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In a recent experiment [P. Weckesser et al., Nature (London) 600, 429 (2021)], the quantum s-wave regime was
attained for an alkali-metal and alkaline-earth atom-ion combination (LiBa+). We investigate possible outcomes
from the interaction of this ion-atom pair at quantum regimes from a theoretical point of view. For this purpose,
Born-Oppenheimer potential energy surfaces are constructed for the three lowest dissociation channels of the
(Ba-Li)+ molecular system using a multireference configuration interaction electronic-structure calculation. We
present elastic, spin-exchange (SE), and diffusion cross sections in different energy regimes. The collisional
properties of this system are calculated in terms of the scattering phase shifts and scattering cross sections, and
the semiclassical behavior at a relatively high energy limit is also examined. For SE collisions, phase locking is
obtained towards lower partial waves.

DOI: 10.1103/PhysRevA.107.043323

I. INTRODUCTION

Synthesization of cold molecules or molecular ions from
cold atoms or ion-atom (IA) mixtures is a major research
topic in the domain of atomic and molecular physics. Amidst
several methods available for the formation of cold molecules,
two of the most important methods are photoassociation (PA)
[1] and magnetoassociation (MA) [2] at ultracold tempera-
tures. The rich structure of the cold molecular ions purveys
many new applications and research directions from precision
measurements to quantum computing and quantum simula-
tion [3]. In the realm of ultracold temperatures, where the de
Broglie wavelength becomes comparable to or longer than the
particle size or interparticle separation, such systems exhibit
several quantum effects, for example, resonances and tunnel-
ing. This provides an opportunity for understanding controlled
chemical reactions at ultracold energies.

The IA combination has received considerable attention
and impressive evolution over the past decade. By harnessing
the mutual interaction between the two quantum systems,
namely, an atom and an ion, an integrated IA hybrid setup
has been formed [4]. The interaction between an ionic species
and a neutral particle is governed by the electrical induction
process. It can be understood in terms of the interaction of the
charge of an ion with the electrons of neutral atoms. Generally,
these induction-controlled interactions are stronger compared
to van der Waals types of interactions. Whenever a neutral
atom comes near an ion, the atom is polarized by the electric
field of the ion, i.e., the ion induces a dipole moment in the
atom and thereby interacts with it. The IA interaction potential
is given by V (R) = −C4/R4, where C4 is the induction coef-
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ficient which depends on the static polarizability of the atom.
These hybrid systems may offer a new platform for investi-
gating elastic, inelastic, and reactive collisions between ions
and atoms at low temperatures. Ion-atom collisions are impor-
tant to understand charge transport phenomena [5], IA bound
states [6], cold-molecular ions [7], etc. Recently, SE reaction
processes have been investigated in IA colliding systems [8,9].
It has been proposed that controlled IA cold collisions may be
used for future quantum information processing [10].

Over the past couple of years, there have been several
studies on alkali-metal atom and alkaline-earth ion systems.
The frequent use of alkaline-earth ionic species in most of
the hybrid IA experiments is due to its suitability for laser
cooling, which aids in achieving low IA collision energies.
Some of the important and well-studied heteronuclear alkali-
metal–alkaline-earth IA systems are Na-Be+ [11], Na-Ca+

[12], Rb-Ca+ [13], Rb-Yb+ [14], Li-Yb+ [15], K-Mg+ [16],
and Cs-Mg+ [17]. Apart from heteronuclear IA combination,
studies have also been made on homonuclear alkaline-earth–
alkaline-earth systems, e.g., Be-Be+ [18], Mg-Mg+ [19], and
Yb-Yb+ [20]. In most of these studies, cold collisions, the for-
mation of molecular ions, and Feshbach resonances (FRs) are
the major goals accomplished by either PA or MA; however,
experimental realization of such important phenomena is yet
to be achieved.

A usual experimental obligation of IA systems towards
achieving low temperatures is that the ions cannot be cooled
to μK or sub-μK temperatures due to the presence of inherent
trap-induced micromotion. The heavier the ion is, the less
micromotion there is and thereby the more suitable it is for
cooling. Theoretically, it has been proposed that the lowest-
energy regimes may be reached for an IA combination having
the highest mass ratio [21]. In a very recent experiment, the
quantum regime was reached with an alkali-metal–alkaline-
earth IA system having a mass ratio of approximately 23–28.
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The Li-Yb+ system [22,23] is an early workhorse in this ef-
fort. In this system the s-wave regime is attained at a collision
energy of 8.6kB μK, where kB is the Boltzmann constant. The
investigation comprises the spin dynamics of a single trapped
Yb+ ion in a cold spin-polarized bath of Li atoms without any
signature of FR in such an energy limit.

In the experiment by Weckesser et al. [24], FRs were de-
tected in the case of a single trapped 138Ba

+
ion and 6Li atoms.

For this system, a total number of 11 FR were identified out
of which four were due to s-wave FR for different values of
the tunable magnetic field. This number of observed reso-
nances is mainly due to the additional interaction, namely, the
second-order spin-orbit coupling (SOC). This coupling mixes
internal states (mF ) with the rotational motion (l, ml ), causing
the increased number of resonances [25] in the 6Li-138Ba+

system. These encouraging results provide deeper insight into
IA interactions, thereby paving a way to explore complex
many-body systems and quantum simulations. For low-energy
domains, especially in the μK or sub-μK regime, quantum-
mechanical scattering calculations are inevitable to describe
the IA interactions, where the scattering is characterized by
quantum phase shift in the scattered wave function. Quantities
such as scattering length in the s-wave regime and scattering
cross section can be calculated in terms of this quantum phase
shift. At a larger energy limit E � 1kB mK, a simpler semi-
classical description is useful.

In most of the alkali-metal–alkaline-earth IA systems the
choice of initial collision channel lies at the excited asymptote
with a lighter-atom–heavier-ion combination. This choice is a
matter of experimental compulsion as a heavier ion is favor-
able for cooling, as discussed earlier. A disadvantage of this
situation is that the excited asymptote is short lived and decays
to the ground asymptotic channel through radiative charge
exchange collisions. As an interesting exception, however,
the collisional asymptote of Li-Ba+ is energetically lower
than that of Li+-Ba. Thus, the initial collision channel for
the (BaLi)+ IA system is naturally chosen to be the Li-Ba+

ground collisional asymptote [24], which is free from the
radiative charge-transfer loss mechanism and therefore has a
much much longer lifetime compared to other IA systems.
Along with this, as discussed earlier, this particular IA system
allows an ultracold window to study controllable collision res-
onances. Thus, from an experimental point of view, compared
to other IA systems, the 6Li-138Ba+ system turns out to be an
extremely novel one.

Depending on the orientation of the electronic spin lo-
cated at each species in their ground state, two molecular
potentials are formed: a singlet Sigma (X 1�+) and a triplet
Sigma (a3�+) at the short-range IA internuclear separation.
These two potentials offer elastic collisions and inelastic SE
collisions in low-energy regimes. In the presence of second-
order SOC, the total spin projection is not conserved during
collision, tendering the possibility of spin relaxation (SR)
[26]. The SR competes with the SE process and weakens the
spin control of the system. In the ultracold regime, however,
the rate of SR becomes much slower [27] than the Langevin
collision rate and the former is strongly suppressed. While
studying SE collisions at low energies, partial-wave phase
locking (PWPL) [27] has been observed where the difference

in the quantum phase shifts due to the two potentials is found
to be independent of the partial-wave quantum number.

In this paper our theoretical investigation with the
6Li-138Ba+ system is organized as follows. In Sec. II we
exploit the ab initio method for calculating electronic struc-
tures of the (BaLi)+ system. We present in Sec. III a detailed
prospective scheme to realize FR in the system. Section IV
is devoted to investigating IA collisions employing the elec-
tronic states X 1�+ and a 3�+ which go asymptotically to the
same dissociation limit. We determine the collisional prop-
erties in terms of scattering phase shift and scattering cross
section and attempt to justify the semiclassical behavior at a
relatively high-energy limit. We also study the PWPL effect at
low energies. We summarize in Sec. V.

II. AB INITIO CALCULATION

In this section we describe ab initio calculations to
construct the potential energy surface of a heteronuclear
IA system (BaLi)+. The ab initio calculations are per-
formed using the MOLPRO 2012.1 software package [28]. The
electronic-structure calculations are performed by the mul-
tireference configuration interaction (MRCI) with additional
Davidson correction that approximately accounts for the size
consistency and higher excitations.

The ground-state electronic configurations of the Ba and
Li atoms are expressed as [Kr]364d105s25p66s2 and 1s22s1,
respectively. The lighter candidate lithium is described by
the correlation consistent polarized valence quadruple-ζ basis
set with augmenting functions, e.g., aug-cc-pwCVQZ [29].
For the barium atom, a pseudopotential-based correlation
consistent polarized weighted core valence triple-ζ basis set
(cc-pwCVTZ-PP) is used [30], where the inner core electrons
are described by the Stuttgart-Köln effective core potential
([ECP46MDF] [31]).

The inner core electrons of Ba are replaced by core po-
tentials ECP46MDF, leaving eight subvalence (5s5p) and two
valence (6s) electrons in the outer shell. Therefore, the effec-
tive number of molecular orbitals of (BaLi)+ is reduced to
seven, where orbitals 5s5p6s and 1s2s appear from the Ba
and Li atoms, respectively. These occupied molecular orbitals
are expressed as (5a1, 1b1, 1b2, 0a2) or (5, 1, 1, 0) in the C2v

Abelian point group symmetry used by MOLPRO. We define
an active space denoted by (9, 4, 4, 1) in which the 5d6p
atomic orbitals of Ba and 2p atomic orbitals of Li are included
in the reference space. The doubly occupied orbitals are set
to (3, 1, 1, 0). The energies of the molecular orbitals on this
active space are calculated in the following way: Initially, the
spin-restricted optimized Hartree-Fock molecular orbitals are
used as solutions for the complete-active-space self-consistent
field (CASSCF) problem. Thereafter, a dynamical correlation
is carried out by internally contracted the MRCI with single
and double excitations being taken relative to this CASSCF
reference wave functions where the 5s5p atomic orbitals of
Ba and the 1s orbital of Li are correlated. The above-described
method is used in constructing final potential energy surfaces;
nevertheless, we further verify the validity of approach.

It is a difficult task to estimate the uncertainty of ab initio
calculations, especially for a many-electron system including
a heavy atom. However, before proceeding to describe the

043323-2



COLD COLLISIONS BETWEEN ALKALI METALS AND … PHYSICAL REVIEW A 107, 043323 (2023)

TABLE I. First ionization potential values of Li and Ba in eV.

Atom IP (eV) Expt. Theory

Li 5.393 5.4 ± 0.2a 5.39a

Ba 5.057 5.3 ± 0.3a 5.0a

aFrom Ref. [32].

potential energy curves of the (BaLi)+ molecular system, we
compare the results of our computed atomic components to
the available experimental data. The comparison is accom-
plished in terms of the first ionization potential (IP) of Ba
and Li, including static electric dipole polarizability α for both
neutral and charged components of barium and lithium atoms,
as shown in Tables I and II. In our current method of calcula-
tion, the predicted ionization potentials of Li and Ba agree
well with previously reported experimental and theoretical
values with an error of less than 1%. With regard to the static
electric dipole polarizability of the ground-state Li, our calcu-
lated value is in good agreement with the experimental result
[33] but differs by 0.3a3

0 from the theoretical value [15]. The
calculated value of α for Li+ is 0.192a3

0 and the experimental
value is 0.188 ± 0.002 [34]. As for the Ba and Ba+ compo-
nents, the static polarizabilities are in good agreement with
experimental and theoretical values. The harmony of these re-
sults with the literature values can impart a reliable description
of the diatom molecular ion (BaLi)+ using our current level of
theory and the basis sets. Some of the potential energy curves
for the ground and excited states of the (BaLi)+ molecular
system are shown in Fig. 1. The spectroscopic parameters
associated with these potentials are represented in Table III
in terms of the equilibrium bond length Re and depth of the
well De. All the equilibrium bond lengths of these molecu-
lar electronic states are expressed in angstroms whereas the
De values are in cm−1. For this alkali-metal–alkaline-earth
IA system, depending on the location of the positive charge
at the dissociation limit, two possible IA combinations may
arise, either an alkali-metal ion and alkaline-earth atom or an
alkali-metal atom and alkaline-earth ion. The corresponding
dissociation threshold will be energetically different depend-
ing on the ionization potential of the atom involved. In the
latter case, there are two unpaired valence electrons in each

TABLE II. Static electric dipole polarizability values of Li (Li+)
and Ba (Ba+) in atomic units.

Atom or ion α (a.u.) Expt. Theory

Li 164.30 164 ± 3.4a 164.0b

Li+ 0.192 0.188 ± 0.002c 0.190b

Ba 267.74 268 ± 6d 268.19e

Ba+ 124.22 123.88 ± 5f 124.26 ± 1g

aFrom Ref. [33].
bFrom Ref. [15].
cFrom Ref. [34].
dFrom Ref. [35].
eFrom Ref. [36].
fFrom Ref. [37].
gFrom Ref. [38].

FIG. 1. Adiabatic potential energy curves of three lowest dissoci-
ation channels of the (BaLi)+ molecular system plotted as a function
of IA internuclear separation. The energies are in units of the wave
number.

species that result in singlet and triplet molecular potential
curves.

For the case of (BaLi)+, the possible asymptotic arrange-
ments are given as Ba+-Li and Ba-Li+ depending on the
localization of the positive charge of either the Ba atom or the
Li atom. Since the first ionization potential of Ba is lower than
that of Li, as compared in Table I, the Ba+-Li arrangement is
in the absolute ground-state asymptote of the (BaLi)+ system.
Due to this feature of the ground-state asymptote, this sys-
tem is significantly different compared to other heteronuclear
alkali-metal–alkaline-earth IA systems, as mentioned earlier.
In the ground-state asymptotic arrangement of the (BaLi)+
system, the interaction occurs between the ground-state Ba+

ion and the ground-state Li atom, which are both open shells.
Two electronic states X 1�+ and a 3�+ appear as a result
of this interaction. The features of these two states need to
be explained as we use them frequently in the domain of
cold collisions. The singlet � state is strongly bound, having
binding energy equal to 11 627 cm−1, and the equilibrium
position is located at 3.55a0. On the other hand, the triplet �

state is bound by 4675 cm−1 and the equilibrium distance is
equal to 4a0. We compare our results to the available data from
Śmiałkowski and Tomza [39] only for the singlet � state. We
note that our calculated equilibrium bond length and depth of
the well are in excellent agreement with those Ref. [39] with

TABLE III. Spectroscopic constants for some lowest molecular
electronic states of (BaLi)+ expressed in terms of equilibrium bond
length and depth of the well.

Molecular state Re (Å) De (cm−1)

X 1�+ 3.55 11627
a 3�+ 4.00 4784
2 1�+ 4.01 1206
3 1�+ 5.80 1833
2 3�+ 3.96 5961
b 3� 3.40 8935
1 1� 3.80 5729
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an uncertainty less than 1% and we accept this as adequate.
In addition, our calculated potentials are the same as those of
Ref. [24] if one uses the conversion factor 1 Å = 1.889 73a0.

The two other dissociating thresholds conceive the elec-
tronic states 2 1�+, 3 1�+, 1 3�, b 3�, and 1 1�. The asymp-
totes Ba(1S) + Li+(2S) and Ba+(2D) + Li(2S) lie above
the ground-state asymptote by energies of approximately
1740 cm−1 and approximately 6300 cm−1, respectively. There
is one noticeable pattern in Fig. 1. The electronic state a 3�+
correlated to the ground-state asymptote crosses the state b 3�

at a location near 3.2a0. This curve crossing facilitates a large
spin-orbit coupling which plays an important role in the spin
nonconserving scattering phenomena. In the following we dis-
cuss the method and the result of the spin-orbit matrix-element
calculation.

Spin-orbit matrix element

The spin-orbit-coupling matrix elements ξ so between two
molecular states a 3�+ and b 3� can be expressed as

ξ so = 〈a 3�+|Hso|b 3�〉, (1)

where Hso is the spin-orbit Hamiltonian which is either the
Breit-Pauli operator or the spin-orbit pseudopotential. The
matrix elements of the spin-orbit-coupling Hamiltonian are
evaluated by exploiting the wave functions of electronic states
a 3�+ and b 3�. The calculations of the electronic wave func-
tions are carried out using MOLPRO. The spin-orbit-coupling
constant λ associated with the spin-orbit matrix element is

λ(R) = 2

3

|〈a3�+|Hso|b 3�〉|2
Vb 3�(R) − Va 3�+ (R)

. (2)

It is noteworthy that the sign of the originally calculated
spin-orbit matrix elements is not well defined as the phase of
the corresponding wave functions is arbitrary. This means that
the phase of the coupling matrix elements strictly depends on
the signs of the successive calculations performed: It starts
with the relative signs of the molecular orbitals optimized by
CASSCF, which are used in the MRCI calculations of the
triplet a 3�+ and b 3� states, providing MRCI eigenvectors,
each defined with a phase factor. The spin-orbit integrals
are calculated using the CASSCF molecular orbitals (with
their signs) and the spin-orbit matrix elements combine the
configuration interaction eigenvectors with the integrals. Each
of the calculations performed on a given geometry is thus
correct, but the relative signs between different geometries are
arbitrary.

In Fig. 2(b) we plot the absolute value of the spin-orbit ma-
trix element in cm−1 as a function of internuclear separation
between the electronic states a 3�+ and b 3�. We note that the
matrix element decreases exponentially with an increase in IA
distance. In Fig. 2(a) we plot the two concerned potentials as
a function of IA distance showing the crossing between the
curves. The curve crossing occurs at a distance R = 3.2a0.
The value of the coupling constant near the curve crossing
is approximately 20 cm−1. Then it decreases rapidly with IA
distance and finally for R > 5.6a0 it reaches nearly a constant
value less than 1 cm−1, as shown in Fig. 2(c). We note that
the value of λso near the equilibrium distance of the a 3�+
potential is comparable to that of the (LiYb)+ system.

FIG. 2. (a) Potentials a 3�+ and b 3� with the arrow indicating
the crossing between these two potentials. Also shown are (b) the
spin-orbit matrix element and (c) the spin-orbit coupling constant.

III. CONSTRUCTION OF HYPERFINE POTENTIALS:
PROSPECTIVE FESHBACH RESONANCES

Experimentally, the ion Ba+ is prepared in an incoherent
mixture spin state |6S1/2; sBa+ = 1/2, mBa+

s = ±1/2〉 and the
atom Li is considered in the hyperfine state | fLi = 1/2, mLi

f =
−1/2〉. Then the ion and the atom are allowed to interact,
resulting a number of FRs out of which four are detected
as s-wave resonances. In this section we introduce a brief
description of the construction of hyperfine potentials that
could be used to characterize the s-wave FR.

Channel classification

The ion 138Ba
+

has vanishing nuclear spin (i1 = 0) with
electronic spin s1 = 1/2. One can label the hyperfine sub-
levels as | f1 = 1/2, m f1 = ±1/2〉. On the other hand, 6Li has
nuclear spin i2 = 1 with hyperfine quantum number f2 = 3/2
and 1/2; these two hyperfine levels are separated by an energy
of 228.2 MHz (approximately 10.952 mK). In the presence
of an external magnetic field, the projection MJ of the total
angular momentum J = f1 + f2 + l remains a good quantum
number during a collision event. In addition, states with a
different orbital angular momentum l characterizing different
partial waves are decoupled if one neglects the anisotropic
spin-spin interaction, making l and its projection ml con-
served. Under this condition, M f = m f1 + m f2 will also be
conserved. Here we restrict our discussion to the subspace of
a partial wave l = 0 including M f as a constant. We constrict
the collision within the subblock M f = 1/2 as it represents
the lowest-energy channel state. In the absence of a magnetic
field B = 0 and for M f = 1/2, there are four possible channels
constituting the asymptotic or uncoupled basis | f1m1, f2m2〉,
as listed in Table IV.

In the absence of a magnetic field, the hyperfine interaction
is diagonal in the basis | f1m1, f2m2〉. In this condition, since
both f 2 and l2 are conserved, another useful basis that may be
used is the coupled hyperfine basis |( f1 f2) f m f 〉. One can use
this basis in the presence of a weak magnetic field considering
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TABLE IV. Four asymptotic channels for MF = 1/2 of the
(138Ba - 6Li)+ system.

Channels ( f1, mf1 ) ( f2, mf2 ) E∞ (mK)

1 (1/2, 1/2) (1/2, −1/2) 0
2 (1/2, −1/2) (1/2, 1/2) 0
3 (1/2, 1/2) (3/2, −1/2) 10.952
4 (1/2, −1/2) (3/2, 1/2) 10.952

a perturbative treatment with a very small Zeeman interaction.
In simplified notation, we denote this basis by |b〉. Now in the
presence of a magnetic field, let the basis that diagonalizes
both Zeeman and hyperfine terms be |b̃〉. On diagonalization,
one obtains eigenvalues that define the threshold energies of
the channels and the eigenvectors that are related to the basis
|b〉 through some linear transformation as

|b〉 =
∑

b̃

〈b̃|b〉|b̃〉. (3)

The matrix elements of the central potential in the coupled
basis can be given as

〈( f1 f2) f m f |V c|( f ′
1 f ′

2) f ′m′
f 〉

=
∑

S,I,MS ,MI

VS〈( f1 f2) f m f |SMS, IMI〉

× 〈SMS, IMI |( f ′
1 f ′

2) f ′m′
f 〉. (4)

Here |SMS, IMI〉 is the adiabatic basis and the central potential
is diagonal in this basis with eigenvalues VS . The central po-
tential can be written as V c = V0(r)P0 + V1(r)P1, where V0(r)
and V1(r) correspond to the singlet X 1�+ and triplet a 3�+
states, respectively, and P0 and P1 are the corresponding pro-
jections. Here the adiabatic basis and the coupled asymptotic
basis are related through the transformation matrix elements

〈SMS, IMI |( f1 f2) f m f 〉
= CS,I, f

MS ,MI ,m f

√
(2 f1 + 1)(2 f2 + 1)(2S + 1)(2I + 1)

×
⎧⎨
⎩

s1 i1 f1

s2 i2 f2

S I f

⎫⎬
⎭

(
1 + (1 − δ f1 f2 )(−1)S+I+l√

2 − δ f1 f2

)
, (5)

where CS,I, f
MS,MI ,m f

is the Clebsch-Gordan (CG) coefficient and
m f = MS + MI . The quantity in the curly bracket is known
as the 9- j symbol [40]. Considering these transformations,
we present the variation of channel energies with magnetic
field in Fig. 3, where the numbers inside the plot indicate the
indices of the channels. In Fig. 4 we present four diagonal po-
tentials in the short-range regime as a function of internuclear
separation R (Bohr) for a particular magnetic field B = 100 G.
The asymptotic long-range part of the potentials is shown in
the inset of Fig. 4 and the energy of the said channels increases
from channel 4 to channel 1 as a function of magnetic field.
With this primary knowledge at hand, one can study the FR in
the (BaLi)+ system.

0 50 100 150 200
B (G)

-20
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30
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K
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(1)

FIG. 3. Variation of energy of the four channels as a function of
magnetic field.

IV. COLD COLLISIONS

Experimentally, the 138Ba
+

ion and 6Li atom are prepared
in their electronic ground state 2S, which corresponds to the
lowest-energy dissociation channel [Ba+(2S) + Li(2S)] of the
(BaLi)+ system. Therefore, the charge exchange collision re-
quiring a photon or enough collision energy corresponding to
an excitation of the system for the next dissociation limit is
strongly suppressed. Herein, we consider mainly low-energy
processes in the domain of energy of μK to sub-mK and there-
fore we restrict our discussion to the area of elastic scattering
and SE processes.

A. Elastic collision

A 138Ba
+

ion colliding elastically with a 6Li neutral
atom in its ground state is associated with the asymptote
[Ba+(2S) + Li(2S)] where both potentials X 1�+ and a 3�+
will be relevant. Applying the method of partial-wave de-
composition in the total wave function, the time-independent

R (bohrs)

FIG. 4. Variation of four diagonal potentials of the (BaLi)+ sys-
tem as a function of IA distance at short range for a particular
magnetic field B = 100 G. The corresponding asymptotes are shown
in the inset.
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FIG. 5. (a) Quantum and semiclassical phase shifts plotted as a function of partial waves for the potentials X 1�+ and a 3�+. (b) Quantum
phase shifts shown for the partial waves l = 0, 1 as a function of energy only for the X 1�+ state.

Schrödinger equation at a given collision energy E is given by(
d2

dR2
+ k2 − 2μVS,T (R) − l (l + 1)

R2

)
yS,T

E ,l (R) = 0, (6)

where the wave number k = √
2μE/h̄, μ is the reduced

mass of the colliding IA pair, and l is the partial wave. The
quantities VS and VT are related to the potentials X 1�+ and
a 3�+, respectively. The long-range part of the potential is
approximated as VS,T (R) = −(C4

R4 + C6
R6 ), where C4 = 1

2 q2αLi,
the coefficient related to the dipole polarizability (αLi) of the
Li atom. The quadrupole polarizability βLi is associated with
the C6 coefficient C6 = 1

2 q2βLi. In this work we use αLi =
164.1 a.u. and βLi = 1424 a.u. The short-range and long-range
parts of the potentials are joined smoothly by a cubic spline
algorithm. In the asymptotic limit, the wave function can
be expressed in terms of the Bessel [ jl (kr)] and Neumann
[nl (kr)] functions as

yS,T
E ,l (R) = kR

[
jl (kr) cos ηS,T

l − nl (kr) sin ηS,T
l

]
, (7)

where ηS
l and ηT

l are the phase shifts associated with the
potentials X 1�+ and a 3�+, respectively. Equation (6) is
solved numerically by the Numerov-Cooley method using the
three-point recursion relation. The details of this method are
discussed in Ref. [19].

In Fig. 5(a) we present a plot of phase shifts by vary-
ing the number of partial waves for the potentials X 1�+
and a 3�+, considering the collision energy E = 0.1 K. For
a given large collision energy and high partial waves, the
potentials VS,T (R) behave, to the leading term, as −C4/R4.
Under this condition, one can find the semiclassical phase
shift ηsc

l � (πμ2αLi/4h̄4) × (E/l3). In the potentials we are
concerned with, the semiclassical phase shift is in agreement
with the quantum phase shifts for partial waves l > 21, as
shown in Fig. 5 with collision energy E = 0.1 K. In Fig. 5(b)
we show quantum phase shifts for the first two partial waves
(l = 0, 1) as a function of collision energy for the potential
energy surface X 1�+. Note that the s-wave (l = 0) phase
shift is dominant at very low energies whereas that of the p

wave decreases to zero. The phase shifts for both s and p
waves change sign, indicating the presence of a pole where
the scattering length diverges.

The scattering phase shift is associated with another phys-
ically measurable quantity, the scattering cross section. For
a direct elastic collision, the cross sections σ S,T

el can be ex-
pressed in terms of scattering amplitude as [12]

σ S,T
el (E ) =

∫
| fS,T |2d� = 4π

k2

∞∑
l=0

(2l + 1) sin2 (
ηS,T

l

)
, (8)

where | fS,T |2 are the scattering amplitudes associated with the
singlet and triplet potentials of the (BaLi)+ system and d� is
the differential solid angle. At a relatively high collision en-
ergy, the cross sections are approximated by the semiclassical
expression [41]

σsc(E ) = π
(
μα2

Li/h̄2
)1/3

(1 + π2/16)E−1/3. (9)

Thus the plot of log σsc(E ) vs log E is a straight line with slope
−1/3 and the intercept is associated with dipole polarizability
of the neutral Li atom.

We present total elastic scattering cross sections as a func-
tion of energy in kelvin for the X 1�+ and a 3�+ potentials
in Figs. 6(a) and 6(b). The cross section includes the sum of
the first 81 partial waves for the singlet � state and 65 partial
waves for the triplet � state we consider. Here we note that
the s-wave contribution is dominant in all the cases at ener-
gies corresponding to a temperature of 0.1 μK. For neutral
alkali-metal atom systems, however, the s-wave contribution
is dominant for energies around 100 μK [1]. This is due to
the existence of the long-range polarization potential in the
IA system as compared to the shorter-range van der Waals
interactions between neutral atoms. As energy increases, more
and more partial waves start to contribute to the total elastic
scattering cross sections. In order to check the convergence
for the sum over partial waves, we fit both plots linearly at the
high-energy limit. The numerically calculated slope is quite
close to the semiclassical theoretical value, confirming the
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FIG. 6. Total elastic scattering cross sections are plotted as a
function of collision energy in the log-log scale for the concerned
singlet and triplet potentials in the panel-(a) and (b), respectively.
The dashed line indicates the semiclassical fitting in cross sections.

convergence of partial-wave contributions in the total elastic
scattering cross section.

B. Spin exchange collision

At short range, another possible outcome of the collisions
between the ultracold ion 138Ba

+
and atom 6Li in their ground

states is the SE collision. Under the SE interaction, the to-
tal spin projection is conserved along any axis. Due to this
conservation property, if the ion and the atom are prepared
with parallel electronic spins, they can interact only on the
triplet potential and no SE takes place. On the other hand, if
they are prepared with antiparallel spins, they interact on both
singlet and triplet potentials, opening up a finite probability
of SE. In the elastic as well as the degenerate internal state
approximation, this scattering event is described in terms of
the singlet and triplet scattering phase shifts. In the short

range, the inelastic SE cross section can be expressed as [12]

σSE(E ) = π

k2

∞∑
l=0

(l + 1) sin2
(
ηS

l − ηT
l

)
. (10)

In the Langevin regime of intermediate collisional energy,
the SE cross section shows the classical Langevin behavior:
σL(E ) ∝ E−1/2. In Fig. 7(a) we show the SE cross section as a
function of collision energy in kelvin in logarithm scale. The
curve can approximately be fitted with a Langevin behavior
(red dashed line) with slope −1/2 in the energy range 0.56–
7.01 mK.

Due to the short-range nature of the SE interaction, the
phase difference ηS

l − ηT
l remains constant for a range of l

values exhibiting PWPL [27]. For the (Ba-Li)+ system, at
a collisional energy of 10 mK, the maximum partial wave
number lmax that contributes to σSE(E ) is found to be 7.
We calculate sin2(ηS

l − ηT
l ) for these partial waves, which

remains constant (C ) with 5.5% standard deviation as shown
in Fig. 7(b). Thus, under the PWPL approximation, the ex-
pression for the SE cross section simplifies to

σSE(E ) = 3πC

2k2
lmax(lmax + 1). (11)

Conservation of the total spin projection is violated in the
presence of SOC as it is not diagonal in the adiabatic basis
| SMS, IMI 〉. This leads to spin relaxation (SR). Thus the spin
dynamics is governed by the competition of SE and SR. When
the SR rate is significant compared to the Langevin collision
rate, the spin controllability of the system is lost. However,
in the ultracold regime, where the steady-state temperature is
much lower than the hyperfine energy gap (10.952 mK), the
SR rate becomes significantly lower.

C. Diffusion cross section

A charge or ion immersed in a dilute gas of atoms will
diffuse through the stochastic scattering process. Therefore,
the diffusion of the ion in a gas of atoms will change the
position of the ion with time, resulting in a loss of forward
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FIG. 7. Study of spin dynamics. (a) SE cross section as a function of energy in log-log scale. (b) Variation of the difference in singlet and
triplet phase shifts as a function of l at energy E = 10 mK.
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FIG. 8. Diffusion cross sections plotted as a function of energy in log-log scale for the potential X 1�+ or a 3�+. The red dashed lines
indicate the Langevin behavior.

momentum of the ion [41–44]. This effect is quantified
through the diffusion cross section or momentum transfer
cross section. The diffusion of the ion is characterized by
the diffusion coefficient. Diffusion occurs due to the binary
collision of the ions with the atoms in the gas. The total
diffusion cross section is associated with both elastic and
inelastic contributions in the presence of atomic gases. It may
be presumed that the inelastic diffusion cross sections will be
small compared to the corresponding elastic quantities [45].
By eliminating inelastic phenomena, the diffusion cross sec-
tion is associated with phase shifts for elastic collisions. The
diffusion cross section for a heteronuclear IA pair approaching
along a single potential curve X 1�+ or a 3�+ is given by [41]

σ S,T
D (E ) = 4π

k2

∞∑
l=0

(2l + 1) sin2
(
ηS,T

l − ηS,T
l+1

)
. (12)

Using this equation, we evaluate diffusion cross sections σ S,T
D

for the (BaLi)+ system. In Figs. 8(a) and 8(b) we present σ S,T
D

as a function of energy in log-log scale with base e for the two
potentials concerned. The red dashed lines show the Langevin
behavior fitted with a slope equal to −1/2. We see that at high
energies the mean behavior of σ S,T

D is close to the Langevin
behavior.

V. CONCLUSION

We have studied the collisional properties of the (BaLi)+
IA system which are of particular interest as the experimen-
tally achievable cold Ba+-Li combination corresponds to the
ground asymptote and thereby is protected against radiative

charge transfer loss. We made use of the ab initio method
to obtain the molecular potentials. We presented a schematic
description to study FR with the aim of venturing into the
same in the near future by our Wronskian-based multichannel
computational method [46]. We calculated the elastic scatter-
ing cross section at various regimes of collisional energy and
verified its obedience to the semiclassical (−1/3) power law
at high energies. We studied the SE collision cross section and
compared its energy dependence with the Langevin cross
section, which goes well in an expected intermediate-energy
regime. We studied the PWPL effect for low partial waves and
gave an approximate formula for the SE cross section in the
PWPL scenario. Finally, we investigated the diffusion proper-
ties of the IA gas system, which obeys the Langevin behavior
at high energies. We found that in the ultracold energy or low-
energy regime, elastic collisions dominate for (BaLi)+ atom-
ion collisions. We note that in such an energy domain, the
diffusion cross sections become comparable to elastic cross
sections. However, at a relatively high-energy limit, the spin-
exchange collisions start to compete with elastic collisions.
We hope that our calculated potential energy surfaces, spin-
orbit coupling, and scattering analysis can serve as a solid
foundation for future studies on the (BaLi)+ system in detail.
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Limit to Atom-Ion Sympathetic Cooling in Paul Traps, Phys.
Rev. Lett. 109, 253201 (2012).

[22] H. Fürst, T. Feldker, N. V. Ewald, J. Joger, M. Tomza,
and R. Gerritsma, Dynamics of a single ion-spin impurity
in a spin-polarized atomic bath, Phys. Rev. A 98, 012713
(2018).

[23] T. Feldker, H. Fürst, H. Hirzler, N. Ewald, M. Mazzanti, D.
Wiater, M. Tomza, and R. Gerritsma, Buffer gas cooling of

a trapped ion to the quantum regime, Nat. Phys. 16, 413
(2020).

[24] P. Weckesser, F. Thielemann, D. Wiater, A. Wojciechowska,
L. Karpa, K. Jachymski, M. Tomza, T. Walker, and T.
Schaetz, Observation of Feshbach resonances between a sin-
gle ion and ultracold atoms, Nature (London) 600, 429
(2021).

[25] C. Ticknor, C. A. Regal, D. S. Jin, and J. L. Bohn, Multiplet
structure of Feshbach resonances in nonzero partial waves,
Phys. Rev. A 69, 042712 (2004).

[26] T. Sikorsky, Z. Meir, R. Ben-Shlomi, N. Akerman, and R.
Ozeri, Spin-controlled atom-ion chemistry, Nat. Commun. 9,
920 (2018).

[27] T. Sikorsky, M. Morita, Z. Meir, A. A. Buchachenko, R. Ben-
shlomi, N. Akerman, E. Narevicius, T. V. Tscherbul, and R.
Ozeri, Phase Locking between Different Partial Waves in Atom-
Ion Spin-Exchange Collisions, Phys. Rev. Lett. 121, 173402
(2018).

[28] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and
M.Schütz, Molpro A general-purpose quantum chemistry pro-
gram package, WIREs Comput. Mol. Sci. 2, 242 (2012).

[29] B. P. Prascher, D. E. Woon, K. A. Peterson, T. H. Dunning,
and A. K. Wilson, Gaussian basis sets for use in correlated
molecular calculations. VII. Valence, core-valence, and scalar
relativistic basis sets for Li, Be, Na, and Mg, Theor. Chem. Acc.
128, 69 (2011).

[30] J. G. Hilland K. A. Peterson, Gaussian basis sets for use in cor-
related molecular calculations. XI. Pseudopotential-based and
all-electron relativistic basis sets for alkali metal (K–Fr) and
alkaline earth (Ca–Ra) elements, J. Chem. Phys. 147, 244106
(2017).

[31] I. S. Lim, P. Schwerdtfeger, B. Metz, and H. Stoll, All-electron
and relativistic pseudopotential studies for the group 1 element
polarizabilities from K to element 119, J. Chem. Phys. 122,
104103 (2005).

[32] R. Yu, A. Kramida, J. Reader, W. Martin, A. Musgrove, E.
Saloman, C. Sansonetti, and J. Curry, NIST Atomic Spec-
tra Database, available at https://www.nist.gov/pml/atomic-
spectra-database (NIST, Gaithersburg, 2006).

[33] R. W. Molof, H. L. Schwartz, T. M. Miller, and B. Bederson,
Measurements of electric dipole polarizabilities of the alkali-
metal atoms and the metastable noble-gas atoms, Phys. Rev. A
10, 1131 (1974).

[34] W. E. Cooke, T. F. Gallagher, R. M. Hill, and S. A.
Edelstein, Resonance measurements of d- f and d-g inter-
vals in lithium Rydberg states, Phys. Rev. A 16, 1141
(1977).

[35] T. M. Miller and B. Bederson, Atomic and molecular
polarizabilities—A review of recent advances, Adv. At. Mol.
Phys. 13, 1 (1978).

[36] B. K. Sahoo and B. P. Das, Relativistic coupled-cluster studies
of dipole polarizabilities in closed-shell atoms, Phys. Rev. A 77,
062516 (2008).

[37] E. L. Snow and S. R. Lundeen, Fine-structure measurements in
high-Ln = 17 and 20 Rydberg states of barium, Phys. Rev. A
76, 052505 (2007).

[38] B. K. Sahoo, R. G. E. Timmermans, B. P. Das, and D.
Mukherjee, Comparative studies of dipole polarizabilities in
Sr+, Ba+, and Ra+ and their applications to optical clocks,
Phys. Rev. A 80, 062506 (2009).

043323-9

https://doi.org/10.1103/PhysRevLett.85.5316
https://doi.org/10.1103/PhysRevLett.89.093001
https://doi.org/10.1088/0953-4075/49/24/245202
https://doi.org/10.1038/nphys2373
https://doi.org/10.1103/PhysRevLett.110.160402
https://doi.org/10.1103/PhysRevA.81.012708
https://doi.org/10.1080/00268976.2018.1458999
https://doi.org/10.1103/PhysRevA.67.042705
https://doi.org/10.1103/PhysRevA.85.042716
https://doi.org/10.1088/0953-4075/47/14/145201
https://doi.org/10.1103/PhysRevA.91.042706
https://doi.org/10.1088/1361-6455/aaf9e7
http://arxiv.org/abs/arXiv:2210.01193
https://doi.org/10.1039/c1cp21494b
https://doi.org/10.1088/1361-6455/aad6cb
https://doi.org/10.1103/PhysRevA.80.030703
https://doi.org/10.1103/PhysRevLett.109.253201
https://doi.org/10.1103/PhysRevA.98.012713
https://doi.org/10.1038/s41567-019-0772-5
https://doi.org/10.1038/s41586-021-04112-y
https://doi.org/10.1103/PhysRevA.69.042712
https://doi.org/10.1038/s41467-018-03373-y
https://doi.org/10.1103/PhysRevLett.121.173402
https://doi.org/10.1002/wcms.82
https://doi.org/10.1007/s00214-010-0764-0
https://doi.org/10.1063/1.5010587
https://doi.org/10.1063/1.1856451
https://www.nist.gov/pml/atomic-spectra-database
https://doi.org/10.1103/PhysRevA.10.1131
https://doi.org/10.1103/PhysRevA.16.1141
https://doi.org/10.1016/S0065-2199(08)60054-8
https://doi.org/10.1103/PhysRevA.77.062516
https://doi.org/10.1103/PhysRevA.76.052505
https://doi.org/10.1103/PhysRevA.80.062506


DIBYENDU SARDAR AND SOMNATH NASKAR PHYSICAL REVIEW A 107, 043323 (2023)
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