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Non-Hermitian skin effect in a one-dimensional interacting Bose gas
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Non-Hermitian skin effect (NHSE) is a unique feature studied extensively in noninteracting non-Hermitian
systems. In this paper, we extend the NHSE originally discovered in noninteracting systems to interacting many-
body systems by investigating an exactly solvable non-Hermitian model, i.e., the prototypical Lieb-Liniger Bose
gas with imaginary vector potential. We show that this non-Hermitian many-body model can also be exactly
solved through the Bethe ansatz. By solving the Bethe ansatz equations accurately, the explicit eigenfunction is
obtained, and the model’s density profiles and momentum distributions are calculated to characterize the NHSE
quantitatively. We find that the NHSE is gradually suppressed on the repulsive side but does not vanish as the
repulsive interaction strength increases. On the attractive side, the NHSE for bound-state solutions is enhanced
as interaction strength grows. In contrast, for the scattering state the NHSE shows a nonmonotonic behavior in
the attractive side. Our paper provides an example of the NHSE in exactly solvable many-body systems, and we
envision that it can be extended to other non-Hermitian many-body systems, especially to integrable models.
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I. INTRODUCTION

Open quantum systems are ubiquitous in nature, and their
study is an essential branch of modern physics that has pen-
etrated into numerous areas, including atomic and molecule
physics, nuclear physics, photonics, biophysics, mesoscopic
physics, etc. Non-Hermitian Hamiltonians can describe an
open quantum system effectively. The first example was in-
troduced by Gamow, who derived a non-Hermitian model to
describe the alpha decay of heavy nuclei [1]. With the discov-
ery of PT symmetry [2] in non-Hermitian Hamiltonians and
associated experimental observation of PT -symmetry break-
ing, non-Hermitian physics has attracted intense attention.

In recent years, non-Hermitian physics has roused revived
theoretical interest due to tremendous advances in experi-
mental technology for controlling dissipation [3,4]. Thanks
to the great advantage in manipulating atom-atom interac-
tion and light-matter coupling, ultracold atom experiments
provide an unprecedented opportunity to investigate interact-
ing non-Hermitian systems [5–15]. Recent theoretical studies
in non-Hermitian many-body systems have revealed that
the interplay between interaction and non-Hermiticity can
alter physical properties and give rise to intriguing phe-
nomena absent in Hermitian many-body systems [16–71]
such as non-Hermitian superfluidity [21–23], non-Hermitian
quantum magnetism [42,55], and non-Hermitian many-body
localization [56–58].

A unique feature of non-Hermitian systems in open bound-
ary conditions (OBC) is the so-called non-Hermitian skin
effect (NHSE) [72–76] which is recognized by eigenfunctions
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accumulated at a boundary, akin to the charge distribution
over the surface in a conductor. More recently, non-Hermitian
systems featuring the NHSE have been raising an increasing
concern [77–98] motivated by the experimental realization of
NHSE [99–107]. Despite extensive investigations, the current
studies of the NHSE discussed in the literature mainly focus
on the single-particle level, such as non-Hermitian topolog-
ical bands or non-Hermitian quasicrystals. In contrast, the
research on NHSE in interacting systems is in its infancy
[108–113], and just involves few-body calculation [108],
exact diagonalization study [109–111], perturbation theory
[112], and the hard-core limit [113]. The NHSE in exactly
solvable many-body systems has not been systematically in-
vestigated so far.

In this paper, we theoretically investigate NHSE in an
exactly solvable model. Exactly solvable models play a signif-
icant role in statistical physics and condensed-matter physics,
such as the verification of Bogoliubov theory in the Lieb-
Liniger model [114] and Wilson’s numerical renormalization
group in exact solutions of the Kondo model [115]. In recent
years, starting from Ref. [116], there has been an increasing
amount of literature on integrable open quantum systems in
the framework of the Lindblad equation [117–125]. With the
help of techniques developed in the integrable model liter-
ature, we can obtain exact solutions of eigenenergies and
wave functions. The NHSE sensitively depends on bound-
ary conditions, which is similar to integrability conditions
in many-body systems. So we need to consider a non-
Hermitian interacting system with OBC, which manifests
the NHSE and meanwhile guarantees the integrability condi-
tion. Based on this criterion, we employ the one-dimensional
(1D) interacting Bose gas (Lieb-Liniger model) under OBC
with an additional imaginary potential corresponding to the
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nonreciprocal hopping in the 1D lattice [see (1)]. This model
has different physical properties as interaction strength varies,
and can form bound states on the attractive interaction side.
We will investigate NHSE and its response to interaction in
the whole interaction range.

The rest of this paper is organized as follows. In Sec. II,
we introduce the exactly solvable non-Hermitian many-body
model and give the exact solution obtained by the Bethe
ansatz, where the explicit eigenfunction and eigenvalue are
derived. In Sec. III, we discuss the NHSE in a repulsive
interaction regime where both density profiles and momen-
tum distributions are calculated to quantify the degree of the
NHSE. Then we explore the NHSE in attractive interaction,
including the bound state and scattering state, in Sec. IV. Fi-
nally, we summarize this paper in Sec. V. For readers who are
not familiar with NHSE, Appendix A provides an introductory
example for NHSE in a tight-binding model.

II. MODEL AND SOLUTION

In this section, we introduce an exactly solvable non-
Hermitian many-body model and then carry out the Bethe
ansatz solution. We focus on a 1D system with length L that
consists of N bosons with δ-function interaction and subject
to an imaginary potential:

Ĥ =
N∑

j=1

[
− i

∂

∂x j
+ iφ(x j )

]2

+ 2c
∑
j<l

δ(x j − xl ), (1)

where c denotes the interaction strength and iφ(x) is the
imaginary potential. Here we set h̄ = 2m = 1. This model
is known as the Lieb-Liniger model [114] when φ(x) = 0
and has been realized in ultracold atomic gases [126–128].
The confinement-induced resonance [129] or Feshbach reso-
nance [130] can tune the interaction strength. The imaginary
potential is related to the local loss rate, which could be
realized via dissipative Aharonov-Bohm ring [131]. The de-
tailed explanation about the relationship between local loss
rate and imaginary potential is discussed in Appendix B. The
Lieb-Liniger model with atom losses has been extensively
investigated via Bethe ansatz in the past [132–137]. In the
following we will show that the non-Hermitian model (1) can
also be solved exactly both in periodic boundary condition
(PBC) and OBC for uniform potential φ(x) = φ.

We start from the Schrödinger equation Ĥ�(x1, . . . , xN ) =
E�(x1, . . . , xN ) and then we write the many-body wave func-
tion �(x1, . . . , xN ) in the following form:

�(x1, . . . , xN ) =
∑

P

ψ (xp1 , xp2 , . . . , xpN )

×�(xp1 � xp2 · · · � xpN ) (2)

where p1, p2, . . . , pN presents the one of permutations of the
set 1, . . . , N , and

∑
P is the summation of all permutations.

�(xp1 � · · · � xpN ) = θ (xpN − xpN−1 ) · · · θ (xp2 − xp1 ) where
θ (x − y) is the step function. Since the wave function is sym-
metric under the interchange of coordinates, one just needs to
calculate ψ (x1, x2, . . . , xN ) in any region x1 � x2 � · · · � xN ,

which satisfies⎛
⎝ N∑

j=1

[
− i

∂

∂x j
+ iφ

]2

+ 2c
∑
i< j

δ(xi − x j )

⎞
⎠ψ (x1, . . . , xN )

= Eψ (x1, . . . , xN ). (3)

The δ-function interaction gives rise to the contact condition:(
∂

∂x j+1
− ∂

∂x j

)
ψ

(· · · x j, x j+1 · · · )∣∣x j+1=x j

= cψ
(· · · x j, x j+1 · · · )∣∣x j+1=x j

. (4)

We first consider the PBC, i.e.,

ψ (x, x2, . . . , xN ) = ψ (x1, x2, . . . , x + L), (5)

with system size L. According to the Bethe ansatz solutions,
the wave function takes linear superposition of plane waves:

ψ (x1, x2, . . . , xN ) =
∑

P

AP exp

⎛
⎝ N∑

j=1

ikp j x j

⎞
⎠, (6)

where k j’s denote the quasimomentum of bosons. Combining
the wave function (6) into contact condition (4) and boundary
condition (5), quasimomenta satisfy the Bethe ansatz equa-
tions (BAEs)

exp(ik jL) =
N∏

l=1( �= j)

ik j − ikl − c

ik j − ikl + c
, (7)

and the eigenenergy is given by E = ∑N
j=1(k j + iφ)2. The so-

lution of quasimomenta and the corresponding eigenfunction
are independent of φ, but the spectrum is complex, which is
similar to the single-particle model in PBC as discussed in
Appendix A.

We then turn to the OBC:

ψ (0, x2, . . . , xN ) = ψ (x1, x2, . . . , L) = 0. (8)

It has been shown that the Lieb-Liniger model (φ = 0) in
OBC can also be exactly solved [138–141]. We will show that
the non-Hermitian case can be solved exactly. To solve the
non-Hermitian model in OBC, we require the non-Bloch wave
function obtained from the single-particle model in OBC. And
then we can construct the many-body wave function by means
of Bethe ansatz form

ψ (x1, x2, . . . , xN ) =
∑

P,r1,...,rN

AP exp

⎛
⎝ N∑

j=1

(ir jkp j x j + φx j )

⎞
⎠,

(9)

where r j = 1 (r j = −1) indicates the plane wave of the jth
boson moving toward right or left. We emphasis that Bethe
ansatz wave function (9) is the superposition of non-Bloch
wave functions instead of plane waves. The traditional ansatz
for Hermitian systems in OBC, i.e., ψ (x1, x2, . . . , xN ) =∑

P,r1,...,rN
AP exp (

∑N
j=1 ir jkp j x j ), cannot solve the non-

Hermitian Hamiltonian (1). Based on the wave function (9)
together with Eqs. (8) and (4), one can derive the BAEs in
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OBC:

exp(i2k jL) =
N∏

l=1( �= j)

ik j − ikl − c

ik j − ikl + c

ik j + ikl − c

ik j + ikl + c
, (10)

and the energy eigenvalue is given by E = ∑N
j=1 k2

j . Physi-
cally, the second fraction on the right-hand side of Eq. (10)
comes from the reflection at boundaries.

It is worth noting that the eigenfunction in the OBC case
is related to the one of the Hermitian counterpart (φ = 0)
of Hamiltonian (1) by a transformation k j → k j + iφ. The
energies and BAEs are determined simply by the Hermitian
counterpart and independent on φ. This transformation of
wave functions should manifest itself in more complicated
cases with imaginary potential or nonreciprocal hopping be-
cause its validity is always guaranteed by OBC. In contrast,
the wave function of the PBC case is exactly the same as the
one in the Hermitian case which is independent of φ, but the
energies depend on φ. The invariability of the wave function
of the PBC case is closely related to the particular ki − k j

structure in BAEs which leads to the invariance of solutions
under the transformation k j → k j + iφ.

From the above calculation, the many-body eigenfunc-
tion in OBC exhibits NHSE in the entire area of interaction
c ∈ (−∞,∞). The following sections will elaborate on the
properties of NHSE in distinct interaction regions, including
repulsive and attractive interactions.

III. NHSE IN REPULSIVE INTERACTION

In this section, we study the NHSE in repulsive interac-
tion. When c > 0, the system is in a scattering state, and the
solution of quasimomenta is real and unique. To analyze the
solutions of BAEs, we first take the logarithm of Eq. (10) that
leads to

k jL = π I j +
N∑

l=1( �= j)

(
arctan

c

k j − kl
+ arctan

c

k j + kl

)
,

(11)

where {I j} represents the quantum number that takes a set of
integers. For the ground state, we have I j = 1 (1 � j � N )
which can be found in the noninteracting limit where all
bosons condense on k j = π/L. For a fixed {n j}, one can solve
Eq. (11) to determine quasimomenta for arbitrary interaction
strength.

After some calculations, we can derive the explicit expres-
sion of the eigenfunction as

ψ (x1, x2, . . . , xN )

=
∑

P

APεp exp

⎡
⎣i

⎛
⎝N−1∑

l< j

�p j pl

⎞
⎠

⎤
⎦

× sin(kp1 x1) exp(ikpN L)
N∏

j=1

exp(φx j )

×
∏

1< j<N

sin

⎛
⎝kpj x j −

∑
l< j

�pl p j

⎞
⎠ sin[kpN (L − xN )], (12)

(a) (b)

(c) (d)

FIG. 1. NHSE in repulsive interacting bosons. Ground-state den-
sity distributions ρ(x) in real space for different φ at (a) c = 1,
(b) c = 10, and (c) c = 100. (d) The deviation of mean position δ〈x〉
as a function of φ for different interaction strengths from noninter-
acting (dashed line) to TG limit (dot-dashed line). φ and c are in units
of 1/L. Here we choose L = 1 as length unit and set N = 4.

where AP = ∏N
j<l (ikp j − ikpl − c)(ikp j + ikpl − c) and � jl =

arctan c
k j+kl

− arctan c
k j−kl

. Here the sign factor εp takes +1
(−1) relying on even (odd) permutations of (p1, p2, . . . , pN ).
Apparently, the wave function meets boundary conditions (8).
Thus, the eigenenergy and wave function can be determined
immediately once the BAEs are solved.

To investigate the NHSE, we calculate the density distribu-
tion in real space:

ρ(x) = N
∫ L

0 dx2 · · · dxN |�(x, x2, . . . , xN )|2∫ L
0 dx1 · · · dxN |�(x1, x2, . . . , xN )|2

. (13)

In Fig. 1, we plot density distributions for distinct potential
φ at weak (c = 1), mediate (c = 10), and strong interaction
(c = 100). Notably, the density distribution gradually tends
to the right boundary with the increasing of φ. Meanwhile,
the repulsive interaction widens the density profile. In order to
characterize the degree of NHSE qualitatively, we define the
deviation of mean position similar to the charge distribution:

δ〈x〉 = 1

N

∫ L

0
x[ρ(x) − ρ0(x)]dx, (14)

where ρ0(x) denotes the density distribution at φ = 0. The
larger δ〈x〉 is, the stronger the degree of the NHSE will
be. One can see from Fig. 1(d) that the NHSE is suppressed
as the interaction strength grows. It is physically reasonable
that the repulsive interaction prevents bosons from clumping
together, thereby effectively suppressing NHSE. However, the
NHSE always exists even in the Tonks-Girardeau (TG) limit
c = ∞. In the TG limit, the ground-state solution of the BAEs
(11) is k j = jπ ( j = 1, 2, . . . , N) where the bosons look like
free spinless fermions, and the corresponding wave function
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(a) (b)

FIG. 2. Ground-state momentum distributions n(k) for different
φ at (a) c = 1, (b) c = 10, and (c) c = 50. (d) The deviation of mo-
mentum distribution δ〈x〉 as a function of φ for different interaction
strengths from noninteracting (dashed line) to TG limit (dot-dashed
line). φ and c are in units of 1/L. Here we choose L = 1 as length
unit and set N = 4.

takes the form of

�(x1, x2, . . . , xN ) =
∑

P

θ
(
xpN − xpN−1

) · · · θ(
xp2 − xp1

)

×
N∏

j=1

sin
(

jπxpj /L
)

exp
(
φxpj

)
, (15)

which leads to finite δ〈x〉 as shown in Fig. 1(d).
We can also characterize the magnitude of NHSE via mo-

mentum distribution n(k) = 1
2π

∫ L
0 dx

∫ L
0 dx′(x, x′)e−ik(x−x′ )

where the single-particle density matrix (x, x′) is defined as

(x, x′)

= N
∫ L

0 dx2 · · · dxN�∗(x, x2, . . . , xN )�(x′, x2, . . . , xN )∫ L
0 dx1dx2 · · · dxN |�(x1, x2, . . . , xN )|2

.

(16)

The momentum distribution width is enhanced as φ increases,
as shown in Figs. 2(a)–2(c). The broadening momentum
distribution corresponds to the NHSE in real space, where
particles concentrate on the boundary with a narrower density
profile according to the Fourier transformation. Specifically,
Fig. 2(d) plots the deviation of momentum distribution width

δk
2 = k2 − k2

φ=0 with k2 = ∫ ∞
−∞ k2n(k)dk as a function of φ

at different interaction strengths where the suppression of the
momentum distribution width growth by repulsive interaction
can be visualized.

FIG. 3. NHSE in attractive interacting bosons for the bound
state. The deviation of mean position δ〈x〉 (in units of L) as a function
of φ for different interaction strengths from noninteracting (dashed
line) to infinite attractive limit (dot-dashed line). φ and c are in units
of 1/L. Here we choose L = 1 as length unit and set N = 4.

IV. NHSE IN ATTRACTIVE INTERACTION

Section III deals with the situation of repulsive interaction.
We now turn to study the NHSE in attractive interaction. What
should be pointed out is that unlike the case of repulsive
interaction, the solution of BAEs in attractive interaction is
not unique, which contains bound state and scattering states.
Physically, there exists a bound state when bosons attract each
other, reflected in the complex solution of quasimomenta {k j}
in BAEs. In the weak interaction region, the ground-state
solution of quasimomenta consists of N/2 (N is an even
number) pairs of conjugate complex roots, i.e., N/2 dimers
k2 j−1 = α j − iβ j , k2 j = α j + iβ j ( j = 1, . . . , N/2). The state
made up of N/2 dimers is also called N/2 two-string. The
M-string state is defined by M quasimomenta sharing the
same real part but unequal conjugate imaginary parts, which
can be labeled as k j = α + β j ( j = 1, . . . , M). According to
the bound-state solution of BAEs, as the attractive interaction
strength increases, the ground state evolves from a N/2 two-
string state gradually to an intermediate state characterized
by an M-string (N > M > 2) plus (N − M )/2 two-string and
finally turns to a N-string state.

The bound-state solution of BAEs shows that the NHSE
exists in the entire range of interaction strength c � 0 as
shown in Fig. 3. Moreover, the deviation δ〈x〉 tends to
increase with the growth of attractive strength. This is be-
cause the bosons tend to clump together with increasing
attraction among them. We can also understand the NHSE
in attractive interaction in terms of quantitative analysis in
two limits. For the noninteracting limit, all bosons occupy
the single-particle ground state k j = π/L and the corre-
sponding ground-state wave function is simply written as
�(x1, x2, . . . , xN ) = ∏N

j=1 sin( jπx j/L) exp(φx j ) which pro-
duces the deviation of mean position δ〈x〉 = L

2 [coth(φL) −
1

φL − 2φL
π2+φ2L2 ]. In strongly attractive limit c = −∞, the sys-

tem forms a N-body bound state corresponding to the N-string
state. At this point, the quasimomentum distribution is given
by k j = K/N + i(N + 1 − 2 j)c/2, ( j = 1, 2, . . . , N ) where
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K signifies the total momentum, which is determined by the
following transcendental equation:

KL = π I + 2
N−1∑
j=1

arctan
jcN

2K
(17)

with I = N for the ground state. We can see that in the limit of
c → −∞, the total momentum is K = π/L which indicates
each boson has the real part π/NL in the strong attractive
limit and the corresponding ground-state wave function can
be written as

�(x1, x2, . . . , xN ) = sin (πx/L) exp (Nφx), (18)

where x = x1+x2+···+xN
N denotes the center-of-mass coordinate.

The wave function (18) gives a clear physical picture that
the system forms a giant molecule of N bosons involving the
movement of the center of mass. And similarly, the deviation
of mean position derived from (18) yields

δ〈x〉 = L

2

[
coth �L − 1

�L
− 2�L

π2 + �2L2

]
, (19)

with � = Nφ. We can see that the δ〈x〉 of infinitely attractive
bosons is similar to the one of free bosons in form but contains
a factor N . Physically, it comes from the Bose enhancement
that all bosons tend to locate at the same position.

Next, we turn to address the case of scattering states on the
attractive side. In fact, there are real solutions corresponding
to scattering states in BAEs (10) for c < 0 although its ground
state is a string solution (bound state). In the strong interaction
regime, this kind of scattering state is referred to as super-
Tonks-Girardeau (STG) gas in the literature [142–146]. For
the purpose of analysis, we alternatively rewrite the BAEs (10)
as the following logarithm form:

k jL = π I j −
N∑

l=1( �= j)

(
arctan

k j − kl

|c| + arctan
k j + kl

|c|
)

.

(20)

Here we choose I j = j, such that the quasimomentum distri-
bution in c → −∞ determined from Eq. (20) connects to the
TG limit from Eq. (11) where k j = jπ/L ( j = 1, 2, . . . , N).
Under this circumstance, one would obtain the deviation of
mean position δ〈x〉 as a continuous function of 1/c as shown
in Fig. 4(a). We can recognize that in contrast to the bound
state on the attractive side, the scattering state exhibits a
nonmonotonic behavior where δ〈x〉 decreases first and then
increases as the attractive strength weakens. And also the tran-
sition point [the inset of Fig. 4(a)] locates at the STG regime
(−1 
 1/c < 0). The nonmonotonic behavior is closely re-
lated to the density distribution on the attractive side. In the
limit of c → −∞, the density profile is identical to the one in
the TG limit displaying N peaks with near equidistance. Then,
the density distribution gradually migrates toward boundaries
as the attraction decreases, suppressing the NHSE. However,
as the attraction is getting weaker, the density tends to concen-
trate in the center of potential with a larger weight which can
magnify the NHSE. Finally, in the weak attraction limit, there
emerge 2N − 1 peaks in the density distribution as shown in
Fig. 4(b). This is because the bosons occupy N lowest odd
single-particle orbitals k j = (2 j + 1)π/L when c → 0−.

FIG. 4. (a) The deviation of mean position δ〈x〉 (in units of L) as
a function of inverse interaction strength at φ = 1 for the scattering
state. (b) Density distributions of the scattering state for different
attractive interaction strengths from noninteracting (dashed line) to
infinite attractive limit (dot-dashed line). φ and c are in units of 1/L.
Here we choose L = 1 as length unit and set N = 4.

V. SUMMARY AND OUTLOOK

In summary, through the example of non-Hermitian 1D
interacting Bose gas, we investigated the NHSE in a non-
Hermitian many-body system. Utilizing the Bethe ansatz,
we obtained the exact solutions, including quasimomenta,
eigenenergies, and wave functions of the system in OBC.
The NHSE can be characterized by density distribution and
momentum distribution. Our calculations show that the NHSE
exists in the entire interaction regime and displays distinct
responses to the interaction effect. The main conclusions are
summarized as follows.

(i) For repulsive interaction c > 0, the NHSE is gradually
suppressed as interaction strength increases but does not van-
ish even in the TG limit (c → +∞).

(ii) For the bound state in attractive interaction c < 0, the
system consists of N bosons from the two-string state into the
N-string state as the attractive interaction strength grows. And
in this process, the NHSE is enhanced.

(iii) For the scattering state in attractive interaction c < 0,
we find a nonmonotonic behavior in the deviation of mean
position δ〈x〉 where the NHSE is first suppressed and then
enhanced while interaction weakens.

Our non-Hermitian many-body model can, in principle,
be realized in current cold atom experiments, which offers
an ideal platform to observe the NHSE. Thanks to the flex-
ible tunability, cold atomic gases have realized the tunable
nonreciprocal model (with unequal hopping strength) through
a dissipative Aharonov-Bohm ring [131] and observed dy-
namic signatures of the NHSE [107]. Our non-Hermitian
Lieb-Liniger model describes the low-filling regime of the
1D Bose-Hubbard mode, which could be realized from the
aforementioned nonreciprocal model by adding tunable inter-
actions. The NHSE in continuum space is proposed to be ob-
served via dynamic measurements [94]. In situations with and
without NHSE, respectively, a right-moving wave package
will either be localized near the right boundary after touching
it, or reflected as in the usual cases. We believe our model can
also be realized in a similar way by adding proper interactions.

This paper provides some preliminary exploration of the
NHSE in many-body systems from the view of exactly
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solvable many-body models. Our results build on the rapidly
expanding field of non-Hermitian physics. Considerably more
work will be desired to explore the interplay between the
NHSE and other kinds of exactly solvable many-body systems
and further accomplish more comprehensive investigations for
future research.
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APPENDIX A: SINGLE-PARTICLE NON-HERMITIAN
SKIN EFFECT IN THE TIGHT-BINDING MODEL

In this Appendix we give a brief introduction to the non-
Hermitian skin effect at a single-particle level. We consider a
one-dimensional tight-binding model with unequal hopping,
whose Hamiltonian is written as

Ĥ = t1
∑

n

|n + 1〉〈n| + t2
∑

n

|n〉〈n + 1|, (A1)

where t1 > t2 denote the unequal hopping amplitudes. This
non-Hermitian model with disorder potential was first in-
troduced by Hatano and Nelson [147] to investigate lo-
calization transition and is investigated in ultracold atoms
[148,149]. Now we solve its eigenvalues and eigenvectors.
Under PBC, the momentum is a good quantum number
(k = 0, 2π/L, . . . , 2π (L − 1)/L). Then the eigenenergies and
eigenstates are given by

Ek = t1e−ik + t2eik, |Ek〉 = 1√
L

∑
n

eikn|n〉, (A2)

from which we can see the eigenvector is nothing but the
Bloch state which is identical to the Hermitian case but the
spectrum becomes complex.

Under OBC, the momentum is not a good quantum num-
ber anymore. Expanding the eigenvector in real space |E〉 =∑

n ψn|n〉, we have

Eψn = t1ψn−1 + t2ψn+1, (A3)

with OBC ψ0 = ψL+1 = 0. We introduce a non-Bloch wave
function ψn = A1β

n
1 + A2β

n
2 , and then the eigenvalues are de-

termined by

E (β ) = t1/βa + t2βa, (A4)

where a = 1, 2. The boundary conditions ψ0 =
0 and ψL+1 = 0 give

A1 + A2 = 0, A1β
L+1
1 + A2β

L+1
2 = 0, (A5)

which will lead to the condition βL+1
1 = βL+1

2 . Together with
β1β2 = t1/t2, we can obtain

β1 =
√

t1/t2eiθm = β∗
2 , θm = πm/(L + 1), (A6)

with m = 1, 2, . . . , L. Therefore, we can derive the eigenen-
ergies in OBC

Em = 2
√

t1t2 cos θm, (A7)

and associated eigenstates

|Em〉 =
∑

n

enφ sin nθm|n〉, (A8)

where φ = ln
√

t1/t2 denotes the strength of the imaginary
potential. Note that the spectrum in OBC is always real.
This is because the Hamiltonian at OBC can be mapped
to a Hermitian counterpart via a gauge transformation
|n〉 → e−nφ|n〉, 〈n| → 〈n|eφ . The spectrum is determined by
the Hermitian counterpart. Meanwhile, the non-Bloch wave
function consists of the standing wave sin(nθm) with an am-
plification factor enφ exhibiting exponential accumulation at
the boundary. This feature is called the non-Hermitian skin
effect. The non-Bloch wave function in the eigenstate (A8)
will be the starting point for solving non-Hermitian many-
body systems.

APPENDIX B: PHYSICAL REALIZATION OF THE
NONRECIPROCAL MODEL LATTICE MODEL

This Appendix discusses the experimental realization of
the tight-binding model with unequal hopping discussed in
Appendix A on a cold atom setup [131]. The imaginary poten-
tial in the main text is related to the local loss rate induced by
reservoirs. To elaborately explain it, we tackle the procedure
in two steps. The first is to derive the local loss rate from
the coupling between the system and reservoir. The second
is to discuss how the local loss rate induces unequal hopping
between the nearest-neighbor site. We start from a lattice
system as illustrated in Fig. 5(a), where a three-site triangle
ring couples a reservoir. The total Hamiltonian is given by

Ĥring =
∑

n<−2

tr (â†
nân+1 + H.c.) + tc(â†

−2â−1 + H.c.)

+ (t ′ei�/2â†
−1â0 + t â†

1â0 + t ′ei�/2â†
1â−1 + H.c.).

(B1)

The first term is the bulk Hamiltonian of the reservoir, the
last term denotes the triangle part, and the second term is the
coupling between them with coupling strength tc. The phase �

sets up a synthetic magnetic flux in the ring, and the hopping
strengths tr , tc, t ′, and t can be tuned independently by laser
beams.

Integrating the reservoir degree of freedoms (n < −1), one
can derive the following Hamiltonian (tc 
 tr):

Ĥloss = −i�â†
−1â−1 + (t ′â†

0â−1+t â†
1â0 + t ′ei�â†

1â−1 + H.c.),
(B2)

where � = t2
c /tr is the effective loss rate induced by the

reservoir which can be derived from Fermi’s “golden rule.”
Based on the local loss model Ĥloss, next we derive the 1D
tight-binding model with unequal hopping as studied in Ap-
pendix A. Consider a 1D tight-binding chain with hopping t
hybridizing local impurities with amplitude t ′ and phase �/2

043315-6
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tr tr tc
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FIG. 5. (a) Schematic diagram of a three-site ring system cou-
pled to a reservoir (shaded area). The reservoir consists of a 1D
tight-binding chain with hopping strength tr in bulk and tc (dashed
line) between the reservoir and one site in the system (red circle).
Hopping amplitudes inside the system are denoted by t ′ (gray bond)
and t (double red bond), respectively. There is a synthetic magnetic
flux � inside the system, which is implemented by the phase of
hopping term t ′ [see Eq. (B1)]. (b) Schematic of the 1D tight-binding
chain with local loss which effectively produces a nonreciprocal
model with unequal hopping exhibiting the NHSE. Here � and �

represent the energy offset and loss rate, respectively.

as shown in Fig. 5(b). The corresponding Hamiltonian reads

Ĥchain = (� − i�)
∑

j

d̂†
j d̂ j + t

∑
n

(â†
nân+1+ H.c.)

+
∑

n

[
t ′ei �

2 d̂†
n ân + t ′ei �

2 â†
n+1d̂n + H.c.

]
, (B3)

where � denotes the local loss rate, and � is the on-site
energy offset. The first term is the local impurity part with
on-site loss. The second term denotes the system part, and
the third represents the hybridization between the system and
impurities. For convenience, we fix the phase as � = π/2 for
a concrete experimental setup. In the weak-coupling regime
t ′ 
 √

�2 + �2, one can eliminate impurity degrees of free-
dom and derive the following effective Hamiltonian utilizing
second-order perturbation theory:

Ĥeff =
∑

n

[(t + γ )â†
n+1ân + (t − γ )â†

nân+1], (B4)

where γ = (i�−�)t ′2
�2+�2 . The unequal hopping originates from the

second-order process that a particle hops from the the nth site
to the nth impurity and then to the (n + 1)th site, accompanied
by a phase factor. One can find that the imaginary potential in-
troduced in Appendix A or in the non-Hermitian Hamiltonian
(1) is determined by the local loss rate via φ = ln |t+γ |

|t−γ | . Here

we have ignored the single site term â†
nân which is irrelevant to

the NHSE. It is worth emphasizing that while the Hamiltonian
(B4) is derived through perturbation theory within the param-
eter condition t ′ 


√
�2 + γ 2, the NHSE exists far beyond

the perturbative condition [131]. Another important issue is
that the lattice model is generally not exactly solvable when
interaction [e.g., the on-site term Un̂ j (n̂ j − 1)] is introduced,
but the interaction does not destroy the NHSE. The nonin-
tegrable many-body lattice models supporting the NHSE are
worth further investigation in the future.
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