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Classical-linear-chain behavior from dipolar droplets to supersolids
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We investigate the classicality of linear dipolar droplet arrays through a normal mode analysis of the dynamical
properties in comparison to the supersolid regime. The vibrational patterns of isolated-droplet crystals that
time-evolve after a small initial kick closely follow the properties of a linear droplet chain. For larger kick
velocities, however, droplets may coalesce and separate again, showing distinct deviations from classicality. In
the supersolid regime the normal modes are eliminated by a counterflow of mass between the droplets, signaled
by a reduction of the center-of-mass motion. Our study effectively captures the vibrational patterns of isolated
droplets in the presence of three-body loss and can be generalized to systems with a larger number of droplet
arrays.
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I. INTRODUCTION

In dipolar Bose-Einstein condensates (dBEC) intriguing
new quantum phases of matter at ultra-low temperatures
were discovered (see, e.g., the reviews [1–5]). Remarkably,
a trapped dBEC can develop a spontaneous periodic density
modulation while maintaining coherence and frictionless flow,
resulting in a dipolar supersolid [6–13]. Such a state of matter
with simultaneous off-diagonal and diagonal long-range order
[14–20] has long been debated for 4He [20–24], followed by
alternative setups with ultra-cold atoms [25–31]. In dBECs,
the mechanism driving the formation of broken-symmetry
states originates from the interplay between interparticle in-
teractions and quantum fluctuations [32–34]. In experiments
with dysprosium [35–38] or erbium [39,40] it was found that
density modulations and self-bound filaments stabilize simi-
larly to droplets of binary Bose gases [41–43] realized with
potassium in different hyperfine states [44–46]. The dBEC
includes both short- and long-range interactions, and by in-
creasing the relative strength of the long-range interaction,
there is a transition from a superfluid to a supersolid and a
crystal phase where the droplets become almost isolated from
one another [33,47]. In addition to the above references there
is a large volume of works addressing dipolar droplets and su-
persolids, see, for example, [13,34,47–73]. Dipolar mixtures
[74–79] were also discussed. Recent experimental efforts are
directed towards two-dimensional systems, see, e.g., [65,80–
82] and vorticity [83], and to explore the out-of-equilibrium
dynamics [10,82,84–86].

While the underlying origin of the self-bound droplets is
purely quantum mechanical, there is an aspect of classicality.
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The droplets may localize and rigidly organize themselves
in lattice-periodic structures. Alternatively, they may phase-
coherently overlap, forming a supersolid. An intriguing and
unresolved question is to what extent classicality may pre-
vail in these systems. In this article, we demonstrate a
mechanism to gauge the classicality of these supersolid or
droplet array states by their dynamics, based on a classical
linear-chain model [87,88] in comparison to a dynamical
Gross-Pitaevskii (eGP) approach. We consider a few droplets
in a dBEC confined by a three-dimensional elongated har-
monic trap [see Fig. 1(a)], similar to the recent experiments
in [6–8,12,13]. To initiate the vibrational dynamics, we give
one or two droplets a kick along the weakly confined di-
rection, as sketched in Fig. 1(b). Remarkably, a classical
spring-mass model as sketched in Fig. 1(c) can perfectly ac-
count for the vibrational patterns, provided the droplets are
fully separated from each other. The observed vibrational
frequencies hint at the triggering of underlying collective
excitation modes [12,13]. A finite background density inter-
connecting the droplets, however, destroys the resemblance
to classical patterns by inducing particle flow between the
droplets. When the kick velocity is large enough compared
to the velocity scale imposed by the harmonic confinement,
droplets that are initially isolated can collide, transferring
particles from outer to central droplets, a phenomenon that
mimics the collision of classical liquid droplets [89,90]. This
collision destroys the above-mentioned vibrational pattern as
well. It is worth noting that the normal modes of vibration of
soliton molecules in a dipolar condensate under the influence
of disturbances was also discussed in [91–93]. For binary
quantum droplets with short-range interactions [44,45] colli-
sion dynamics previously was reported in experiment [94] and
theory [95,96]. In contrast, in the present work the collision
dynamics between droplets is realized within a single confined
species. Our findings offer an avenue to assess classicality
and the dynamical manifestation of collective excitations in
droplet arrays at the verge between the crystal and supersolid
phase.
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FIG. 1. (a) Isosurfaces of three-dimensional density depicting
isolated droplets (left) and a supersolid phase (right), realized by a
system of N = 35 000 164Dy atoms at scattering length a = 84a0 and
a = 94a0, respectively. (b) Sketch of different configurations where
one or two droplets are kicked with a velocity. (c) Sketch of the
linear chain model of the linear droplet array, with masses m and
m2 attached by springs of stiffness k.

The structure of our paper is organized as follows. In
Sec. II, we introduce the relevant theoretical framework, the
velocity configurations employed, and the experimentally rel-
evant parameters of our setup. We then proceed to present the
emergence of vibrational patterns of isolated droplets follow-
ing an initial kick in Sec. III and discuss the normal mode
analysis in Sec. IV. The vibrational patterns within the super-
solid state are showcased in Sec. V. We analyze the influence
of three-body losses on the vibrational patterns of the isolated
droplets in Sec. VI. In Sec. VII, we summarize our findings
and provide an outlook on future perspectives. Additionally,
we provide further elaboration on the details of the utilized
beyond mean-field framework and the ingredients of the pre-
sented simulations in Appendix A. A detailed derivation of the
normal mode frequencies is provided in Appendix B. Finally,
Appendix C displays the vibrational dynamics of five isolated
droplets.

II. MODEL AND METHODS

We consider a dBEC of atoms with mass M and mag-
netic dipole moment μ aligned along the z axis, harmonically
trapped by V (r) = M(ω2

x x2 + ω2
y y2 + ω2

z z2)/2. The frequen-
cies ωi (where i = x, y, z) satisfy ωx < ωy, ωz resulting in an
elongated geometry along x. At zero temperature, the system
is well described by the eGP equation [32,33,39]

ih̄
∂ψ (r, t )

∂t
=

[
− h̄2

2M
∇2 + V (r) + g|ψ (r, t )|2

+ γ (εdd )|ψ (r, t )|3

+
∫

dr′Udd (r − r′)
∣∣ψ (r′, t )

∣∣2
]
ψ (r, t ), (1)

where g = 4π h̄2a/M is the short-range repulsive contact in-
teraction fixed by the scattering length a and the dipolar

interaction Udd (r, t ) = μ0μ
2
m

4π
[ 1−3 cos2 θ

r3 ] with θ being the an-
gle between r and the z axis. The final term in Eq. (1)
is given by the repulsive Lee-Huang-Yang (LHY) correc-

tion with γ (εdd ) = 32
3 g

√
a3

π
(1 + 3

2ε2
dd ) [32,97]. The dimen-

sionless parameter εdd = add/a with dipolar length add =
μ0μ

2
mM/12π h̄2 quantifies the relative strength of the DDI as

compared to the contact interaction and vosc = √
h̄ωx/M sets

the characteristic harmonic oscillator velocity scale. Equa-
tion (1) is solved using a split-step Crank-Nicholson method
[98,99] in imaginary time to obtain the initial ground state
and in real time to monitor the dynamics (see Appendix A
for details). The system showcases a superfluid phase for a
sufficiently small value of εdd . Increasing this parameter, the
supersolid phase (SS) is favored in a window of values of εdd

beyond which one enters the isolated droplet phase (DLI).
In the following, we utilize the experimentally relevant

[6,7] parameters of 164Dy dipolar BEC, namely, ωx/(2π ) =
19Hz, ωy/(2π ) = 53 Hz, and ωz/(2π ) = 81 Hz, and N =
35 000. Modulated density profiles are found for a < 94.9a0.
The density isosurfaces of the DLI and SS phases, realized at
a = 84a0 and 94a0, respectively, are shown in Fig. 1(a). Hav-
ing determined the ground state, showing the three localized
density structures (droplets), we investigate the vibrational
and collisional dynamics of these dipolar droplets. To ac-
complish this, we give a specific droplet an initial kick with
velocity v at t = 0 in the following manner. First, the central-
position (x0) of a droplet along the x axis in SS and DLI phases
is determined by locating the peaks in the ground-state density
profiles. Then we apply a quench through a transformation of
the order parameter

ψ (x, y, z) = ψ (x, y, z)eivF (x)x. (2)

Here, the function F (x) = A/{A + B cosh[L(x − x0)]}, with
A, B, and L being constants, guarantees that each localized
droplet has velocity v across its spatial extent; beyond its
extent the velocity falls to zero swiftly but continuously, main-
taining the continuity of the wave function (see Appendix A).
Depending upon which droplets are being kicked and the ini-
tial conditions thereof, a variety of dynamical situations can be
realized. We consider the following four cases [see Fig. 1(b)].
Case I corresponds to kicking the left and right droplets with
equal velocity in the −x and +x directions, respectively. In
case II, the left and right droplets are kicked in the opposite
direction with unequal velocity. Case III constitutes the left
droplet being kicked in the +x direction. Finally, case IV deals
with the scenario where only the central droplet is kicked in
the +x direction.

III. VIBRATIONAL AND COLLISIONAL DYNAMICS

To elucidate the vibrational and collisional dynamics tak-
ing place along the weakly confined x direction, we examine
the time evolution of the one-dimensional (1D) integrated
density profiles, with n1D(x) = ∫ |ψ (x, y, z)|2dydz being ex-
perimentally detectable, e.g., via in situ imaging [5,13].
Focusing first on case I [Figs. 2(a1) to 2(a3)], we notice that
the outer droplets exhibit periodic vibrational motion, while
the center droplet stays motionless. For low-enough velocity,
v < vosc [Fig. 2(a1)], the motion is precisely of sinusoidal
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FIG. 2. Time evolution of integrated density n1D of quasi-one-
dimensional (1D) dipolar quantum droplets exhibiting (a1) pure
vibrational and (a2) collisional dynamics for the case I when two
outer droplets are kicked in the opposite direction with the same
velocity (see the legends). (a3) The integrated density profiles n1D

during the first two collision times corresponding to (a2). During
the collision, the droplets make direct contact, exchanging particles
from the outside to the central droplet [(a2), (a3)]. Shown also in the
vibrational dynamics within (b) case II, (c) case III, and (d) case
IV that feature different initial velocity configurations (see also the
legends). The colorbar represents 1D density n1D in the unit of
1000μm−1. The colorbar in (a2) has been adjusted to enhance the
contrast. The vosc = 2.1 × 10−4 m/s is the characteristic harmonic
oscillator velocity scale.

type with a π phase difference between the trajectories of
the left and right droplets. This resembles a fundamental
mode of vibration of a corresponding classical spring-mass
system (see the discussion below). The amplitude of vibration
increases for increasing velocity v > vosc, and the two outer
droplets can collide with the central one, resulting in particle
exchange either from the outer droplets to the central one or
vice versa. For example, a particle transfer from the outer to
central droplet upon collision can be noticed [Fig. 2(a2)] when
v1 = v3 = 6vosc. Note that a particle exchange occurs exclu-
sively during the first two direct encounters between droplets
at t ≈ 24 ms and t ≈ 55 ms, respectively. For t > 55 ms, the
amplitude of vibration of the outer droplets decreases, and
as a result, they no longer come into direct contact with the
central droplet, with no further collisions. We stress that,
while the total momentum of the system is conserved for
the considered case I, each droplet, via mass transfer, shares
an equal magnitude but opposite sign of momentum to the
central droplet. As a result, the interactions between droplets
change, leading to a decrease in the oscillatory amplitude. To
better resolve the collision, we also show in Fig. 2(a3) the
density profiles n1D at t = 24 ms and t = 55 ms, respectively.
Evidently, the droplets overlap during the collision, causing

mass-flow. Consequently, the vibrational mode visible at low
kick velocity [see, for example, Fig. 2(a2)] is eliminated.

Interestingly, for v1 �= v3 (case II), the central droplet
ceases to be stationary, see Fig. 2(b), signaling the onset of
center-of-mass (COM) motion. Also, the trajectory of each
droplet is not purely sinusoidal anymore. This suggests that
the emerging vibration is not caused just by a single funda-
mental mode but rather by a linear combination of different
modes. A very similar dynamics is observed for case III. The
representative example illustrated in Fig. 2(c) indicates the
involvement of multiple frequencies in the vibrational pattern.
Now, the left droplet receives a kick along the +x direction
and it moves until it reaches the close vicinity of the central
one at t = 7.5 ms. The central droplet then begins to migrate
toward the right one, compelling the latter to move in the +x
direction as well. Turning to the case IV [Fig. 2(d)], when the
central droplet is kicked towards the right one, we notice that
the outer droplets follow nearly identical trajectories, vibrat-
ing in phase, while the central one showcases out-of-phase
vibration with the others, in contrast to the cases mentioned
before. This drastic modification of the vibrational pattern
arguably hints at the vanishing or softening of the fundamental
mode responsible for the dynamics of case I, setting the stage
for analyzing the system in terms of its classical modes.

IV. NORMAL MODES OF VIBRATION

To capture the fundamental modes of vibration responsible
for the emergent oscillation pattern observed in the eGP simu-
lation, we resort to the so-called normal mode analysis (NMA)
[87]. In particular, we model the three harmonically localized
droplets as three compact masses connected by springs with
spring constant k, sketched in Fig. 1(c), assuming that the
well-known Hooke’s law [88] is satisfied. Inspired by the
eGP simulations, we assume that the central droplet has mass
m2, while the outer ones have equal masses m1 = m3 = m.
Therefore, the two characteristic angular frequencies of the
springs read ω1 = √

k/m and ω2 = √
k/m2. These frequen-

cies are determined by the combined effect of confinement
and interparticle interactions. The instantaneous configuration
of the system is specified by the horizontal displacements
of the three masses from their equilibrium positions, X (t ) =
[x1(t ), x2(t ), x3(t )]. This is manifestly a three-degrees of free-
dom system, and the three normal mode frequencies (labeled
from slow “s” to medium “m” to fast “f”) are given by (see
Appendix B) ωs = [ω2

1 + ω2
2 −

√
ω4

1 + ω4
2]1/2, ωm = √

2ω1,

and ωf = [ω2
1 + ω2

2 +
√

ω4
1 + ω4

2]1/2, with the associated nor-
mal modes being A1 = (ω2

1, 0,−ω2
1 ), A2 = (ω2

1, ω
2
−, ω2

1 ), and
A3 = (ω2

1, ω
2
+, ω2

1 ), respectively, where ω2
± = (ω2

2 − ω2
1 ) ±√

ω4
1 + ω4

2. Note that the initial displacements of the masses
are zero, namely, x1(t = 0) = 0, x2(t = 0) = 0, and x3(t =
0) = 0. Consequently, the most general solution of the equa-
tion of motion, revealing trajectories of each individual
mass, is given by X (t ) = amA1 sin(ωmt ) + af A2 sin(ωft ) +
asA3 sin(ωst ). The coefficients am, af , as can be found from
the three initial conditions on the velocities.

For case I, the initial velocities read ẋ1(0) = −v, ẋ2(0) =
0, ẋ3(0) = v, which give the coefficients af = as = 0 and
am = v/(

√
2ω3

1 ). As a result, the trajectories can be calculated
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FIG. 3. Comparison of droplet trajectories xi(t ) between eGP
simulation and those obtained from the normal mode analysis
(NMA) (see the legends) for (a) case I, (b) case III, and (c) case IV,
all for velocity v = 0.4vosc. The vosc = 2.1 × 10−4 m/s is the char-
acteristic harmonic oscillator velocity scale. The NMA matches well
with those obtained from the eGP for the characteristic frequencies
ωm/(2π ) = 33.94 Hz, ωf/(2π ) = 46.85 Hz, and ωs/(2π ) = 19 Hz.
The eGP simulation is performed with N = 35 000 particles having
scattering length a = 84a0 and confined in a trapping potential with
frequencies ωx/(2π ) = 19 Hz, ωy/(2π ) = 53 Hz, and ωz/(2π ) =
81 Hz.

as x1(t ) = am sin(ωmt ), x2(t ) = 0, and x3(t ) = −am sin(ωmt ).
We also calculate the trajectories of each individual droplet
x j (t ), with i = 1, 3 from the eGP simulation for the case I
[see Fig. 3(a)]. For calculating the trajectory of each droplet
in the extended Gross-Pitaevskii equation (eGPE) simula-
tion, we locate the density profile of each droplet, then
the trajectory is defined as xσ (t ) = ∫

R x|ψ (x, y, z; t )|2dxdydz.
We then use the spring constant and mass in the nor-
mal mode analysis as fitting parameters to best capture the
trajectory from the eGPE simulation and determine the fun-
damental modes of oscillation. Notably, for velocity v <

vosc, the trajectories from the simulation match perfectly to
those obtained from the NMA with ωm/(2π ) = 33.94 Hz.
Indeed, the dynamics in case I is governed by one fun-
damental mode A1 that causes the observed out-of-phase
oscillation [Fig. 3(a)] between the left and right droplets.
This also causes the overall dBEC cloud to periodically
expand and contract, and thus the frequency ωm/(2π ) =
33.94 Hz corresponds to the breathing frequency. We remark
that even at large velocity v > vosc the mode A1 still qual-
itatively explains the observed oscillation pattern although
the quantitative matching between eGP and NMA improves
at v < vosc. For the initial conditions, ẋ1(0) = −v1, ẋ2(0) =
0, ẋ3(0) = v3, with v1 �= v3, the coefficients become am =
(v3 + v1)/(2ωm ), af = ω2

+(v3 − v1)/(4ω2
1ωf

√
ω4

1 + ω4
2 ), and

as = −ω2
−(v3 − v1)/(4ω2

1ωs

√
ω4

1 + ω4
2 ). The involved oscil-

lation frequencies in the vibrational pattern (not shown here)
are given by ωm/(2π ) = 33.94 Hz, ωf/(2π ) = 46.85 Hz, and
ωs/(2π ) = 19 Hz. Notably, the activation of COM motion is
manifested by the oscillation at ωs/(2π ) = 19 Hz (which is
equal to the trap frequency ωx) and the relevant mode is A3.
Naturally, a larger as indicates more vigorous COM motion
that indeed takes place within case III having initial condition
ẋ1(0) = v, ẋ2(0) = 0, and ẋ3(0) = 0. The coefficients can be
obtained from those of case II by substituting v1 = −v and
v2 = 0. The trajectories obtained via eGP simulation are well
produced by those obtained via NMA [see Fig. 3(b)] with
ωm/(2π ) ≈ 33.94 Hz, ωf/(2π ) ≈ 46.85 Hz, and ωs/(2π ) ≈
19 Hz, as obtained from case II. Interestingly, the coeffi-
cient am vanishes for case IV while the rest become af =
−v/(4ωf

√
ω4

1 + ω4
2 ) and as = v/(4ωs

√
ω4

1 + ω4
2 ), rendering

x1(t ) = x3(t ) and |af | < |as|. Thanks to the vanishing con-
tribution of the A1 mode, the outer droplets demonstrate the
same trajectories performing in-phase oscillations and thus
resulting in the strongest COM motion among the configura-
tions considered herein. The underlying frequencies comprise
of ωs/(2π ) = 19 Hz and ωf/(2π ) = 46.85 Hz. Thus, by
maneuvering the outer droplet velocities, one can excite the
single or combination of normal modes that strongly resem-
bles those of a classical system. We note that our analysis
is rather generic, applying to arrays with large numbers of
isolated droplets (see [80]), different particle numbers, or
trapping frequencies.

V. IMPACT OF THE SUPERSOLIDITY

The similarity of motion between the DLI state and the
conventional classical spring-mass system relies on the fact
that the mass of each droplet is conserved. But Hook’s law
cannot adequately capture the vibrational dynamics of crys-
tals in the supersolid state, as the droplets are connected,
resulting in time-dependent mass transfer within the crystals
and rendering the linear spring-mass model inapplicable. This
becomes apparent from Fig. 4(a1) where case I is displayed.
Although the central droplet remains still motionless, notably
there is a particle transfer across the humps via the dilute
background density, even at a low velocity such as v = 0.4vosc

[Fig. 4(a1)]. The velocity configuration induces periodic os-
cillations of the density profile of the cloud, which bear the
signature of two distinct breathing frequencies corresponding
to the localized crystal and the background superfluidity, re-
spectively [10]. This is in contrast to the observations in the
case I configuration of the isolated droplets, where x1(t ) is
determined by a single breathing frequency ωm. A notably
interesting scenario emerges for case IV [Figs. 4(a2) and
4(a3)], depicted for two different velocities. The low-density
peaks located left to the central droplet [Figs. 4(a2) and 4(a3)]
become increasingly populated during the dynamics. This
implies a mass flow along the −x direction, revealing the ex-
istence of out-of-phase motion between the droplet arrays and
background superfluid [11]. Furthermore, an in-phase motion
exists, which corresponds to the dipole mode and determines
the COM oscillation frequency of the isolated droplets. The
out-of-phase motion, however, is unique to the SS state, and its
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background density. The colorbar represents the 1D density n1D in
units of 1000μm−1, and vosc = 2.1 × 10−4 m/s is the characteristic
harmonic oscillator velocity scale.

frequency is determined by the superfluid fraction. This out-
of-phase motion decreases both the amplitude and time period
of the COM of the entire cloud in the SS state, as determined
by the quantity Xcm = ∫

x|ψ (x, y, z)|2dxdydz, see Fig. 4(b).
Let us remark that imparting a kick velocity triggers various
low-lying excitation modes of the system. The frequency of
the COM oscillation in the isolated droplet regime is 19 Hz,
which stems from the activation of the so-called dipole mode
and is also consistent with the harmonic potential theorem
[100]. In the supersolid regime, we find that two modes ac-
tually determine the COM. One is again the dipole mode or
in-phase Goldstone mode at the trap frequency (consistent
with the prediction of the harmonic potential theorem), and
the other is the out-of-phase Goldstone mode [11], which
is a significantly lower frequency than the trap frequency.1

This behavior is in line with the fact that isolated droplets
can be modeled solely using the classical harmonic oscillator
equation, which is unable to capture the vibrational pattern

1The frequency of the out-of-phase Goldstone mode, calculated by
utilizing the Bogolibhov de Gennes analysis [101,102], is 2.17 Hz at
a = 94a0.
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FIG. 5. Time evolution of integrated density n1D of quasi-1D
dipolar quantum droplets in the presence of three-body loss focusing
on (a1) case I and (a2) case II, realized with a kick velocity 0.4vosc.
Shown also is (a3) the time evolution of particle number N (t ) for
two different cases (see the legends). The initial particle number is
N (t = 0) = 35 000, and vosc = 2.1 × 10−4 m/s sets the harmonic
oscillator velocity scale. The colorbar represents the density in the
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of each crystal in the supersolid regime. The alternation of
COM mass motion fundamentally serves as an indicator of
mass flow and the submergence of classicality in vibrational
motion.

VI. IMPACT OF THREE-BODY LOSS

The detection of isolated droplets characterized by highly
localized densities is a significant challenge in the experiment
due to three-body losses. In the following, we demonstrate
the influence of the three-body loss on the previously men-
tioned vibrational patterns exhibited by isolated droplets. To
account for particle loss in our simulation, we introduce
a phenomenological three-body term −ih̄(L3/2)|ψ (r)|4 into
our eGPE [Eq. (1)], where L3 = 1.2 × 10−41 m6/s [33]. We
conducted numerical simulations with an initial state of three
isolated droplets at a scattering length of a = 84a0 and exam-
ined two cases, namely, case I and case IV. The time evolution
of the integrated density n1D is analyzed. We observe that, in
the presence of the three-body loss term, the amplitude of the
out-of-phase vibrational pattern of the two outermost droplets
gradually decreased over time [see Fig. 5(a1)]. However, the
vibrational pattern is still captured by underlying vibrational
mode A3. The in-phase vibrational pattern of the two outer-
most droplets in case IV, on the other hand, is disrupted by the
three-body term, resulting in the activation of all fundamental
modes (A1, A2, A3) after t > 22 ms. The rate of atom loss,
which started at N (t = 0) = 35 000, is found to be indepen-
dent of the velocity configuration and dependent on the loss
rate, L3 [Fig. 5(a3)].

Overall, our simulation results demonstrate the ability to
capture classical vibrational patterns even in the presence
of a three-body loss in isolated droplets. While the current
experiments can capture these patterns quantitatively in the
early time dynamics, future investigations could extend their
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dynamical time span by exploring regions of lower losses in
the rich Feshbach spectrum of dysprosium [5].

VII. CONCLUSION

We analyzed the vibrational modes of a linear dipolar
droplet array. A selective kicking of isolated droplets induces
distinct vibrational patterns resembling those of a classical
spring-mass system. At slow kick velocities, a normal mode
analysis accurately describes the vibrational patterns. For
faster kicks the droplets can touch which may induce a mass
flow, so that droplets can coalesce and separate again with
different mass distributions, giving rise to different crystalline
structures during the dynamics. In the case of a supersolid,
classicality is eliminated and a counterflow between droplet
motion and superfluid-dilute background occurs. Specifically,
our results demonstrate that the classical harmonic oscillator
equation accurately characterizes the oscillations of the for-
mer, whereas the vibrational patterns of the latter cannot be
described by this framework due to the presence of intercrys-
tal superfluid connections. In light of the recent discovery of
two-dimensional supersolidity [13,62,65,80] we expect our
work to have high relevance for assessing classicality and
vibrational modes in these structures. It would be interesting
to develop a model that goes beyond the normal mode anal-
ysis presented in the article and addresses both the isolated
droplets and time-dependent mass transfer in the supersolid
regime in a unified manner. It will also be intriguing to
compare the normal mode analysis with the underlying collec-
tive excitation spectra obtained by a Bogoliubov–de Gennes
approach. A finite-temperature study would be equally inter-
esting [103].
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APPENDIX A: COMPUTATIONAL DETAILS

In our numerical simulations, we cast the extended Gross-
Pitaevskii equation (eGP), Eq. (1) in the main article, into
a dimensionless form by rescaling the length, the time in
terms of the harmonic oscillator lengthscale losc = √

h̄/mωx,
and the trap frequency ωx, respectively. The wave function is
accordingly scaled as ψ (r′, t ) = √

l3
osc/Nψ (r, t ). Thereafter

we employ split-step Crank-Nicholson method (see [98] in the
main article) to solve the resulting dimensionless equation.
The stationary (lowest energy) states of the dipolar Bose-
Einstein condensate (dBEC) are obtained through imaginary
time propagation, effectively a gradient descent algorithm. At
each imaginary time step of 
ti = 10−4/ωx of this procedure,
we apply the transformation ψ (r′,t )

||ψ (r′,t )|| → 1. This preserves the
normalization of the wave function, while convergence is
reached as long as relative deviations of the wave function (at
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x(µm)

0

0.2

0.4

0.6

0.8

1.0

n
1D

v

x0

(a)

−10 0 10

x(µm)

(b) v

x0

FIG. 6. Shown here are integrated density profiles (blue shaded
region), n1D(z) = ∫ |ψ (x, y, z)|2dxdy, normalized with respect to the
maximum n1D, representing the (a) isolated droplets and (b) super-
solid state, realized at a = 84a0 and a = 94a0, respectively. The
black dotted lines indicate the central position (x0) of a droplet
crystal. To initiate the dynamics, a droplet is kicked with a velocity v

that is constant over the droplet’s spatial extension then falls swiftly
but continuously to zero.

every grid point) and energy between consecutive time steps
are smaller than 10−5 and 10−7, respectively. This solution is
taken to locate the peak densities and thus identify the central
position x0 of a droplet, see Fig. 6 for the visualization. Subse-
quently, the wave function is multiplied with the phase vF (x),
where v is the velocity and F (x) = A/{A + B cosh[L(x −
x0)]} is a modulating function ensuring the continuity of the
wave function. We take A = 106, B = 0.02, and L depends on
the spatial extension of the droplet along the x axis. Having
multiplied the wave function with the above-mentioned phase
we propagate the eGP equation in real time to carry out
the vibrational and collisional dynamics of dipolar quantum
droplets. The simulation is performed in a three-dimensional
(3D) box characterized by a grid (nx × ny × nz ) correspond-
ing to (512 × 256 × 256) grid points. The employed spatial
discretization step is 
x = 
y = 0.06losc and 
z = 0.1losc,
while the time step of the numerical integration is 
t =
10−5/ωx. Finally, let us comment that our dynamical simu-
lation is very well resolved up to kick velocity v = 7.5vosc

for the considered spatial discretization steps. However, for
stronger kick velocity v > 7.5vosc since the droplets become
very localized during the collision, one should reduce the
spatial and temporal discretization steps further. At the same
time, one should increase the number of grid points to reduce
the boundary effects. The numerical simulation at this velocity
scale is expected to be challenging.

APPENDIX B: DETAILED DERIVATION OF THE NORMAL
MODES OF VIBRATION

As we explicated in the main text, the vibrational motion
of the three isolated quantum droplets can be modeled by
resorting to a spring-mass system [88], where three masses
are connected by the springs with the identical spring constant
k [see Fig. 1(c) in the main text]. The x1, x2, and x3 denote
the displacement of the left, center, and right masses from
their equilibrium positions. To correctly capture the physical
situation, we consider that m1 = m2 = m. Assuming that the
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spring force is linear, the equations of motion of three masses
can be written as

mẍ1 = −kx1 − k(x1 − x2), (B1)

m2ẍ2 = −k(x2 − x1) − k(x2 − x3), (B2)

mẍ3 = −k(x3 − x2) − kx3. (B3)

From Eqs. (B1), (B2), and (B3), we get

ẍ1 = −ω2
1x1 − ω2

1(x1 − x2), (B4)

ẍ2 = −ω2
2(x2 − x1) − ω2

2(x2 − x3), (B5)

ẍ3 = −ω2
1(x3 − x2) − ω2

1x3, (B6)

where ω1 = √
(k/m), ω2 = √

k/m2. The solution of
Eqs. (B4), (B5), and (B6) can be written in the form
x j = A jeiωt . This gives the set of equations

A1
(
ω2 − 2ω2

1

) + ω2
1A2 = 0, (B7)

ω2
2A1 + A2

(
ω2 − 2ω2

2

) + ω2
2A3 = 0, (B8)

and

ω2
1A2 + (

ω2 − 2ω2
1

)
A3 = 0. (B9)

The above equations can be cast into a matrix of the form
MA = 0, where

M =

⎛
⎜⎝

ω2 − 2ω2
1 ω2

1 0

ω2
2 ω2 − 2ω2

2 ω2
2

0 ω2
1 ω2 − 2ω2

1

⎞
⎟⎠, (B10)

and

A =
⎛
⎝A1

A2

A3

⎞
⎠. (B11)

A nonzero solution exist for A only if the determinant of M is
zero. This gives(

ω2 − 2ω2
1

)[(
ω2 − 2ω2

2

)(
ω2 − 2ω2

1

) − ω2
1ω

2
2

]
−ω2

1ω
2
2

(
ω2 − 2ω2

1

) = 0. (B12)

The roots of the Eq. (B12) are ω2 = 2ω2
1 and ω2 = ω2

1 +
ω2

2 ±
√

ω4
1 + ω4

2. Plugging these values back into Eq. (B10)
we can determine the relations between A1, A2, and A3,
which gives the three normal modes, A1 : A2 : A3 = ω2

1 :
ω2 − 2ω2

1 : ω2
1. For ω = ωm = ±√

2ω1, the eigenmode is

A1 =
⎛
⎝A1

A2

A3

⎞
⎠ =

⎛
⎝ ω2

1
0

−ω2
1

⎞
⎠. (B13)

For ω = ωf = ±[ω2
1 + ω2

2 +
√

ω4
1 + ω4

2]1/2, the eigenmode
reads

A2 =
⎛
⎝A1

A2

A3

⎞
⎠ =

⎛
⎜⎝

ω2
1

ω2
−

ω2
1

⎞
⎟⎠. (B14)
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FIG. 7. Time evolution of integrated density n1D of quasi-1D
dipolar quantum droplets featuring five localized isolated crystal
structures, considering case I and case IV. The initial state of the
system consists of N = 45 000 atoms in a harmonic trapping po-
tential with frequencies (ωx, ωy, ωz )/(2π ) = (33, 100, 167) Hz and
scattering length a = 79a0. The characteristic harmonic oscillator
velocity scale of the system is vosc = 4.56 × 10−4 m/s. The colorbar
represents the density in the unit of 103 μm−1.

Finally, for ω = ωs = ±[ω2
1 + ω2

2 −
√

ω4
1 + ω4

2]1/2, the
eigenmode becomes

A3 =
⎛
⎝A1

A2

A3

⎞
⎠ =

⎛
⎜⎝

ω2
1

ω2
+

ω2
1

⎞
⎟⎠. (B15)

Here, ω2
± = (ω2

2 − ω2
1 ) ±

√
ω4

1 + ω4
2.

Thus, the most general solution X = (x1, x2, x3) can be
written as

X = amA1 cos(ωmt + φm) + af A2 cos(ωft + φf )

+ asA3 cos(ωst + φs).
(B16)

The six unknowns, am, as, af , φm, φf , and φs are determined
by the six initial conditions (three positions and three veloc-
ities). In the following for all the cases considered we fixed
the initial conditions on the positions, namely, x1 = 0, x2 = 0,
and x3 = 0. This gives φm = φf = φs = π/2.

APPENDIX C: VIBRATIONAL PATTERN OF FIVE
ISOLATED DROPLETS

In the main text, our focus has been primarily on
the vibrational dynamics of the three-droplet state. Here,
we present a system consisting of five localized isolated
droplets [80], created within a harmonic trapping potential
with (ωx, ωy, ωz )/(2π ) = (33, 100, 167) Hz by N = 45 000
dysprosium atoms having scattering length a = 79a0. This
system possesses five normal mode frequencies. While a thor-
ough analysis of this system through numerical simulation
and normal mode analysis, akin to that of the three-droplet
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systems, is outside the scope of this work, we demonstrate two
specific cases that resemble case I and case IV of the three-
droplet systems. In the first (case I), equal magnitude kicks are
given to the outermost droplets (of five-droplet configurations)
in opposite directions. In the second (case IV), only the central
droplet is kicked in the +x direction. Figs. 7(a1) and 7(a2)
show the time evolution of the n1D(x) density for case I and
case IV, respectively.

For case I, we observe that the first and fifth droplets
exhibit out-of-phase vibrational patterns, while the central

(third) droplet remains motionless. This behavior is highly
reminiscent of case I in the three-droplet configuration. In
case IV, as shown in Fig. 7(a2), the first and fifth droplets
demonstrate in-phase motion (as do the second and fourth
droplets), indicating a striking similarity to case IV in the
three-droplet configuration.

These findings demonstrate that the analysis detailed in the
main text can be extended to systems containing any number
of droplets and provide further insight into the vibrational
dynamics of quasi-one-dimensional dipolar quantum droplets.
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