq. (7) is reduced
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to

Pm = 1

2
(q1 mod 2), (−1)q1 = η1(χ )

η1(�)
. (9)

Here, one can determine the η1 parity by the distribution
of the Hz field of the eigenstate at the high-symmetry points.
The Hz field distributions corresponding to the eigenstates at
the X points are depicted in Fig. 4(b). For UC1, the eigenstate
at the X point of the first band has an s-like mode, while the
second band at the X point is a p-like mode. In contrast, in
UC2 this behavior is the opposite, indicating a band inversion.
Subsequently, we determined the parity of the eigenmode
profile by the inversion operation relative to the center of
the UC. Therefore, s-like modes have a “+” parity, while
p-like modes have a “–” parity. The parities of the high-
symmetry points X and � are presented in the band structure
of Fig. 3(c), noting the parity inversion at X points between
the two bands. By substituting these results into Eq. (8), a
polarization with P = (0, 0) is obtained for UC1, indicating
a trivial topology. Meanwhile, a polarization P = (1/2, 1/2)
is determined for UC2, indicating nontrivial topology. Again,
Eq. (6) dictates that the corner charge qcorner = 1 for the pho-
tonic model, indicating the presence of corner states within
the photonic gap.

IV. CORNER STATES IN THE EXTENDED
PHOTONIC SSH MODEL

To investigate the corner states arising in the photonic
model, we design a boxlike configuration. In this sense, the
nontrivial structure with P = (1/2, 1/2) is surrounded by
the trivial structure with P = (0, 0). Subsequently, Fig. 5(a)
shows the topological photonic model obtained using the triv-
ial UC1 and nontrivial UC2. To numerically simulate this
photonic model, we apply the FEM method, using perfectly
matching layers and scattering boundary conditions to sim-
ulate a finite model. The spectrum of the eigenfrequencies
obtained from the proposed photonic model is shown in
Fig. 5(b), where we have located the corner states. Here, the
spectral position of the three types of corner states coincides
remarkably well with the previously proposed tight-binding
model.

The distribution of TE modes in the PhC shown in
Figs. 6(a)–6(c) corresponds to the type-I, type-II, and type-III
corner states, highlighted in the eigenfrequency spectrum in
Fig. 5(b). Clearly, we see how the field distribution matches
with the probability density distribution calculated in the an-
alytical model, particularly for the case where ρ > ρ1. In
the type-I corner state [Fig. 6(a)], the field distribution is
mostly located in the unit cell describing the topological cor-
ner of the nontrivial structure. Then, the type-II corner state
is mostly located in the second unit cells of the nontrivial
corner [Fig. 6(b)]. Finally, the type-III corner state is strongly
localized in the third unit cell that delimits the nontrivial
corner [Fig. 6(c)]. This agrees with other results presented
in the literature, where it is specified that the type-II and -III
corner states, found in systems other than photonic, show a
localization surrounding the nontrivial corner. Furthermore,
the occurrence of the corner states around the topological
corner supports the notion that these corner states are formed

FIG. 5. (a) Box-shaped arrangement of a topological PhC. The
nontrivial structure is represented by the inner PhC, while the trivial
one describes the outer PhC. (b) Photonic spectrum of eigenfrequen-
cies found in the photonic PhC array, where the type-I, -II, and -III
corner states are located, as well as the spectral position of bulk and
edge states.

from splitting the edge states within the band gap. It is worth
noting that the field distribution of the different corner states in
the photonic model coincides almost perfectly with the prob-
ability density obtained from the tight-binding model. This
highlights how accurate our proposed extended SSH model
can be in predicting the existence of corner states in photonic
topological systems.

In the proposed photonic model, if we increase the value
of the semiminor axis, the type-III corner states tend to dis-
appear, degenerating with the continuum of the edge states.
This is also true for the type-II corner states. However, the
existence of the latter no longer depends so heavily on the
size of the semiminor axis, but rather on the relationship of
the lattice parameter a with the semimajor axis. In this regard,
we performed a study of the photonic model in which the
structural parameters of the ellipse forming the air holes of
the topological PhC were altered to match the case analyzed
in Sec. II. In particular, we enforced the relation ra = rb,
to mimic the condition ρ = ρ1 in the tight-binding model
previously proposed in this paper. The results of this analysis
are shown in the second panel of Fig. 6 where the relation
ra = rb is reflected in the unit cells of Fig. 6(d). By performing
a boxlike configuration similar to that shown in Fig. 5(a), we
obtained the eigenfrequency photonic spectra of the structure
composed of the unit cells in Fig. 6(d). Here, it can be seen
that only the type-I state in the middle of the photonic band
gap arises, which is in agreement with the results presented
in other works. This analysis further confirms the remarkable
agreement of the tight-link model with the photonic model,
where the manipulation of the hopping terms results in the
emergence of type-II and type-III corner states.

Finally, we analyzed the effect of severe structural defects
on the proximity of different corner states. For this purpose,
we use a systematic method in which one air hole at a time is
removed consecutively on the main diagonal of the nontrivial
PhC [53,54]. The defect that is removed is labeled Nd where
d is the order of the position with respect to one of the
topological corners. Figure 7(a) shows the process of removal
of elliptical air holes in one of the main diagonals of the
nontrivial PhC comprising the topological photonic system.

The analysis of the robustness of the corner states was
performed by means of the behavior of the quality factor Q
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FIG. 6. (a)–(c) E-field distribution corresponding to corner state type I, II, and III, respectively. The corner states found were obtained
with geometrical values of the ellipse shown in the upper part. Here, it is shown that the relation ρ > ρ1 translates into ra > rb in the photonic
regime. (d) Unit cells used for the characterization of a topological PhC where the relation between the hopping terms ρ = ρ1 is realized in
the photonic regime with the relation between the structural parameters ra = rb. (e) Photonic spectrum corresponding to the topological PhC
formed with the unit cells of (d). Only the appearance of type-I corner states arises in the middle of the photonic gap and the field distribution
is shown in (f).

in the presence of severe structural defects. In this regard,
Figs. 7(b)–7(d) show the dependence of the QTICS, QTIICS,
and QTIIICS factors on the different Nd defects, where d ranges
from 1 to 6. The last value of the Q-factor plots corresponds to
the case where no structural defects are present. In addition,
for visual purposes, in the inset of Figs. 7(b)–7(d), we show
the field distribution corresponding to each corner state for
the case where the N2 defect is present. From the robustness
analysis of the corner states, we can appreciate that the de-
fects closest to the topological corner (N1, N2, and N3) have
the largest effect on the Q factors. However, from defect N4

onwards, the variation of Q tends to be negligible. If we take

FIG. 7. Analysis of the robustness against disturbances in the
three types of corner states. (a) Representation of the hole removal
process. The holes are removed systematically and consecutively,
starting from the first elliptic hole following the topological corner
on the main diagonal of the nontrivial PhC. (b)–(d) Relationship of
the Q factors corresponding to each corner state with the different
types of defects removed. For visual purposes, the field distribution
of each corner state is included to indicate that the field profile does
not undergo significant changes.

the total variation of Q factors from N1 to the case without
defects, we obtain a variation of no more than 1.1%. These
results show that in addition to having high Q factors, the
type-II and -III corner states have robustness against defects
comparable to that of the type-I corner states.

V. CONCLUSION

In summary, we have investigated the effects of LRI on
an extension of the 2D SSH model that exhibits an asym-
metric coupling between intercellular NNNs. We have shown
that the coupling asymmetry allows the separation of corner
states from edge states that fall within the band gap of the
HOTI phase. In this sense, we predict the existence of type-III
corner states in the asymmetric strong-coupling case between
intercellular NNNs, favoring the unfolding of the edge state
continuum. Once we return the symmetry couplings between
intercellular NNNs preserving the strong-coupling regime, the
type-III corner states disappear, returning to their original
form as edge states. Subsequently, upon leaving the strong-
coupling regime between the intercellular NNNs, the type-II
corner states also hybridize with the edge states, leaving only
the zero-energy type-I corner states isolated in the gap. We
confirm the predictions made by the analytical tight-binding
model by first-principles calculations on a photonic model
made with a topological PhC slab with elliptic air holes tilted
at 45◦, mimicking the asymmetric coupling of the proposed
tight-binding model. In this way, we are able to bring the type-
III corner state concept into the photonic regime. These results
extend the knowledge we have about how LRIs dictate the
behavior of topological states in HOTI phases. Furthermore,
we believe that the obtained results allow us to further relate
the HOTI concepts to the photonic regime by exploiting the
versatility offered by such systems.
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