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Interacting Stark localization dynamics in a three-dimensional lattice Bose gas
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We measure the thermalization dynamics of a lattice Bose gas that is Stark localized by a parabolic potential.
A nonequilibrium thermal density distribution is created by quickly removing an optical barrier. The resulting
spatiotemporal dynamics are resolved using Mardia’s B statistic, which is a measure sensitive to the shape
of the entire density distribution. We conclude that equilibrium is achieved for all lattice potential depths
that we sample, including the strongly interacting and localized regime. However, thermalization is slow and
nonexponential, requiring up to 500 tunneling times. We show that the Hubbard U term is not responsible
for thermalization via comparison to an exact diagonalization calculation, and we rule out equilibration driven
by lattice-light heating by varying the laser wavelength. The thermalization timescale is comparable to the
next-nearest-neighbor tunneling time, which suggests that a continuum, strongly interacting theory may be
needed to understand equilibration in this system.
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I. INTRODUCTION

Localization in many-particle quantum systems is an in-
tense topic of active research [1–3]. Work in this area
involving ultracold quantum gases has primarily focused on
localization arising from disorder, interactions, and the in-
terplay between the two [1–3]. Another less explored source
of localization is a potential gradient which acts through the
Wannier-Stark effect in lattice systems [4]. In this scenario,
localization arises solely from energy shifts between sites that
are comparable to the lattice bandwidth. The influence of
many-particle quantum effects and interparticle interactions
on Stark localization is an open question.

Recent numerical studies have probed Stark localization
in interacting spin [5] and lattice models [2,6–8], including
the connection to many-body localization (MBL). For lattice
systems, the transition between ergodic behavior and MBL
for increasing potential gradient has been shown in energy-
level statistics for spinless fermions [6] and the Bose-Hubbard
model in one dimension [2]. Furthermore, logarithmic entropy
growth consistent with MBL was found for an interacting
fermionic system with nearest-neighbor interactions in one
dimension [7]. Work in higher dimensions has been limited;
studies have revealed Stark localization in two dimensions for
hard-core bosons at higher gradients compared to the one-
dimensional case [8].

There have been few experimental observations of inter-
acting Stark localization. A chain of ions with long-range
spin-spin coupling has displayed a lack of thermalization and
slow propagation of correlations in the presence of a lin-
ear potential gradient [9]. Interacting Stark localization has
also been observed in a chain of transmon superconduct-
ing qubits [10] and in a quantum-gas tilted one-dimensional
Fermi-Hubbard model [11]. In a two-dimensional Fermi-
Hubbard lattice gas, applying a large potential gradient
along one direction generated subdiffusive behavior and slow
dynamics [12].

We measure interacting Stark localization dynamics in a
three-dimensional lattice Bose gas. Ultracold 87Rb atoms are
trapped in a cubic optical lattice, which (in the tight-binding
limit) realizes the Bose-Hubbard model:
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where t is the (nearest-neighbor) tunneling energy, i and j are
lattice site indices, 〈i, j〉 represents a sum over nearest neigh-
bors, U is the on-site interaction energy, and n̂i = b̂†

i b̂i gives
the number of atoms at site i. The tunneling and interaction
energies can be adjusted by tuning the lattice potential depth
s, which is controlled by the optical power of the 812-nm
lattice light. The parabolic trapping potential with frequency
ω provides a spatially varying potential gradient. While the
trap is treated as spherically symmetric in Eq. (1), there are
three principal axes with different trap frequencies in the
experiment.

Potential gradients large enough to produce localization are
achieved by using a thermal gas and excluding atoms from the
center of the trap by a potential barrier. We access a range of
localized states by tuning the lattice potential depth s. By in-
creasing s and thereby reducing t , more particles are localized
since a smaller gradient is required for Stark localization. We
characterize the degree of localization by computing the den-
sity distribution of the initial state and identifying particles as
localized along a lattice direction if the local gradient exceeds
the bandwidth 4t . More details are available in Appendix A.
By this measure, 0% (93%) of the atoms are localized along
one direction, and 0% (80%) are localized along all directions
for s = 4ER (s = 20ER). This lower bound on localization
corresponds to atoms confined to a single lattice site. To find
an upper bound on localization, we have used exact diago-
nalization of the one-dimensional single-particle Hamiltonian,
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FIG. 1. Procedure to prepare the initial density distribution. After
trapping and cooling a thermal gas (red) in a harmonic potential
with a repulsive optical potential (blue) present, a cubic optical
lattice is slowly turned on. The plot shows the number of atoms per
lattice site n for a slice through the predicted density profile (red
filled curve) along with the parabolic trapping (solid blue curve) and
barrier (dashed blue curve) potentials versus position r. A sample
column-integrated image taken for the initial state at s = 10ER is
displayed.

and we define delocalized states as those having weight on the
central lattice site (as in Ref. [13]). This less stringent upper
bound on localization considers a state to be localized if it
is excluded from the central (lowest-energy) lattice site. For
the initial density distribution, all particles are localized by
this criterion along at least one direction, and 30% (80%) are
localized in all three directions for s = 4ER (s = 20ER).

II. STATE PREPARATION

We study dynamics by first creating an equilibrium thermal
gas composed of 61 000 ± 6000 atoms confined in an optical
dipole trap with a (54.6 ± 0.4)-Hz geometric mean trap fre-
quency created with 1064-nm light. The gas is evaporatively
cooled in the presence of an optical barrier that excludes
atoms from a central region. The barrier is formed from a
blue-detuned 766-nm laser beam that is focused backward
through the imaging system to a (6 ± 1)-µm beam waist. For
the measurements discussed here, the optical power is kept
fixed, resulting in a barrier with a peak potential of V =
(9000 ± 5000)kB × nK. The large uncertainty in the barrier
potential does not introduce significant uncertainty in the ini-
tial density distribution since this energy scale is much larger
than the 115 ± 10 nK temperature. Given this condition, a
hard-wall potential is formed, and the atoms are completely
excluded from a cylindrical region with a 14d radius (where
d = 406 nm is the lattice spacing) that penetrates through the
gas.

After creating a thermal gas, the lattice potential is
smoothly ramped up over 100 ms to s = 4ER. The temperature
of the gas in the lattice is 210 ± 40 nK, which is determined by
fitting the tails of the density distribution (see Appendix B). To
study relaxation at higher lattice depths, the lattice potential
is quickly increased over 0.4 ms, which is slow enough to
avoid band excitation but too fast to allow the density profile to
adjust. Therefore, for all data in this paper, the initial density

FIG. 2. Relaxation of the density profile. A series of images
taken for s = 7ER is shown, with corresponding measurements of
B, for different times after the optical barrier potential is removed.
Mardia’s B increases towards the equilibrium value over long times
as the hole disappears from the density profile. The error bars show
the standard deviation for the four to six measurements averaged
at each hold time. The gray dashed line shows B for a Gaussian
distribution, and the gray bar displays the range of B values expected
for a gas in equilibrium (see Appendix C). The elliptical mask used
to suppress the effect of imaging noise is superimposed (light blue)
for the image at thold = 10 s. The solid black line is a fit to a stretched
exponential. The stretched exponential fits the data well for all lattice
depths with adjusted R2 values ranging from 0.87 to 0.97.

profile is approximately fixed to the distribution realized at
s = 4ER.

The resulting density profile in the lattice is Gaussian on
the edges of the distribution but has a completely empty
region in the center (Fig. 1). To determine the number of
atoms per site, we simulated the density distribution using
Maxwell-Boltzmann statistics and the atomic limit. A peak
density of 0.2 atom per site occurs just outside the edge of the
barrier potential, and the gas has an rms size of approximately
40d , which is 30% larger than a gas at the same temperature
without the barrier present.

To observe dynamics, we remove the barrier by quickly
extinguishing the 766-nm laser beam over 300 µs. The den-
sity distribution is allowed to evolve in the trap and lattice
potential for a variable time. After this evolution time, an
image is taken in situ with variable repumping to control the
optical depth and to mitigate imaging artifacts. By partially
repumping the gas to the imaging state we operate in a regime
well below the maximum optical depth that can be observed.

III. OBSERVATIONS OF DYNAMICS

Typical images for different evolution times are shown in
Fig. 2 for s = 7ER. The hole in the density profile disappears
over hundreds of milliseconds. We use Mardia’s B statistic,
which is a kurtosislike measure of Gaussianity, to quantify the
dynamical timescale for this change and to determine whether
the distribution ultimately achieves equilibrium. Mardia’s B is
a multivariate measure that is affine invariant and robust to the
overall size, angle, and aspect ratio of the distribution (which
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FIG. 3. Long-time value of B determined from stretched-
exponential fits such as those shown in Fig. 2. Mardia’s B reaches
a value consistent with equilibrium for all lattice potential depths s.
The error bars show the fit uncertainty. The dashed line shows the
value of B for a Gaussian distribution (taking into account image
masking), and the gray bar is the range of B for an equilibrated gas
determined by measurements without the barrier potential present in
the initial state.

vary over the range of experimental parameters). Unlike other
measures that have been used to probe density relaxation
in strongly correlated lattice gases [9,11,12], Mardia’s B is
sensitive to the overall shape of the density profile. These
features make B an ideal measure for probing relaxation since
the equilibrium thermal density distribution is Gaussian for a
trapped gas. Mardia’s B statistic for an image is determined
according to

B = 1

8
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wi is the normalized weight at pixel i, xi (yi) is the horizon-
tal (vertical) position of pixel i, and x̄ (ȳ) is the horizontal
(vertical) centroid [14]. To suppress the impact of imaging
noise, we mask the contribution of pixels at large radii, which
introduces a small systematic shift in B for an equilibrium
Gaussian distribution (see Appendix C). For all lattice depths
probed in this work, we find that the time dependence of B fits
well to a stretched exponential: B = B∞ − A e−(thold/τ )β , where
thold is the hold time, B∞ represents the long-time value of B,
τ is a time-constant-like parameter, and β is the stretching
exponent (Fig. 2).

Using this method, we observe that equilibrium is achieved
at long times for s = 4 − 20ER (Fig. 3), which includes the
regime of complete single-particle localization along at least
one lattice direction and nearly complete localization along
three directions for all particles. This behavior suggests that
Wannier-Stark localization is disrupted since localization for
particles along even one direction would prevent thermaliza-
tion of the density profile. We have verified that the emergence
of a Gaussian density distribution at long times is not an

FIG. 4. The relaxation time τ and stretching exponent β deter-
mined from fits of B for varied lattice potential depth s. The error
bars show the fit uncertainty. (a) The relaxation time rapidly increases
above s = 6ER, exceeding several seconds for the highest lattice
potential depths. (b) The stretching exponent exhibits nonexponential
relaxation for s < 15ER. The dashed line shows agreement with
exponential behavior.

artifact of anharmonicity. A simulation of semiclassical dy-
namics for a system of noninteracting, trapped particles with
a lattice dispersion indicates that a detectable remnant of the
hole in the density profile persists to long times in the absence
of interactions (see Appendix D).

The timescale τ for establishing equilibrium grows with
increasing lattice depth and exceeds several seconds at the
highest lattice depth, as shown in Fig. 4(a). This trend is
consistent with our previous measurements of quasimomen-
tum relaxation [15], which revealed more rapid relaxation
at higher lattice depths. Faster relaxation of momentum im-
plies slower equilibration of the density distribution since the
self-diffusion constant is proportional to the time-integrated
velocity autocorrelation function [16]. The timescale for ther-
malization τ rapidly increases for s > 6ER, which is the
regime for which we observed violation of the Mott-Ioffe-
Regel criterion [15]. In this regime, doublon binding and
un-binding also become energetically suppressed [17–19],
leading to slow dynamics for atoms located on the same site
to break apart (and for two separated atoms to tunnel onto the
same site).

We also observe that equilibration is nonexponential, ex-
cept at the highest lattice depths sampled here. Figure 4(b)
shows how the stretching exponent β changes with s. The
expectation for gases that are weakly interacting or diffusive
is exponential relaxation and β = 1 [16]. However, for s <

15ER, we observe subdiffusive behavior (i.e., β < 1), which
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FIG. 5. Relaxation time normalized to the tunneling time h̄/t for
varied lattice potential depths s. The error bars are determined by
fit uncertainty. The solid blue line shows the fraction of particles
localized in every direction for the initial state, where localization
is defined as exclusion from the central lattice site. The dashed black
line shows the next-nearest-neighbor tunneling time normalized to
h̄/t .

was also measured in a thermal two-dimensional tilted Fermi-
Hubbard system [12] and for a Bose-Einstein condensate
confined in a quasiperiodic lattice in the presence of repulsive
interactions [20].

Previous theoretical and experimental work has shown that
a dramatic slowdown of relaxation and nonexponential be-
havior can be induced by localization [21–26]. To separate
localization from the suppression of tunneling as the lattice
depth is increased, we show the measured relaxation time
τ normalized to the single-particle characteristic timescale
h̄/t in Fig. 5. The normalized relaxation time approximately
follows the fraction of localized particles, which suggests that
equilibration is induced by an intrinsic delocalizing effect or
interaction with the environment.

There are several candidates that may disrupt localization.
The most significant interaction effect is the Hubbard energy
U , which captures the effect of collisions between particles
on the same lattice site. We find that the Hubbard U term does
not disrupt localization at the low densities and high lattice
depths that we probe here through an exact diagonalization
calculation. Interactions reduce the thermally averaged frac-
tion of localized eigenstates for the two-particle Hamiltonian
by 20% at s = 4ER. This effect is suppressed at higher lattice
depths. For s = 10ER, interactions have a 1% effect, and the
effect of U at s = 20ER is insignificant (see Appendix E).

We also find that heating induced by the lattice light [27],
which is the strongest coupling to the environment, is likely
not responsible for thermalization. To determine the influ-
ence of lattice-light heating, we measured τ at fixed s but
different lattice wavelengths (Fig. 6). Across the range we
sampled, the heating rate changes by a factor of 4, but the
measured relaxation time changes by only 15%. We conclude
that heating induced by the lattice light is not the dominant
source of relaxation. The effects of lattice-light heating on the
temperature of the final state are considered in Appendix F.
We note that scattering from the 1064-nm optical dipole trap
laser light is one tenth of the scattering from the lattice light at
s = 20ER and is constant across all lattice depths. Therefore,

FIG. 6. Relaxation time at s = 10ER for varying lattice wave-
length. The lattice potential depth was kept fixed by tuning the lattice
laser optical power. The dashed gray line shows the dependence of
the lattice heating rate on wavelength. The error bars are determined
by fit uncertainty. Based on a bootstrap analysis, the measured slope
2.9 ± 0.8 ms/nm is inconsistent with the predicted scaling at greater
than the 99.99% confidence level.

we conclude that scattering from the 1064-nm light is also not
a significant source of relaxation.

Atoms in excited bands of the lattice could also play a role
in delocalization. We calculated the fraction in the higher-
energy bands for a gas in a s = 20ER lattice at the temperature
observed at the longest hold time (10 s). We determine that
30% of the atoms are in the first excited band, and 5% are in
the second excited band. The bandwidth of the first excited
band, 0.24ER, is larger than the ground band but still small
relative to the gradient away from the center of the trap.
Therefore, approximately 70% of the atoms in the first excited
band are localized to a single lattice site. We conclude that
excited-band population cannot explain thermalization.

Another source of delocalization and thermalization may
be terms beyond the Bose-Hubbard expansion. They represent
the full physics of atoms undergoing s-wave collisions in a
continuous sinusoidal potential. The largest of these terms
is next-nearest-neighbor tunneling. The timescale associated
with the next-nearest-neighbor tunneling energy is shown in
Fig. 5. Across the range of lattice depths we probe, this
timescale is within an order of magnitude of τ , implying that
this effect may play a role in equilibration. The timescale
associated with the next largest beyond-Bose-Hubbard term,
nearest-neighbor interactions, corresponds to 90 ms at s =
4ER and 97000 ms at s = 20ER and is therefore likely too
small to contribute.

We conclude that a continuum model of interacting lattice
bosons may be required to explain the measured thermal-
ization dynamics. These results also highlight the need for
more work on understanding thermalization for strongly cor-
related systems in regimes that involve the interplay of
interactions, localization, and constraints such as doublon
binding. Furthermore, our results are consistent with previous
measurements of slow thermalization for mass transport in
the low-temperature regime [28] and have important impli-
cations for observing equilibrium physics in optical lattice
experiments.
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FIG. 7. A lower bound on localization. The blue squares show
the fraction of atoms localized to a single lattice site in all three
directions. The black circles show the fraction of particles local-
ized along at least one lattice direction. The open and solid circles
represent different lattice directions. The slight differences between
lattice directions arise because the lattice axes are not aligned to the
principal axes of the trap.

ACKNOWLEDGMENTS

We thank B. Gadway for useful discussions regarding in-
teracting Stark localization and exact diagonalization. This
work was supported by the National Science Foundation
through Grant No. PHY-2110291.

APPENDIX A: LOCALIZATION ESTIMATE

The lower bound on localization was determined by sum-
ming the number of atoms on sites where the overall trapping
potential gradient is greater than 4t/d for the initial state.
We carried out this procedure for each direction of the lattice
independently. The results are shown in Fig. 7.

To obtain an upper bound on localization, we used exact
diagonalization to find the eigenstates of a one-dimensional,
single-particle, tight-binding Hamiltonian with a harmonic
potential centered on a 300-site lattice. We characterize an
eigenstate as delocalized if it has at least 0.1% probability
on the central lattice site. The results are not sensitive to the
choice of threshold probability. To determine the fraction of
atoms localized in the initial state, we project the Wannier
state on each lattice site onto the energy eigenstate basis. We
average the localized probability on each lattice site weighted
by the number density distribution (Fig. 8).

In order to produce an average across the atomic den-
sity distribution, we treat the wave functions as separable
(i.e., products of wave functions that depend on only one
coordinate). The fraction of the atomic wave function that
is localized at each site is determined for each direction
independently. The measure of the localization fraction for
all three directions is calculated by multiplying together the
localization fraction in each direction (for each lattice site).
The averages shown in Fig. 8 are calculated using the three-
dimensional number-density distribution as a weight.

For this upper-bound calculation of localization, we find
that approximately 70% of the particles are localized in at

FIG. 8. Upper bound on localization. The blue squares represent
the fraction localized in all three directions. The black open circles
represent the fraction localized along the direction of the optical
barrier propagation, and the black solid circles represent the fraction
localized along the direction perpendicular to the propagation.

least one direction, even for the lowest lattice depths. The
localization fraction increases with lattice depth to a plateau
near 95% for the most localized direction (Fig. 8).

APPENDIX B: INITIAL DENSITY DISTRIBUTION

The frequencies of the trap before turning on the lattice
were measured by inducing small oscillations. We determined
that one principal axis is oriented vertically with a frequency
of 73.9 ± 2.0 Hz and the other two are in the horizontal
plane with approximately equal frequencies, 48.2 ± 2.0 and
45.7 ± 2.0 Hz. The additional confinement from the lattice
beams is included in modeling the density profile. Given sys-
tematic uncertainty, we estimate that the lattice beam waist is
120+30

−10 µm based on the consistency between the lattice beam
power, lattice potential depth, and measurements of the forces
induced by the envelope of the lattice beams.

The temperature of the initial state, 210 ± 40 nK, after
turning on the lattice was determined by fitting an in situ
image of the gas to a Gaussian function. The central region of
the gas where the density is excluded by the barrier potential
is masked for this fit, so that the temperature is determined
by the tails of the density distribution. The temperature mea-
sured using this method was checked by entropy matching
[29]. Based on an expansion velocity measurement of the
temperature 115 ± 10 nK before turning on the lattice, the
entropy-matched temperature in the lattice is predicted to be
210 ± 35 nK.

The parameters for the barrier potential were determined
by fitting an in situ image of the gas to a Maxwell-Boltzmann
distribution. For this procedure, the overall potential V was
modeled as a combination of an attractive harmonic potential
and a repulsive potential arising from a focused Gaussian
laser beam. A measurement of the optical power was used to
constrain the magnitude of the barrier potential, leaving just
the waist as a free parameter in the fit.

The density distribution of the initial state was modeled via
an atomic-limit calculation. The potential energy, including
the harmonic confining potential, the barrier potential, and
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the additional confinement from the 4ER lattice beams, was
determined for each lattice site. The number of atoms at each
site was determined using the potential energy, interaction
energy, and measured temperature for a basis of zero to three
particles and a Maxwell-Boltzmann distribution. An overall
chemical potential was varied to match the total atom number.
We find that 10% of the atoms are on doubly occupied sites
for the initial state. The impact of interactions on the density
distribution is small—the rms size of the gas associated with
the tails of the density distribution changes by only 2% for
U = 0.

APPENDIX C: MARDIA’S B STATISTIC

The calculation of Mardia’s B statistic is sensitive to imag-
ing noise. To reduce these effects, a defringing technique was
applied to the images [30]. Furthermore, a mask was used to
calculate B for only the region of the image with sufficient
signal-to-noise ratio. The mask was determined by fitting the
tails of the distribution to a Gaussian in an elliptical coordinate
system with the angle of the axes as a free parameter. The
mask was applied at three times the rms radii from this fit.
This procedure provides a balance that eliminates nearly all
background noise while introducing only a small systematic
shift. The shift in B for a Gaussian distribution based on this
procedure is −0.07, which was determined by applying this
procedure to generated images of perfect Gaussians. To check

the validity of Mardia’s B statistic as a measure of equilib-
rium, we measured B for several equilibrium gases with no
barrier potential present. We find that B ranges from −0.10 to
−0.05, which is consistent with the value for a masked, ideal
Gaussian distribution.

APPENDIX D: NONINTERACTING DYNAMICS

In a harmonically trapped system with a free-particle dis-
tribution, the phase-space distribution describing the position
and momentum of noninteracting particles rotates at the trap
frequency. These dynamics will not lead to relaxation. The dy-
namics in a system with a lattice dispersion is more complex,
and it is possible that dephasing of trajectories could mimic a
Gaussian density distribution at long times.

To rule out this scenario, we simulate semiclassical dy-
namics for noninteracting particles with a lattice dispersion
confined in a parabolic trap. We work in two dimensions
and use a symmetric trap with a frequency corresponding to
the geometric mean trap frequency in the experiment. In the
simulation, the lattice axes are rotated from the trap axes by
47◦; we find that the results are not sensitive to this angle. The
initial conditions for 10 000 particles are chosen randomly
from a Maxwell-Boltzmann distribution that includes the bar-
rier potential.

Euler’s method is used to simulate the motion of each
particle according to Newton’s equation for time t . Mardia’s

FIG. 9. Simulation of semiclassical dynamics. Two scenarios are simulated at much lower temperature (20 nK) compared with the
experiment for s = 4ER: (a) an initial condition at equilibrium and without the barrier and (b) an out-of-equilibrium distribution produced
using the barrier potential. Simulations of a 200-nK out-of-equilibrium distribution at (c) s = 4ER and (d) s = 20ER.
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FIG. 10. Simulation of the time-dependent column-integrated density profile for (a) 20 nK and (b) 200 nK gases.

B statistic is determined for a column-integrated density dis-
tribution. The results of this simulation are shown in Fig. 9.
To probe dynamics in a system with relatively few localized
states, the dynamics are simulated at s = 4ER for 20 nK,
which is a much lower temperature compared with the exper-
iment, 210 ± 40 nK. For the equilibrium case, the dynamics
preserve the initial distribution [Fig. 9(a)]. In contrast, initial
dynamics for the out-of-equilibrium case settle into station-
ary, but not equilibrium, behavior after approximately 0.1 s
[Fig. 9(b)].

The short-time dynamics are suppressed in the higher-
temperature regime explored by the experiment. Simulations
for 200 nK at s = 4ER and s = 20ER are shown in Figs. 9(c)
and 9(d). At these temperatures, a quasistatic distribution is
achieved at short times. Furthermore, dynamics present at low
lattice depth disappear for stronger lattices.

Snapshots of the column-integrated density profile for
20 nK [Fig. 10(a)] and 200 nK [Fig. 10(b)] at s = 4ER provide
more information about the difference between the low- and
high-temperature cases. At low temperatures, many particles
are free to move, and the short-time dynamics are similar to
the free-particle case. Eventually, the lattice dispersion leads
to dephasing of particle trajectories, and a nonequilibrium sta-
tionary density distribution emerges. For higher temperatures
or stronger lattices, most of the particles are Stark localized,
motion is not possible, and the initial density distribution is
preserved to long times.

APPENDIX E: INTERACTION EFFECTS

We carried out an exact calculation to probe the impact
of interactions on localization. We created a set of basis
states consisting of all possible configurations of two particles

populating a one-dimensional, 60-site lattice centered on a
parabolic potential. The Bose-Hubbard Hamiltonian was diag-
onalized using this set of basis states. We defined eigenstates
with less than 0.001% probability on the central lattice site as
localized. We determined a localization fraction averaged over
the equilibrium distribution by taking the thermal average of
the eigenstates at the measured long-time temperature (which
depends on s). The results of this calculation vary by less
than 10% for a range of 0.0002% to 0.005% in the probability
threshold for localization.

We find that interactions modify the localized fraction at
low lattice depths but do not affect localization at high lattice
depths (Fig. 11). The small influence of interactions may,

FIG. 11. Fraction of atoms localized for interacting (open black
circles) and noninteracting (solid blue circles) atoms for the equilib-
rium distribution.
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in part, be due to the relatively small presence of doubly
occupied sites. For the final state at 4ER (20ER), we estimate
that 5% (2%) of atoms are located on a doubly occupied site.

APPENDIX F: TEMPERATURE OF THE FINAL STATE

Since removing the potential barrier is diabatic, we expect
that the final-state temperature will be larger than that of the
initial state. Furthermore, increasing the lattice potential adds
potential energy from added parabolic confinement, and the
lattice light heats the atoms.

To check that the final state is consistent with these effects,
we calculated the equilibrium temperature by matching the
total energy per particle. We used a three-dimensional atomic-
limit calculation and Maxwell-Boltzmann statistics for a basis
involving zero to three atoms per site. An overall chemical
potential was used to match the particle number. We com-
puted the energy per particle for the initial state, added the

potential energy from increasing the lattice potential depth,
and incorporated heating from lattice-light scattering [27]. We
determined the final-state temperature needed to match the
resulting energy per particle. For a 10-s hold time, we find
an expected temperature of 390 ± 40 nK for a 4ER lattice and
1200 ± 120 nK for a 20ER lattice.

We compare the expected temperature to the temperature
determined by fitting images obtained at 10 s to a Gaus-
sian distribution. At s = 4ER, the measured temperature is
390 ± 40 nK, which agrees with our estimate. At s = 20ER,
the measured temperature of 700 ± 180 nK is below our ex-
pectation. This discrepancy may be attributed to atom loss,
which can lead to a cooling process that competes with heat-
ing. Since atom loss is driven by lattice-light scattering for our
experiment (the vacuum-limited lifetime exceeds 5 min), this
effect will be stronger at higher lattice potential depths. We
measure that approximately 40% of the atoms are lost after
10 s at s = 8ER.
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