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The model of continuous spontaneous localization (CSL) is the most prominent consistent modification
of quantum mechanics predicting an objective quantum-to-classical transition. Here we show that precision
interferometry with Bose-Einstein-condensed atoms can serve to lower the current empirical bound on the

localization rate parameter by several orders of magnitude. This works by focusing on the atom count dis-
tributions rather than just mean population imbalances in the interferometric signal of squeezed Bose-Einstein
condendates, without the need for highly entangled Greenberger-Horne-Zeilinger-like states. In fact, the interplay
between CSL-induced diffusion and dispersive atom-atom interactions results in an amplified sensitivity of

the condensate to CSL. We discuss experimentally realistic measurement schemes utilizing state-of-the-art
experimental techniques to test new regions of parameter space and, pushed to the limit, to probe and potentially

rule out large relevant parameter regimes of CSL.
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I. INTRODUCTION

Postulating an objective, spontaneous collapse process for
the wave function is a way to overcome the quantum mea-
surement problem and to explain the fundamental absence
of spatial superpositions on the macroscopic scale [1]. This
idea deems quantum mechanics incomplete and complements
it with a fundamental stochastic modification that bridges the
gap between the microcosmos of quantum phenomena and the
classical world.

A prime example is the model of continuous spontaneous
localization (CSL) [1,2], which predicts a mass-amplified
spatial decoherence effect. It reinstates macrorealism [3] and
can be motivated from natural consistency requirements on
generic “classicalizing” modifications of quantum mechan-
ics [4]. The spontaneous collapse is accompanied by a tiny
amount of diffusive heating, impacting also classical states of
motion, which could, however, be mitigated by adding colored
noise [5,6] and friction [7] to the model.

The CSL hypothesis has sparked numerous efforts to con-
ceive [8-20] and perform [21-27] experiments that rule out
a significant portion of its two-dimensional parameter space
comprised of the CSL localization rate A and the localization
lengthscale rc. Each experimental test falsifies a certain set
of parameters marked by an exclusion curve A(r¢). The best
experimental bounds so far [22,28] are surveyed in Fig. 1
(solid lines). They do not yet reach the critical regime of nano
to micrometer localization lengths and CSL rates as low as
the historic value A = 10! Hz for the reference mass 1u at
rc = 100 nm (black dot) [2,29].

Accessing this regime with a quantum experiment could
refute the CSL hypothesis, especially since nonclassical CSL
tests are robust against the aforementioned model extensions
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[5-7]. However, the most macroscopic matter-wave exper-
iments to date (thin solid lines) are still many orders of
magnitude away. A purpose-built space mission would have
to demonstrate interference of a 10°u microparticle over
more than 100 seconds [33,34], a challenging endeavor. The
state-of-the-art CSL bounds are obtained from classical noise
measurements on optomechanical sensors probing the CSL-
induced heating (thick solid lines) [22,25,35], which are most
sensitive to CSL at larger lengthscales and from searches for
anomalous x-ray emission [28], which are most sensitive at
shorter rc.

We instead consider collective spin states in a standard
Mach-Zehnder interferometer (MZI) setting where a Bose-
Einstein condensate (BEC) with N atoms of mass m is
coherently split into two spatially separate arms and recom-
bined after an effective interrogation time ¢ at a second beam
splitter. Experimental realizations include double-well trap-
ping of condensates on a chip [36], atoms suspended in optical
standing-wave antinodes [30], and free-falling momentum-
split condensates [31].

The article is structured as follows. In Sec. II we recapit-
ulate the standard Mach-Zehnder interference scheme in the
collective spin representation and discuss both the usual mea-
surement analysis in terms of interferometric visibility and the
direct analysis of the atom count distribution. In Sec. III, we
present our quantitative model for the time evolution of an
interfering two-mode BEC state in the presence of CSL and
we proceed to solve it under the assumption of many particles
by performing a continuum approximation in Sec. IV. This
is followed by the key result of this paper: we propose to
estimate the range of excluded CSL parameters directly from
the measured atom-count distribution and investigate how the
accuracy of the estimate scales with the particle number in

©2023 American Physical Society
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FIG. 1. CSL bounds from different experiments. The blue-
shaded region represents the falsified parameters from the three most
macroscopic interferometric tests so far: (1) near-field interferometry
[24]; (2) MZI with atoms [30]; and (3) MZI with BEC [31]. The
red-shaded region marks the best noninterferometric bounds from
(4) monitoring spontaneous x-ray emission [28], while the yellow-
shaded region marks bounds from classical force-noise sensing in
(5) the LISA pathfinder mission [22,32]. The here-proposed MZI
setups in double and single wells are associated with dotted and
dashed exclusion curves, respectively, determined by the parameters
in Table I. The dot marks historically chosen values for collapse
parameters [2,29].

the BEC in Sec. V. Remarkably, we find that Mach-Zehnder
schemes with spatially overlapping arms offer superior scal-
ing and could probe the most relevant CSL parameter regime
with available technology. We substantiate our finding with
a proper statistical analysis based on the Fisher information
in Sec. VI, taking into account unavoidable noise sources
like two- and three-body recombinations. Finally, we briefly
discuss the impact of further modified CSL models on the
discussed setups in Sec. VII and give some conclusive remarks
in Sec.VIIL.

II. STANDARD TWO-MODE BEC INTERFEROMETRY

Consider a Mach-Zehnder interference scheme in which
a BEC of N atoms is uniformly and coherently split into
two modes by a beam splitter, freely evolved in time, and
then recombined at another beam splitter, after which one
records the atom counts in the two output ports. The standard
measurement protocol varies the mean interferometric phase
@ characterizing the effective path difference between the
interferometer arms and extracts the interference visibility V
from the mean count difference 7 = NV sin ¢ upon recombi-
nation. Given that the measured visibility is always lower than
the ideal value V = 1 predicted by quantum theory, bounds
on the CSL parameters could be obtained by attributing the
uncontrolled visibility loss to spontaneous collapse. However,
previous in-depth studies showed that a thus-defined CSL
test offers no collective advantage over single-atom interfer-
ometry [15,37], regardless of any initial squeezing [38]: for
noninteracting BEC and spatially separate arms, CSL pre-
dicts Vs = exp(—I'pt/2), with a single-atom dephasing rate
I'p/2 = (m/u)*Afp(rc). Equating the CSL value with the ob-

served V divides the CSL parameter space into an excluded
(VesL < V) and a compatible region, subject to statistical
error analysis. The geometry factor fp assumes its maximum
fe(re) =1 when w, < r¢ < Ay, given the separation A,
between the interferometer arms and the spatial extension wy
of the interfering modes [38]. For much greater or smaller
re, it scales like (A,/rc)? and (re/wy)?, respectively, if we
assume an effectively one-dimensional condensate elongated
along the z direction (with w, ~ w, < w;). A tightly confined
atom cloud (w, ~ wy ~ w;) would yield fp(rc) ~ (rc/wx)3
for re < wy.

In this article, instead of focusing on derived quantities like
interference visibility, we will study the impact of CSL on
the phase distribution of the condensate. Consider a uniformly
split BEC, as characterized by an initial particle number dis-
tribution with vanishing mean population imbalance and a
number uncertainty o,(0). The conjugate many-body quan-
tum observable ¢ has an uncertainty bounded by ¢,(0) >
1/0,(0) [39]. The mean value ¢ accrues over time depending
on the energy difference between the two modes. In each run,
the value of ¢ could be read out directly by overlapping and
imaging the phase-sheared condensates corresponding to the
two modes [40]. More conventionally, it is mapped to the atom
number differences n between the modes by recombination at
the second beam splitter (7 /2 pulse) [36], see Fig. 2 for a
sketch of a typical protocol in the collective spin representa-
tion [41].

Any increase of the initial phase spread o, caused by
dephasing channels such as CSL would yield a decreased
interference visibility V' after recording many runs of the
protocol with varying phase @. Such a variation, however,
is not necessary. One can directly sample the ¢ distribution
and extract the width o,(¢), by measuring the atom counts
and recording a histogram over many experimental runs at
one chosen @ value, without the need to record an entire
interference pattern.

For N indistinguishable bosons in two modes, represented
by annihilation operators C,,, we can make use of the
collective spin representation [41], with J = N/2 and spin
operators J, = (C}C; + C,C,)/2, Jy = (€ic, — ¢,C,)/2i, and
J. = (cic, — ¢jcy)/2. Dual Fock states |n,, N — n,) in the
two modes correspond to the J, eigenstates |J, M) with M =
n, — N/2 denoting half the atom number difference. An un-
squeezed, uniformly split BEC with a mean relative phase
@ corresponds to a product state of N single-atom superpo-
sitions, |Yr) (CZ + ei¢CZ)N |vac), also known as a coherent
spin state. Formally, it is obtained from the spin state |/, J) by
performing a 7 /2 rotation around a spin axis perpendicular to
J., as can be represented pictorially in terms of the Husimi-Q
function on the generalized Bloch sphere [39]. We make use
of this function to visualize the interferometric schemes in
Figs. 2 and 5.

In the standard protocol of Fig. 2, the initially uncorrelated
superposition state (at @ = 0) is first phase-squeezed before it
accumulates a mean interferometric phase . The squeezing
can be realized, for example, by means of a one-axis twisting
operation [42]

Ug = exp(—ingJx) exp (ixeJ?). (1)
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uniformly split BEC squeezing

phase accumulation recombination

FIG. 2. Sketch of a two-mode BEC interference scheme in the collective spin picture, as represented by the Husimi-Q function on the
generalized Bloch sphere [39]. (a) A uniformly split BEC in a coherent spin state corresponds to a symmetric Gaussian peak localized on
the equator, as depicted by red shading on the left. The azimuthal angle corresponds to the relative phase between the two modes, while the
polar angle characterizes the population imbalance. (b) Typically, the initial superposition state is first squeezed azimuthally to increase phase
sensitivity. (c) The subsequent accumulation of a relative phase by propagation through the two interferometer modes corresponds to a rotation
around the vertical axis by the respective angle. (d) The phase distribution may then be detected by another 7 /2 rotation around an equatorial
axis, as set by the recombining beam splitter. This converts the phase spread to a spread in population differences, as seen in the atom count

statistics.

It describes a shearing operation of strength x: along the
equator, followed by a rotation by n; around J,, chosen such
that the resulting state exhibits the variance £2/N along the
equator at the desired value of the squeezing parameter £. Af-
ter the squeezing step, the state accumulates a mean phase as it
rotates around the J; axis of the Bloch sphere. In the presence
of atom-atom interactions, this would be accompanied by an
additional shearing rate ¢, which we will consider in the next
section.

Finally, upon readout, the condensate state is rotated by
7 /2 around a fixed spin axis perpendicular to J,, which maps
the state’s phase distribution to the distribution of popula-
tion differences and vice versa. The probability to measure
a certain number difference n in the output port is given by
p(n\x;re, I) = |(J,n/2)|p;|J, n/2)|?, which can be approxi-
mated for large N with Jacobi theta functions [38]. Here,
the background information / subsumes other experimental
parameters that influence the result. For values ¢ not too close
to & /2 and a well-defined phase right before recombina-
tion, the measured count distribution simplifies further to a
Gaussian whose variance is determined by the state’s phase
variance before recombination, (26) or (20), multiplied by
N? cos? @. This transformation is not necessary if the phase
is read out directly [37,40].

Before we introduce the dynamical model of the CSL ef-
fect, let us remark on the benefit of condensates over single
atoms. Why is it better to sample the number distribution
of an N-atom condensate in k measurement runs than to
perform kN runs of single-atom interferometry? The answer,
detailed in Secs. V and VI, lies in the initial phase uncertainty
05(0) o 1/N, which can be squeezed below shot noise. Thus,
in the regime of number-resolving and phase-stable precision
interferometry, the atom-count distribution of the conden-
sate becomes highly sensitive to collective phase-broadening
disturbances such as CSL. These do not act on each in-
dividual atom independently, but on the entire condensate,
and they are further amplified in interplay with atom-atom
interactions. Unfortunately, the collective scaling advantage
is often lost under practical circumstances, whenever con-
ventional noise sources smear out the phase significantly,

0, — 0, + 04y, (thereby diminishing interference visibility
notably below 1). This is illustrated in Fig. 3, which com-
pares the ideal (decoherence-free) shot-noise limited count
distributions after recombination for various N values (black
curves) to the respective cases with added o2, = 0.1 (red).
(The corresponding interference visibility would be ¥V = 0.9.)
The distributions are dominated by conventional smearing and
thus no longer distinguishable, making the case for precision
experiments with as little noise as possible to boost CSL
sensitivity.

We remark that the illustrated dephasing behavior, whether
caused by conventional noise or CSL, differs fundamentally
from the respective outcome with N individual atoms. In the
limit of strong dephasing, the later scenario would result in
a 50:50 chance for each atom to end up in one of the de-
tectors: the exact opposite behavior of a condensate with a
macroscopic, strongly fluctuating phase [37]. Only in the ideal

case without decoherence do the statistics of condensate and

FIG. 3. Impact of phase noise on the atom count distribution in a
standard two-mode BEC interferometer with an initially unsqueezed
split condensate of various atom numbers N. We plot the distribution
of the atom number difference p(n) between the two output ports at
@ = 0 against the normalized difference n/N, assuming condensates
with N = 10? (solid), 10* (dotted), and 10* (dashed) atoms. The
black curves represent the ideal case without any loss or decoher-
ence, whereas the corresponding red curves (which all coincide)
result from an added phase uncertainty o2, = 0.1 before recom-
bination. For comparison, the dashed-dotted blue curve represents a
completely dephased state.
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single-atom interferometry agree; and squeezing increases the
discrepancy further.

III. TWO-MODE DESCRIPTION OF CSL

We will now show how the time evolution of the two-
mode condensate in the presence of CSL can be modeled
theoretically. We include atom-atom interactions and allow for
spatially overlapping modes, as will be crucial for achieving
enhanced sensitivity on the collapse parameters.

In the presence of CSL, the time evolution of the collective
spin state representing the condensate can be described by the
master equation [38]

dp = ilh[er +1edZ, p] + Lp. )
The first term in the Hamiltonian describes the free rotation
around the z axis of the generalized Bloch sphere at an angular
frequency given by the energy difference € between the two
involved modes. The second term accounts for atom-atom
interactions in the condensate to lowest order close to the
equator, /i = 2(dp/dn),—, where  is the chemical poten-
tial [43].

Spontaneous collapse contributes the Lindblad generator
[38]

2 3
Lp :k% %/cﬁqe—q e
1
x <A(q)pm(q) - 5{A*(q>A(q>, p}>, 3)

with A(q) = [d’pa’(p)a(p — iq) and a(p) the particle
annihilation operator in momentum representation (with di-
mensions of a wave number). Restricting the dynamics to the
two relevant modes of the interferometer, we can expand the
Lindblad operator as

A@ = Y (Yl Iy cie

pketabl = —w )

N
= [Wua(q) + Wbb(q)]; + [Waa(q) - Wbb(q)]JZ

+ [Wab(q) + Wba (q)]Jx + l[Wab(q) - Wba (Q)]J)
“)

Here, |, ) denote the single-particle wave functions associ-
ated with the two modes, r the respective position operator,
and Wir(q) = Wk’;(—q) the matrix elements of the momen-
tum displacement operator. The J, term will cause incoherent
phase flips and thus be responsible for CSL-induced dephas-
ing, while the J, term causes atoms to hop between the two
modes and thereby induces diffusion. The J, term vanishes
for bound states with real-valued wave functions and will
therefore be ignored.

The terms omitted in (4) would describe incoherent hop-
ping of atoms between the condensate and other undetected
modes, which causes atom loss. Formally, we can account for
this CSL-induced depletion effect in the data analysis of an
experiment by introducing conditional outcome probabilities,
given that the detected N atoms have remained in the con-
densate at all times. This way, the CSL bounds would not

depend on the additional classical observation of depletion
[38]. Moreover, since particles lost from the condensate (or,
less likely, regained ones) will always increase the phase
uncertainty o, our omission of the depletion effect only un-
derestimates the influence of CSL.

Plugging the Lindblad operator (4) into the master equa-
tion (3) yields the combined effect of CSL-induced dephasing
(random phase flips) and diffusion (spin flips)

Lp =Tp(J:pd: = ${I2, p}) + Ts(depds — 3{9%, 0}). 5)

While most mixed terms vanish because the modes do not
overlap spatially or because they are of different parity, we
here safely neglect the remaining ones as this only underesti-
mates the influence of CSL.
The CSL-induced dephasing and diffusion is quantified by
the rate parameters
2

m
I'p = 24— fe(ro), (6a)
u
m
Is = Zkgfs(rc), (6b)

involving rc-dependent geometry factors that will be relevant
for the mode configurations discussed below. The explicit
form of the factors depends on whether we consider strongly
elongated condensates or tightly confined ones. In the elon-
gated case, the quasi-free direction can be ignored, as it will
be integrated out upon readout [36,44]. The two interfering
modes a, b are then characterized by their transverse two-
dimensional wave functions (r|y, ), leading to

r2 2
bre) = 55 / d*q e " Wa(@) — W (@I?,  (7)

l"2 2
15 re) = 5 / d*q e Wap(@) + Woa (@ (8)

In the tightly confined case, we instead deal with three-
dimensional wave functions characterizing the mode
3

folre) = —C

27372

/ g e Waa(q) — Win(@P, (9)

r KPag——— 2
fs(re) = =5 | d'qe™ “IWar(q@) + Wea(@)I”. (10)
2w

For spatially separated modes in a typical Mach-Zehnder or
double-well configuration, one immediately finds W,;,(q) =~ 0.
The CSL generator (3) then reduces to pure dephasing be-
tween the modes, i.e., a phase noise channel in the collective
spin representation [39]

Lp =Tp(J.pd. — 1{I2. p}). 1D

To obtain the scaling behavior of the geometry factor fp(r¢)
of dephasing rate we consider two identical Gaussian modes
at distance A, much greater that their relevant widths. For
elongated modes this yields

1 —exp[—A2/4(w? + rE)]

£ ey = L)
J+w2/) (14 wi/r2)

and for tightly confined BECs fe(re) =

P o) VT + wlrg.
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FIG. 4. Two typical mode configurations used for Mach-Zehnder
interference. Left: In a double-well configuration the two modes can
be assumed to have a negligible spatial overlap [36]. This description
also applies to free flying modes in an atomic fountain [21,31,45].
Right: Alternatively, one may operate the Mach-Zehnder scheme
with the ground state and the first excited state of a single-well
configuration [44]. CSL can then lead to transitions between the
modes, unlike in the previous case.

The situation is more complicated if the two interfering
modes overlap spatially, as in a single-well configuration de-
picted in Fig. 4. Then W, is finite implying that CSL will not
only induce dephasing, but also diffusion in the occupation
numbers. For instance, consider a condensate split between
the ground state and the first excited state of a harmonic
potential in the x direction, with trapping frequency « and
ground-state width w, = //i/2mw. The motion along y and,
if applicable, along z shall remain in a harmonic ground state
of width w, and w,, respectively. This leads to

2.,,2 2.,,2
uza(alD)(q) — e*(quﬂquw_\‘)ﬂ’
(2020 22 22
Waa(q) = e (qxwx-quwﬁqzw:)/z’ (13)

and, accordingly, Wj,(q) = (1 — g2w})Wa.(q) and W(q) =
ig,wxWaa(q) = Wpa(q). The respective geometry factors are
then

3r2w?
() = < e
8\/re +wi(ré+ws)
2002
A re) = % (14)

/rg + w)%(r% + w§)3/2’

or again fps(r¢c) = fé’lg)(rc)/«/l + wz?/rcz.

IV. COMBINED EFFECT OF PHASE DISPERSION
AND DIFFUSION

To solve the the master equation (2) for condensate time
evolution under the CSL-induced dephasing and diffusion
(5), we apply the phase-space method of the authors of
Ref. [38]. Consider high atom numbers N > 1 and coherent
superpositions with a well-defined interferometric phase, such
that the collective spin representation is sharply localized on
the equator of the generalized Bloch sphere, (J,) ~ 0 and
AJf’y. KN 2. To a very good approximation, the state is then
described by a continuous Wigner function w;, (¢, n) in the flat
tangential phase space of the conjugate variables n (popula-
tion difference) and ¢ (interferometric phase angle), provided
the support of w, is limited to |n| < N and stretches over
an angular region much less than 2w. (The later constraint

can be alleviated with the help of a trigonometric mapping
of the Wigner function onto a periodic function over the
equator ¢ € [0, 27), but this will not be necessary for the
cases studied here.) In a rotating frame that absorbs the free
linear evolution of the phase ¢(t) = ¢(0) + €t /#, the master
equation (2) translates into the Fokker-Planck equation

NTs ,
drw; (@, n) ~ — ¢ndyw (@, n) + Tanwf(so, n)

Ip
+ 0w, n). (15)

Here, a ¢ dependence in the second term was approximated by
an angular average, which is permissible for small diffusion
rates I's < € /A, provided the interference time extends over
at least one free oscillation period.

Equation (15) constitutes a Gaussian channel and every
initially Gaussian Wigner function will thus remain Gaussian.
In particular, the ¢ marginal of the Wigner function, which
represents the phase distribution of the interfering state after
time ¢, will be of the form

2
4 } (16)

1
NG [_ 202(1)

More generally, we can obtain an exact solution for arbitrary
initial states with help of the characteristic function in Fourier
space

/dn wi (g, n) =

Xi(s,q) == / dodn w, (@, n)e ", (17)

It evolves according to

I'p , NTs ,
O xi(s,q) =503 x:(5,q) — | =5+ ——q" ) x: (s, @),

2 4
(18)
which yields the solution

Xx:(8, q) = xo(s, g+ Lts)

Ipt , N’Tst 22
X exp [—TPsz—Ts<q2 + {tgs + %sz)}.

19)

The characteristic function generates the moments of the
phase distribution as (@*); = (—ids)* x;(0, 0). Plugging the
above solution into 6.(1) = (¢?); — (¢); leads to

FsNzl‘
, 20
G ) (20)

provided that initially (n(0)) = 0 and (n(0)¢(0)) = 0. By car-
rying out many repetitions of the standard interference scheme
depicted in Fig. 2 with N >> 1 atoms per run, one samples a
Gaussian phase distribution with variance 0’(5.

Equation (20) indicates that the sensitivity of the standard
interference scheme to CSL effects may be severely impacted
by the presence of atom-atom interactions. Specifically, the
first term in brackets may dominate the broadening of the
final distribution for finite interaction-induced dispersion ¢.
We therefore consider two modified interference schemes in
the following, which serve to suppress the broadening, see
Fig. 5.

0, (t) = 05(0) + et + ;2r2<o,$(0) +
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free evolution

strong
squeezing

free evolution
(inversed dispersion)

reverse strong
squeezing

free evolution

FIG. 5. Proposed alternative interference protocols in which the coherent phase broadening caused by dispersion is undone by tuning
the two-body interaction strength. In the two-step protocol (i), the interaction is flipped from attractive to repulsive (or vice versa) after half
the interference time to undo the dispersion. Any observed phase broadening then indicates the presence of dephasing and diffusion, where
the latter is enhanced by the dispersion effect. The dispersion enhancement of CSL diffusion can be improved in the three-step protocol (ii)
by amplifying (and undoing) the dispersion for a short time before and after a long stretch of free evolution under weak dispersion. Both
protocols benefit from an initially number-squeezed condensate state, but (ii) features an additional 12-fold improved sensitivity on the CSL

rate compared to (i).

The first scheme, depicted in Fig. 5(i), cancels the regular
broadening by reversing the direction of dispersion after half
the interference time. This may be achieved by switching
from an attractive to an equally strong repulsive atom-atom
interaction or vice versa. The corresponding condensate state
can be calculated by first computing x;2(s, g) according to
(19) and then inserting the result as the new initial condition
into (19) with ¢ replaced by —¢,

Cpt N?Tgt 2s2
Xx:(s,q) = xo(s, q) exp [——Ps2 - —S<q2 + C—s2)}.

2 4 12
(2D
This results in the detectable phase variance
N2Tst%t?
20y _ 2
aw(t)_a¢(0)+FPI+T’ (22)

which has the anz (0) term removed as desired, at the price of
a mere four-fold reduction of the CSL diffusion broadening.
Needless to say, an experimental realization requires an exact
and precisely timed flipping of the sign of ¢; practical limita-
tions due to three-body losses will be discussed in Sec. VI.
Alternatively, one may consider the three-step protocol
depicted in Fig. 5(ii), which separates the regular dispersion
and the CSL-induced diffusion effect in time. Starting from
an unsqueezed or squeezed superposition state, we first switch

on a strong dispersion ¢; for a short time #; < ¢ and allow the
condensate to shear across the equator of the Bloch sphere.
Then we switch off the dispersion by tuning the atom in-
teractions to |{»| < |¢;] and let the condensate evolve under
CSL for the largest part of the interrogation time t, =t — 21;.
Finally, we revert the shearing ({313 = —&1t; — {2t2) to undo
the accumulated dispersion during another short period 3 =
t1. As before, in the absence of CSL-induced dephasing and
diffusion, the protocol would map the condensate state back
onto the initial state on the corotating Bloch sphere. Under
CSL, howeyver, the final condensate state becomes

x:(s, @) = xo(s, q)exp[—as® — Bgs — yq*],  (23)
with
Ipt  N2T
a =7" + Ts[cfrf(zrl +30) + 48313 + 9616013,

N?T
B=- 1 St (taty + 20111),

Nstt
= 24
1 24)
This results in the phase broadening
N’T'styc 2t}
02(1) = 62(0) + 20 > 02(0) + Tyt + ——S21L - 5)
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where in the last inequality we only include the leading-order
contribution for #, > #; and ¢;#; > {»t>. Comparing the phase
variances (22) and (25) of the two protocols, we see that,
despite 1] < f, > t, a suitably amplified dispersion ¢; can still
lead to a stronger broadening in the three-step protocol, viz.
«/ﬁ{ltl > ¢t. In particular, equating ¢, = ¢t for compari-
son leaves us with a 12-fold greater impact of CSL diffusion
in protocol (ii) compared to (i).

Note that, in principle, a finite dispersion ¢ can also
lead to (partial) revivals of the initially prepared condensate
state at (fractions of) the revival time f., = 27 /¢. Hence,
as an alternative to the discussed multistep protocols, the
direct observation of those revivals at fixed ¢ would be
highly sensitive to CSL-induced diffusion broadening as well.
However, this would require long interrogation times, barely
feasible in practice, and the predictions would not be cov-
ered by the continuous phase-space approximation of the
condensate state.

V. SCALING WITH PARTICLE NUMBER

In the previous section, we quantified the broadening of the
condensate phase distribution over time due to CSL-induced
dephasing and diffusion, comparing three different interfer-
ometer protocols. The respective phase variances (20), (22),
and (25), together with the expressions for the CSL rates (6)
in terms of the associated geometry factors fp s(r¢) for the
chosen interference modes, fully characterize the CSL effect
as a function of its parameters A and r¢. Inferring the phase
variance from a measured sample of atom count differences
of the recombined condensate, one can proceed to estimate
the range of CSL parameters compatible with or excluded by
the data.

Before heading to the details of noisy measurement statis-
tics, it is worthwhile to study how CSL sensitivity scales with
the experimental parameters, specifically the atom number
N, and how that compares to other proposed interferometric
CSL tests. Notably, in the Introduction we made the point
that regular low-contrast interference of a Bose-Einstein-
condensed atom cloud is just as sensitive against the CSL
effect as the consecutive interference of the same number
of single atoms. This fundamentally limits its prospects as
a CSL test compared to molecule or NOON-state interfer-
ometry where the sensitivity scales with the square of the
atom number due to the high degree of entanglement [15].
Optomechanical CSL tests, on the other hand, exhibit an,
at most, linear scaling of CSL sensitivity with mass (or
atom number) [46], but they are much more massive to
begin with.

Our main point here is that precision measurements of
interfering two-mode BECs close to the shot-noise limit can
lead to linear and even superlinear scaling of CSL sensitiv-
ity with the atom number N. In fact, the linear scaling can
already be seen for two spatially separated modes, which are
not affected by CSL-induced diffusion, I's = 0. Making them
interfere according to the standard Mach-Zehnder protocol,
the phase variance (20) after the interrogation time ¢ simplifies
to

o (t) = 0,(0) + Tpt + %70, (0). (26)

Now consider an initial condensate state close to the mini-
mum of the number-phase uncertainty relation, o(g (O)on2 0) =
1, which may achieve near-unit interference visibility. This
could be a product state of N two-mode superpositions,
with shot-noise limited 05(0) = 1/62(0) = 1/N, or a phase-
squeezed state with ¢2(0) = &;/N and & < 1 below shot
noise [39] [47]. For a noninteracting condensate { = 0, this
implies that the condensate could resolve phase spreads ['pt
caused by CSL (or any other dephasing channel) as small as
£3/N.

In the presence of dispersion, the (antisqueezed) conjugate
number variance o2(0) may cause a substantial phase broad-
ening in (26) which is detrimental to the interference visibility.
Indeed, measuring a large phase variance after recombina-
tion Gg(t) ~1> 502 /N renders the initial 1/N resolution
irrelevant, see Fig. 3. This amounts to the regime of low inter-
ference contrast in experiments, typically due to uncontrolled
phase noise and other sources of error.

To clarify how CSL sensitivity scales with N, suppose we
infer an effective squeezing &> = N a(ﬂz(t) from a measured
sample at known initial state parameters (N, &y, 0,,) and dis-
persion ¢. Then Eq. (26) implies that the data are consistent
with CSL rate parameters

5 < U/m? &2 — & — ¢2PNo(0)
2Nt fo(re)

and greater rate parameters are ruled out. The scaling with
1/Nt highlights the trade-off between measurement resolution
and interference time: a short-time precision measurement
with a minimum-uncertainty condensate of many atoms, ide-
ally with as low ¢ as possible [48], can be on par with a
conventional long-time interferometer operating a small con-
densate or individual atoms. Still, the linear growth of CSL
sensitivity with the atom number falls short of the quadratic
mass scaling offered by interferometry with rigid compounds.
We show next that, in a different mode configuration, BEC
interferometry does offer an equivalent N scaling.

The key idea is to consider two interfering modes with
a significant spatial overlap, instead of separated arms, as
shown in Fig. 4. The interplay between interaction-induced
phase dispersion and CSL-induced diffusion results in an N2-
amplified overall impact of CSL on the phase distribution of
the two-mode state: The interatomic interactions cause the
energy splitting between the modes to depend on the num-
ber difference n. The ensuing dispersion leads to a phase
spread that grows with the conjugate atom number uncer-
tainty, which, in turn, increases by virtue of the CSL-induced
diffusion effect, see Eq. (20). In a measurement with an in-
teracting BEC at sufficiently large N and ¢, the diffusion
term quickly exceeds the dephasing contribution I'p¢, which
results in an improved CSL bound. Assuming, as before, that
one infers an effective & from a sample and conservatively
attributes all incoherent broadening to CSL, the data would be
consistent with

Lo Wm? & — & - ’’Noj(0)

T O2Nt fp(re) + (N2/6)5212 fs(rc)
(u/m)* &2 — £3 — £ *#*No2(0)
N313¢2 Sfs(re)

) 27)

(28)
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In the second line, we omit the dephasing term, which is
typically negligible in overlapping interacting condensates
with N >> 1. This only underestimates the sensitivity to CSL
falsification.

Equation (28) shows that to rule out small CSL rates, one
would have to detect a diffusion-induced broadening on top of
a potentially large systematic broadening caused by dispersion
alone, which requires precise knowledge of ¢,(0) and more
measurement data (see below). To alleviate this problem, we
propose two echo-like interference protocols in the previ-
ous section, see Fig. 5, in which the dispersion broadening
cancels.

The two protocols (i) and (ii) demand varying levels of ex-
perimental control over the atom-atom interaction, e.g., via a
Feshbach resonance [49,50]: protocol (i) requires a single con-
trol step that switches from attractive to repulsive interaction
(¢ — —¢) after half the interference time, while (ii) requires
two control steps switching from a strong to a weak and then
to a strong dispersion of opposite sign. We assume that the
switching can be performed on a much shorter timescale than
the interference time ¢. Omitting the dephasing term as in (27),
the diffusion phase broadenings predicted in (22) and (25)
lead to the CSL bounds

(u/m)* & — &

A0 <12
=N fs(re)

(29)

and

2 (u/m)2 gtz_g(%
N3tgier fs(re)

(30)

for the two dispersion-compensating protocols. For the three-
step case (ii), we assume in addition that #; <, =~ t. The
resulting CSL bound (at ¢;#; = ¢t) resembles that of (i), but
without the prefactor 12 (an improvement by just over one
order of magnitude).

Equations (28) and (29) demonstrate the key point of our
proposal: interferometric tests of CSL with atom condensates
can exhibit a favourable scaling with the atom number N
that is on par with proposed matter-wave experiments, which
envisage interfering massive molecules or nanoparticles that
contain a similar number of constituent atoms. While the
atom-atom interaction may lead to a transient buildup of
correlations in the condensate, our scheme neither requires
the detection of many-atom correlations nor the prepara-
tion of highly entangled cat or NOON states. In fact, the
N-scaling applies also to initially uncorrelated condensates
(&o = 1). Compare this to an equivalent two-arm interfer-
ometer with individual nanoparticles of, say, N identical
constituent atoms, which measures an interference visibility
V after the interference time 7. The associated CSL bound
A < (u/M)*|InV|/fp(rc)t then improves with N via the par-
ticle mass M = Nm, provided that the particle is much smaller
than r, C-

In the next section, we will corroborate our assessment
of the CSL sensitivity scaling with the number N of Bose-
Einstein-condensed particles by accounting for the most
relevant experimental limitations including finite measure-
ment data.

VI. MEASUREMENT STATISTICS
AND EXPERIMENTAL EFFORT

When proposing experimentally challenging tests of ever
weaker collapse models, it is not enough to ensure that
the proposed setup parameters are within reach of current
or future technology. One must also assess realistically the
minimum measurement effort and time for a conclusive out-
come (in the presence of unavoidable losses and decoherence
effects).

While in the early years of cold atom technology, BEC gen-
eration was limited in time primarily by low atomic densities
and correspondingly slow evaporative cooling rates, steady
advances have nowadays enabled BEC production rates of
more than 1 Hz [52-54]. This goes hand in hand with all-
optical cooling to quantum degeneracy [54-56], which does
not suffer from unavoidably strong atom loss during evapora-
tive cooling. In Table I, we therefore assume that the time for
a single experimental run is mainly limited by the interference
time, which allows for fast duty cycles.

The relevant figure of merit is the number of measurement
repetitions k and the corresponding total integration time k¢,
which for a viable proposal must not be unreasonably long.
The minimum k is given by the number of sample points
one needs to determine the width of the atom count distri-
bution and extract a lower bound of falsified CSL rates A
at the desired precision. We can estimate k with help of the
Cramér-Rao bound, or Bernstein-von Mises theorem [57]: In
the presence of CSL, theory predicts a probability distribution
of atom count differences p(n|A;rc,I) conditioned on the
CSL rate A at a given CSL length r¢ and background informa-
tion I (which subsumes all relevant experimental parameters,
including N, ¢, @). The corresponding Fisher information (FI)
[58] then bounds the precision of the A estimate from the data
by AX = 1//kZ(A|rc, I), in the limit of large k.

The outcome distributions p(n|X; r¢, I') for the proposed in-
terference schemes are very well approximated by Gaussians,
and Eqgs. (27), (28), and (29) define the required consistent
(unbiased) A estimators as linear functions of the estimated
phase variances o (1) = §/N. If we now separate the CSL
contribution proportional to A from the other terms in this
expression awz(t) = afonv(t) +aéSL(t)A, the FI and the re-
spective Cramér-Rao bound can be written explicitly as

1

Z(Alre, 1) = (3D
2020 () () + 2]
and
AL 2 Uczonv(t) \/E aczonv(t)
A z E[l * )‘a(ZZSL(t)] - %)‘a(szL(t). G2

Hence a CSL test at a fixed relative uncertainty é := AL/A
requires at least

2 2 71 2 ot
k > _2 [1 UCCZ)HV( ) } > _2 ZCO:V( )
5 rdg ()] T 82 Wby (1)

measurement repetitions. The second inequalities in (32) and
(33) yield approximate bounds for probing the relevant regime
of small A-values at which the CSL-induced broadening is
dominated by the conventional phase spread.

(33)

043320-8



TESTING COLLAPSE MODELS WITH ...

PHYSICAL REVIEW A 107, 043320 (2023)

TABLE 1. Parameters and achievable sensitivities for CSL tests in single-well (SWI) and double-well (DWI) MZI setups with 8’Rb and
174Yb atoms at different interference times ¢. For a given atom number N, ground-state width w,, and phase squeezing parameter &, we list
the (rounded) number of measurement runs k needed to exclude CSL rates greater than A, at 25% precision. The phase variance due to
two-body interactions is denoted as o, while o} gives the phase spread due to three-body recombination. For the setup (i), phase dispersion
is inverted halfway to cancel its influence on phase broadening, whereas for (ii), we assume strong dispersion (achieving ¢t ~ 0.00157) over
a short period T < ¢ before and after the interference to further magnify the CSL-induced diffusion effect, as detailed in the main text and
depicted in Fig. 5. In both cases (i) and (ii) the condensate is in the three-dimensional ground state to ensure that dispersion can be reversed
without coherence loss [51]. The scattering length is assumed to be reduced to 1% (Rb DWI) or 10% (Rb SWI and Yb DWI?); we do not
assume that the three-body interaction can be manipulated significantly. The DWI arm separation is taken as A, = 10w,, and in the single-well
configuration w,, (and w, if the third dimension is not traced out) is chosen as /07w, to lift degeneracy. The respective exclusion curves of

all four setups are depicted in Fig. 1.

Setup Rb DWI Rb SWI Yb DWI® Yb SWI®
Atom number N 3 x 10 2.4 x 108 1 x10* 5 x 10
Condensate width w, 6 um 6 um 4 um 4 um
Condensate width w, 6 um S5um 4 um 3.3 um
Condensate width w, 60 um 60 um 4 um 3.3 um
Number density 1.4 x 10% cm™3 7.4 x 10" cm—3 1.6 x 10" cm™3 7.8 x 10® cm™3
Scattering length 0.8A 8A 55A 55A
Initial squeezing &2 0dB —20dB 20 dB 30dB
Interference time ¢ 100 ms 1s 100 ms 0.1ms
Dispersion rate ¢ or ¢, 3.4 x 107* Hz 4 x 1073 Hz 1.2 x 1072 Hz 0.57 Hz
Strong dispersion (&, t1) - - - (56kHz, 1 ps)
Two-body spread o, 3.4 x107° 0.39 reversed reversed
Three-body loss rate ys, 1 mHz 10 Hz 0.1 Hz 500 Hz
Three-body spread o, 3.7 x107° 0.012 2 x 107° 1 x 1077
CSL rate Amin 3.6 x 10719 Hz 1.8 x 107'* Hz 2.5 x 10712 Hz 1.2 x 107 Hz
Localization scale r¢(Anin) 8.0 x 107°m 5.7 x107%m 1.1 x107m 45x10°m
Measurement repetitions k 7.2 x 10° 4.4 x10° 9.2 x 10° 9.9 x 10°

Let us now illustrate how the scaling of CSL sensitivity
with the particle number N described in the previous section is
reflected in the expected measurement statistics. In the sim-
plest case of a noninteracting condensate and two spatially
separated arms (e.g., of a double-well potential), there is nei-
ther dispersion nor CSL diffusion and the final phase variance
(20) splits into Aagg (1) = [pt and o, (1) = 0,(0) = &5 /N.
While the CSL term does not directly depend on N, the initial
phase variance is inversely proportional and thus reduces the
required number k of measurement runs with 1/N2. If one
instead interfered single atoms in an equivalent number of
kN-independent repetitions, each atom would be subject to an
independent dephasing channel. Hence the precision of the A
estimate would scale less favorably like § oc 1/ VkN.

In comparison, the presented two- and three-step interfer-
ence schemes featuring interacting condensates in spatially
overlapping modes by far surpass single-atom measurements.
Taking only the leading CSL diffusion terms in (22) and (25)
into account, we have AaéSL(Z) o N?Tst.

Conversely, any additional known source of decoherence
or phase noise in the experiment will rapidly increase o2, (t)
and thus k, calling for precision measurements close to the
phase uncertainty limit. Most common noise sources are
due to technical limitations (stability of trap lasers, colli-
sions with residual background gas, etc.) that are likely to
be improved in the future. Other limitations of two-mode
BEC states are rather fundamental and hence unavoidable:
With a growing number N of atoms condensed into a mode
volume V, two- and three-body scattering and recombina-

tion processes compromise the phase and number stability of
the BEC.

The dominant effect of two-body collisions is phase disper-
sion, as quantified in terms of the rate ¢ in Egs. (27) and (28).
Given the s-wave scattering length a, we have ¢ = 4w ha/mV
for an evenly split two-mode condensate in linear approxi-
mation [36,43]. Depending on the chosen atom species and
volume, a must be Feshbach tuned [49,50] to suppress (or
amplify) the associated phase broadening compared to CSL
diffusion.

The main source of condensate depletion at higher atom
densities is three-body recombination, causing a loss rate
V3b & Kap (N/V)? per atom. Note that the characteristic rate
constant Kj, remains finite even at vanishing scattering
lengths due to the influence of low-energy Efimov resonances
[59]. While the authors of [15] assumed that K3, could be
suppressed further, we take the associated three-body loss
as a constraint that most probably cannot be overcome by
future technological improvements, limiting the accessible
range of CSL lengths r¢ at feasible condensate densities. (At
large a, the loss amplifies like K3, o< a*.) Among the lowest-
known K3 values are those of rubidium (5.8 x 1073 cm®/s)
[60] and of ytterbium (4 x 1073 cm®/s) [61], which will
be our prime candidates. Regarding CSL sensitivity, the
relevant effect of atom loss is the effective phase broaden-
ing it implies. Given that N3,(f) < N atoms are lost, we
can estimate a small additional phase spread of o2 (t) =
N3p(t)/[N — N3p(t)IN ~ N3p(t)/N? [39] that must be added
to 2, (t)in Eq. (33). The small reduction of N, or any small

conv
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fluctuation of the atom number for that matter, can always
be addressed by using conditioned likelihoods in the data
analysis [38].

Taking the aforementioned fundamental constraints on
measurement time and condensate density into account, we
propose exemplary interferometer setups that shift the bound-
aries of interferometric CSL tests far beyond the current
status quo. Table I lists four experimental schemes includ-
ing their key parameters and compares the required number
of measurement repetitions k to test CSL rates A > Apin
with precision § = 0.25, according to the Cramér-Rao bound.
While precision measurements in the double-well configura-
tion may improve existing interferometric CSL tests by a few
orders of magnitudes, they will most likely not improve the
current bounds provided by noninterferometric tests, much
less probe the originally proposed CSL rate A = 10~ Hz at
rc = 107" m. The key constraint is the three-body recombi-
nation that cannot be suppressed by decreasing the scattering
length a. For this reason, it is most favorable to reduce the
atom density by employing large trap volumes; the shal-
lowest state-of-the-art traps can reach frequencies as low as
w ~ 10Hz [62,63]. This requires a preparation time of the
condensate fpep 2 10/w, and we ensured that the total run
time of the proposed experiment k(f + fep) does not exceed
10% s, a typical value considered in experimental proposals
aimed at fundamental tests with BECs [64].

On the other hand, for single-well interferometry, the com-
bined effect of CSL-induced diffusion and dispersion due to
two-body interactions can outscale the three-body recombina-
tion rate. It is, in principle, possible to rule out CSL rates as
low as the originally proposed value of 10~!® Hz with our pro-
posed three-step interference protocol, provided that one can
reliably prepare large number-squeezed condensates and tune
their dispersion on short timescales. For example, the best
exclusion curve in Fig. 1 would be achieved with the parame-
ters in the right column of Table I: a rather dense condensate
of N =5 x 10° ytterbium atoms, initialized in a strongly
number-squeezed state and interfered over 100 ps, with ad-
ditional 1 us intervals of strongly boosted (and sign-flipped)
dispersion by five orders of magnitude. This experimental
scheme may be still far from the current state of the art, but it
should be fundamentally feasible.

VII. GENERALIZATIONS OF THE CSL MODEL

So far, we considered the widely studied original CSL
model. More recently, modified models have been suggested
that would mitigate CSL-induced energy excitation effects by
either introducing thermalization or colored noise. We will
now only qualitatively discuss why the here-proposed setups
would still serve to test those modified CSL models.

In the case of the dissipative CSL model, the CSL-
induced noise is linked to a ficticious finite-temperature
environment that would also cause friction with respect to a
distinguished reference frame [7]. Specifically, one can as-
sociate to the CSL-induced momentum diffusion rate D =
(m/lu)2h2A/4r% per single atom of mass m and per spa-
tial direction a friction rate y = D/kgTm based on the
fluctuation-dissipation theorem. Reasonable CSL tempera-

tures of the order of the cosmic radiation background, say
T ~ 1K, are much higher in energy than the excitation quanta
considered here, and so the finite temperature would add to
the conventional CSL effect an effective damping on time
scales y~! without affecting the dephasing. However, the en-
visaged CSL rate parameters A < 107'°Hz and rc ~ 107" m
yield y~! > 10835, i.e., no relevant effect on experimental
timescales. Apart from that, the CSL-induced diffusion effect
in the SWI scheme could be suppressed for T =~ fiw/kg =
5 x 1077 K. However, such low CSL temperatures have al-
ready been falsified in optomechanical heating experiments
[26,27].

The colored CSL model introduces a high-frequency cut-
off in the CSL noise spectrum [5,6], which was pointed out
to prohibit extreme events on the keV (or 10'® Hz) range
such as the spontaneous excitation of inner-shell electrons
in atoms, leading to strong CSL bounds with x-ray de-
tectors [28]. In our case, a colored noise spectrum could
impact the CSL-induced condensate depletion and diffusion
effect, but only if the cutoff (implausibly) were as low as
10° Hz. On the other hand, the CSL-induced dephasing ef-
fect that affects both the DWI and the SWI scheme would
remain unaltered.

VIII. CONCLUSION

We presented experimental schemes based on two-mode
atom BEC interference with either spatially separate or
overlapping modes that are capable of testing sponta-
neous collapse proposed as a solution to the measurement
problem. The suggested schemes rely solely on stan-
dard techniques such as squeezing and the manipulation
of the interaction strength via, e.g. Feshbach resonances.
Importantly, they neither require the preparation of maxi-
mally entangled GHZ states nor the detection of genuine
N-atom correlations.

The unprecedented sensitivity scaling with the third
power of the atom number in the single-well interferom-
eter is an effect of the interplay between CSL-induced
atom diffusion and interaction-induced phase dispersion.
This should facilitate macroscopic quantum tests with pre-
cision atom interferometry, in laboratory or space-based
experiments [65].

In comparison to classical heating experiments, which
currently provide the best CSL bounds, the here-proposed
interferometric test schemes are robust against conceivable
modifications of collapse models with colored noise or fric-
tion. The latter confine the heating effect to a finite frequency
window and temperature, while leaving the decoherence ef-
fect on macroscopic superpositions largely intact.

Future work could explore interference protocols based
on Bloch oscillations of atoms condensed in an optical lat-
tice, instead of the single- or double-well traps considered
here. Seconds-long coherence times with N > 10* atoms were
achieved in experiments [49,50], which also demonstrated
the Feshbach control over the atom-atom scattering length
that facilitated switching between positive and negative phase
dispersion.
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