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Toward precision Fermi-liquid theory in two dimensions
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The ultracold and weakly coupled Fermi gas in two spatial dimensions is studied in an effective field theory
framework. It has long been observed that universal corrections to the energy density to two orders in the
interaction strength do not agree with Monte Carlo simulations in the weak-coupling regime. Here, universal
corrections to three orders in the interaction strength are obtained, and are shown to provide agreement between
theory and simulation. Special consideration is given to the scale ambiguity associated with the nontrivial
renormalization of the singular contact interactions. The isotropic superfluid gap is obtained to next-to-leading
order, and nonuniversal contributions to the energy density due to effective range effects, p-wave interactions,
and three-body forces are computed. Results are compared with precise Monte Carlo simulations of the energy
density and the contact in the weakly coupled attractive and repulsive Fermi-liquid regimes. In addition, the
known all-orders sum of ladder and ring diagrams is compared with Monte Carlo simulations at weak coupling
and beyond.
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I. INTRODUCTION

Dramatic improvements in the experimental control of
atomic systems have led to intense theoretical interest in the
quantum mechanics of interacting atomic gases. In particu-
lar, the ability to tune interaction strengths using Feshbach
resonances, and to continuously vary the number of spatial
dimensions using anisotropic harmonic traps and optical lat-
tices, is allowing for precision experimental tests of a vast and
quickly developing theoretical framework. This has attracted
physicists from many areas of research who are interested in
the few- and many-body quantum mechanics of nonrelativistic
constituents. Simultaneous progress in numerical simulation
[1], coupled with increased access to high-performance com-
puting, has been occurring in parallel with the experimental
developments. This rich interplay among theory, experiment,
and computation has led to what might be considered a golden
age of atomic physics.

An increasingly valuable tool for atomic systems that en-
ables model-independent descriptions of both bosonic and
fermionic gases is effective field theory (EFT).1 Histori-
cally in atomic physics, studies of gases with constituents
interacting via finite-range potentials have utilized specific
solvable models of the two-body interaction, like the hard-
sphere potential. While these models capture the essential
physics of finite-range potentials, EFT allows for the study
of interacting gases in a manner that is independent of any
specific potential. The resulting interaction, viewed in coor-
dinate space, is a sequence of potentials consisting of delta
functions and their derivatives, which are highly singular near
the origin. However, the divergent nature of the interaction is
straightforward to control using regularization and renor-

1For general reviews, see Refs. [2,3], and for an atomic-physics
oriented review, see Ref. [4].

malization, and can be exploited by considering the
renormalization-group (RG) flow of coupling constants. The
main utility of the EFT framework is that it provides a clear
strategy for the systematic improvement of the quantum-
mechanical descriptions of fundamental properties of atomic
gases at weak coupling. These improvements include, for
example, pairing and finite-temperature effects, nonuniversal
modifications to the equation of state, nonisotropic interac-
tions, many-body forces and shape-parameter corrections, as
well as dimensional-crossover scenarios. The EFT treatment
of weakly coupled Fermi gases in three spatial dimensions
has been developed in Refs. [5–17]. In this paper, these EFT
techniques will be adapted and applied to the study of weakly
coupled Fermi gases in two dimensions.2

Experimentally, the Fermi gas in a quasi-two-dimensional
(2D) environment is accessible via highly anisotropic har-
monic traps that effectively confine a spatial dimension.
This requires inter alia a special theoretical treatment which
accounts for the continuous compactification of the third di-
mension. However, recent numerical simulations using Monte
Carlo (MC) techniques allow a precise, direct computation
of the zero-temperature equation of state in two spatial
dimensions from weak coupling all the way to the BCS–Bose-
Einstein-condensate (BEC) crossover region [19–24]. It has
been observed that the energy density obtained from these
simulations is in tension with theoretical calculations at weak
coupling, which have been carried out to second order in the
universal coupling [25–27]. In this paper, the calculation of
the energy density is carried out to third order in the universal
coupling and is found to resolve the tension between theory
and simulation.

2For a comprehensive review of the Fermi gas in two dimensions,
see Ref. [18].

2469-9926/2023/107(4)/043314(17) 043314-1 ©2023 American Physical Society

https://orcid.org/0000-0001-8463-4948
https://orcid.org/0000-0002-9440-4537
https://orcid.org/0000-0001-7189-0424
https://orcid.org/0000-0003-3636-3877
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.043314&domain=pdf&date_stamp=2023-04-13
https://doi.org/10.1103/PhysRevA.107.043314


BEANE, BERTAINA, FARRELL, AND MARSHALL PHYSICAL REVIEW A 107, 043314 (2023)

Consider a gas of fermions of mass M in two or three
spatial dimensions with two-body interactions that are of fi-
nite range R and typical energy scale U . The dimensionless
parameters kF R and MU/k2

F , where kF is the Fermi mo-
mentum, are the knobs which determine the strength of the
interaction. Without fine tuning one expects that the ground
state of the Fermi gas will be dominated by the leading
s-wave two-body interactions, which are governed by the
two-dimensional (three-dimensional) scattering lengths, a2

(a3). Unlike the case with a3, whose sign in the weakly in-
teracting regime is indicative of whether the interaction is
attractive or repulsive, a2 is intrinsically positive. The relevant
dimensionless parameter is kF a2 (kF a3) and weak coupling
is therefore achieved either at low density (dilute limit), or
with weak two-body interactions. Due to the presence of a
Fermi surface, an arbitrarily weak attractive interaction leads
to the formation of Cooper pairs and qualitatively changes the
properties of the gas. At weak coupling, the gas is in the BCS
phase characterized by large interparticle spacing k−1

F and
exhibits superfluidity or superconductivity. As the coupling
increases, there is a transition to the BEC phase of tightly
bound pairs, and it becomes natural to view the gas as a system
of weakly repulsive bosonic dimers. Here dimensionality pro-
vides a drastic difference [18]. Whereas in three dimensions,
attraction must be strong enough to sustain a bound state, in
two dimensions there is a bound state for an arbitrarily weak
interaction. This implies that in two dimensions the entire
BCS-BEC crossover may be traversed by varying the density
with an arbitrary attractive interaction, i.e., there are no new
singularities introduced due to the formation of a bound state.

Many of the interesting and distinguishing features of the
two-dimensional gas arise from the manner in which quantum
effects break the scale invariance of the classical Hamiltonian
and give rise to the effective coupling constant −1/ ln(kF a2).
This paper will be concerned with the weak-coupling limits:
| ln(kF a2)| � 1. With repulsive interactions the gas is a Fermi
liquid with the energy density a straightforward perturbative
expansion in the coupling. With attractive interactions the gas
is a paired superfluid, but may be viewed as a Fermi liquid
as long as the energy due to pairing is small as compared
to the leading perturbative correction to the free Fermi gas.
The various scale hierarchies relevant for a complete and
systematic description of the weak-coupling regime may be
precisely quantified in the EFT.

Beyond mean-field corrections to the energy of the weakly
coupled Fermi gas in two dimensions with repulsive interac-
tions were first considered in Refs. [25–27]. The attractive
Fermi gas and the superfluid gap were treated in Refs. [28,29].
The goal of this paper is to consider the next order in the
weak-coupling expansion, and to compare the results with
MC simulations. It is important to stress that the subleading
corrections that we compute have previously been found in
two distinct studies whose aim was to perform resummations
of classes of Feynman3 diagrams to all orders in the coupling
[16,17]. A secondary goal of this paper is to obtain the lead-
ing nonuniversal effects, due to effective-range corrections,

3Here all diagrams, both in free space and in a medium, are referred
to as Feynman diagrams.

p-wave interactions, and three-body forces, although it is not
clear whether these latter two effects can be meaningfully
compared with experiment or simulation at the present time.
Indeed, the motivation for computing these effects is to inspire
MC simulations which include more intricate few-body forces
and enable a meaningful comparison with theory.

This paper is organized as follows. Section II introduces
the effective Lagrangian density which encodes the interac-
tions that are the basis of the necessary EFT technology, and
considers the free-space power-counting scheme. In Sec. III,
a general partial-wave expansion of the two-body scattering
amplitude is given. With the assumption of finite-range forces,
effective-range expansions of the s- and p-wave scattering
amplitudes are defined. Finally, the scattering amplitudes are
reproduced in the EFT using dimensional regularization (DR).
The modifications of the free-space EFT technology to the
treatment of interactions in medium are considered in Sec. IV.
This section adapts the main results of Refs. [7,12] to the
case of two spatial dimensions. In particular, the renormalized
thermodynamic potential is obtained, and the superfluid gap is
recovered using dimensional regularization. The Fermi-liquid
expansion is treated to three orders in the expansion parameter
in Sec. V. Nonuniversal corrections to the energy density
are considered in Sec. VI. In Sec. VII, the final expression
of the energy density is given at an arbitrary renormaliza-
tion scale, and the contact is defined and obtained from the
energy density. In Sec. VIII, resummation schemes which
treat ladder [16] and ring [17] diagrams to all orders in
the interaction strength are reviewed. Comparison of the-
oretical predictions of the weak-coupling regime with MC
simulations is given in Sec. IX. Section X is a summary and
conclusion.

II. EFFECTIVE FIELD THEORY TECHNOLOGY

A. Effective Lagrangian

Here it is assumed that the underlying interaction experi-
enced by the fermionic atoms is of finite range, say R. Then,
with a characteristic momentum scale represented by k, at
momentum scales k � R−1, the interaction takes the form
of a sequence of contact interactions. The theory of contact
interactions is described by an effective Lagrangian which
consists of local operators constructed from the nonrelativistic
fermion field ψ , which generally possesses g components.4

The local Lagrangian density is constrained to be Galilean and
time-reversal invariant and can be expressed in the form

L = ψ†

[
i∂t +

−→∇ 2

2M

]
ψ − C0

2
(ψ†ψ )2

+ C2

16
[(ψψ )†(ψ∇2ψ ) + H.c.] + C′

2

8
(ψ∇iψ )†(ψ∇iψ )

−C′
4

64
[(ψ∇iψ )†(ψ∇2∇iψ ) + H.c.] − D0

6
(ψ†ψ )3

+ · · · , (1)

4Note that the three-dimensional relationship between degeneracy
and spin, g = 2s + 1, holds when two dimensions is reached as a
limiting case via dimensional reduction.
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(a)

(b) (c)

FIG. 1. (a) Two-body diagram with L loops. Three-body dia-
grams at tree level (b) and at two-loop level (c) (fish slash). The
black circle (gray square) corresponds to an insertion of the C0 (D0)
operator.

where ∇ = ←−∇ − −→∇ is the Galilean invariant derivative and
H.c. symbolizes the Hermitian conjugate. Throughout the pa-
per, h̄ = 1, and the fermion mass, M, is left explicit. The
Lagrangian takes the same form in any spacetime dimension
d , with the dimensions of the fermion field and of the operator
coefficients given by [ψ] = (d − 1)/2, [C(′)

2n ] = 2 − d − 2n,
and [D2n] = 3 − 2d − 2n.

In two spatial dimensions (d = 2 + 1), the Lagrangian
with only the C0 interaction is scale invariant.5 This is most
easily seen by rescaling the field and spatial coordinates by
ψ → M1/2ψ and x → M−1/2x, which removes all dimension-
ful parameters from the Hamiltonian obtained from Eq. (1).
The resulting theory has a marginal contact interaction whose
strength is proportional to the dimensionless coupling MC0.
This symmetry does not survive quantization and is broken
by the regularization of the singular C0 interaction which
necessarily introduces a scale into the theory. This constitutes
a fundamental difference between the many-body physics of
two and three dimensions.

B. Free-space counting scheme

By exploiting topological properties, it is found that a free-
space Feynman diagram with L loops or E external lines and
V n

2i n-body vertices with 2i derivatives scales as (kR)χ , where

χ = (d − 1)L + 2 +
∞∑

n=2

∞∑
i=0

(2i − 2)V n
2i

= d + 1 − 1

2
(d − 1)E

+
∞∑

n=2

∞∑
i=0

[2i + (d − 1)n − d − 1]V n
2i. (2)

The EFT has predictive power in three dimensions because
at every order in kR there are a finite number of diagrams
that contribute. In two dimensions there is a subtlety due to
the scale invariance of the universal interaction (i.e., the effect
of the C0 operator), as noted above. In order to distinguish

5In fact, this theory is also invariant under nonrelativistic conformal
transformations (see Ref. [30]).

two dimensions from three, it is instructive to power count
the generic interactions illustrated in Fig. 1. The two-body
diagram with L loops and L + 1 insertions of C0, Fig. 1(a),
has χ = L(d − 3). Therefore, in three dimensions, there is a
loop expansion6 with each loop bringing one additional power
of kR. By contrast, in two dimensions, the two-body diagram
with L loops has χ = 0, a consequence of scale invariance,
and an indication that universal interactions appear in a pertur-
bative expansion in MC0. A further illustrative example is the
leading three-particle interactions. The three-body diagram
with an insertion of D0, Fig. 1(b), has χ = 0 for all d . A
leading three-body diagram with four C0 insertions, Fig. 1(c),
has χ = 2(d − 4). Therefore, in three dimensions these three-
body effects appear at the same order in the momentum
expansion, as is necessary given that the two-loop diagram has
a logarithmic divergence, which must be renormalized by the
D0 operator [34]. By contrast, in two spatial dimensions, these
universal three-body diagrams require no new counterterms
beyond C0, and indeed they appear at lower order in the power
counting, indicating that three-body forces are enhanced in
two dimensions.

III. TWO BODIES IN FREE SPACE

A. Partial-wave expansion

Consider two-body scattering, with incoming momenta
labeled k1 and k2 and outgoing momenta labeled k′

1 and k′
2.

In the center-of-mass frame, k ≡ k1 = −k2, k′ ≡ k′
1 = −k′

2,
and k ≡ |k| = |k′|. In two dimensions, angular momentum
is specified by counting the number of windings around the
unit circle, including both clockwise and anticlockwise orien-
tations. The unitary scattering amplitude can be expanded in
partial waves as [35–37]

T (k, φ) =
∞∑

�=0

T�(k, φ) = 4

M

∞∑
�=0

ε� cos(�φ)

cot δ�(k) − i
, (3)

where φ is the scattering angle, δ� is the phase shift, ε0 = 1
and ε� = 2 for � > 0, and the normalization has been chosen
to match the Feynman diagram expansion.

The � = 0 (s-wave) scattering amplitude is then

T0(k) = 4

M

1

cot δ0(k) − i
. (4)

The effective range expansion takes the conventional form

cot δ0(k) = 1

π
ln

(
k2a2

2

) + σ2 k2 + O(k4), (5)

where a2 is the scattering length7 and
√|σ2| is the effective

range. This form of the expansion appears odd from the EFT

6This assumes that the C0 operator is of natural size. Near unitarity,
each C0 insertion brings an infrared enhancement of k−1, leading to
all loops counting equally and a consequent breakdown of perturba-
tion theory [31–33].

7Another common convention for the definition of the scattering
length coincides with the diameter a2D in the case of the hard-
disk potential, corresponding to a2D = 2a2 exp (−γ ), where γ is the
Euler-Mascheroni constant.
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FIG. 2. Diagrams contributing to isotropic scattering. The black
circle (red square) corresponds to an insertion of the C0 (C2) operator.

perspective since the leading effect at low k is nonanalytic
in k. As will be seen below, this purely quantum-mechanical
effect occurs because of strong infrared effects in two dimen-
sions.

The � = 1 (p-wave) scattering amplitude is

T1(k, φ) = k · k′ 8

M

1

k2 cot δ1(k) − ik2
, (6)

and the p-wave effective range expansion can be written as

k2 cot δ1(k) = − 1

σp
+ 1

π
k2 ln

(
k2a2

p

) + O(k4), (7)

where σp is a scattering volume (units of area), and ap is a
length scale that characterizes higher-order effects in the mo-
mentum expansion. For σpk2 
 1, the scattering amplitude
can be expanded in perturbation theory to give

T1(k, φ) = −σpk · k′ 8

M

{
1 + 1

π
σpk2

[
ln

(
k2a2

p

) − iπ
]

+ O
[
(σpk2)2

]}
. (8)

In the next subsection, these scattering amplitudes will be
recovered in the EFT.

B. Scattering in the EFT: s wave

Consider s-wave scattering in the EFT described by the
effective Lagrangian of Eq. (1).8 The sum of the Feynman
diagrams shown in Fig. 2 is

T0(k) = −C0 − C2
0 I0(k) + · · · − C2k2, (9)

where

I0(k) = M

(
μ

2

)ε ∫
dd−1q

(2π )d−1

1

k2 − q2 + iδ
, (10)

and μ is the DR scale, and ε ≡ 3 − d .9 As perturbative
physics can always be treated nonperturbatively, it is conve-
nient to neglect the C2 contribution, and sum the bubble chain
to all orders, giving

T0(k) = − C0

1 − I0(k)C0
. (11)

8This section closely follows the development in Refs. [38,39].
9In DR the couplings are multiplied by ( μ

2 )ε to keep the action
dimensionless. In the EFT, this is equivalent to multiplying the di-
vergent loop integrals by ( μ

2 )ε .

A useful integral is

In(k) = M

(
μ

2

)ε ∫
dd−1q

(2π )d−1
q2n

(
1

k2 − q2 + iδ

)
= k2n M

4π

[
ln

(
− k2

μ2

)
+ γ − ln π − 2

ε

]
= k2nI0(k), (12)

where n is a non-negative integer and the logarithmic diver-
gence has been captured by the 1/ε pole.

Using Eqs. (11) and (12) gives

T −1
0 (k) = − 1

C0
+ M

4π

[
ln

(
− k2

μ2

)
+ γ − ln π − 2

ε

]
.

(13)

Defining the renormalized EFT coefficient C0(μ) with MS
results in

− 1

C0
≡ − 1

C0(μ)
− M

4π

[
γ − ln π − 2

ε

]
. (14)

This exact renormalization condition then gives the physical
scattering amplitude:

T −1
0 (k) = − 1

C0(μ)
+ M

4π
ln

(
k2

μ2

)
− i

M

4
, (15)

with C0(μ) treated to all orders. For the perturbative calcula-
tions presented below, it is useful to expand Eq. (14) formally
to third order in the renormalized coupling:

C0 = C0(μ)

{
1 − MC0(μ)

4π

[
γ − ln π − 2

ε

]
+

(
MC0(μ)

4π

[
γ − ln π − 2

ε

])2

+ O[C0(μ)3]

}
.

(16)

Now consider matching Eq. (15) to the effective range
expansion given in Eq. (5). In order to include effective-range
corrections via the C2 operator, it is convenient to note that in
DR all contact interactions can be formally summed to give

T0(k) = −
∑

C2n k2n

1 − I0(k)
∑

C2n k2n
, (17)

with

cot δ0(k) = 1

Im I0(k)

[
1∑

C2n k2n
− Re I0(k)

]
. (18)

Matching Eq. (15), with the C2 contribution included, to the
effective range expansion then gives the EFT-inspired form:

cot δ0(k) = 2

π

[
ln

(
k

μ

)
− 1

α(μ)

]
+ σ2 k2 + O(k4), (19)

where

α(μ) ≡ MC0(μ)

2π
= − 1

ln μa2
, σ2 = 4C2(μ)

MC0(μ)2
. (20)

As intuited above from general scaling arguments, it is clear
that α(μ) is a dimensionless scale-dependent coupling con-
stant which is the natural expansion parameter in the EFT.
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FIG. 3. Running of the coupling with μ = 1 and |α(1)| = 1, as
described in the text: the solid blue curve corresponds to repulsive
coupling, α(ν ) = |α(ν )|, while the dashed black curve corresponds
to attractive coupling, α(ν ) = −|α(ν )|. The vertical dotted (blue)
line to the right corresponds to the position of the Landau pole at
ν = e in the repulsive case, while the vertical dotted (black) line to
the left corresponds to the bound state at ν = e−1 in the attractive
case.

Evidently the condition for a bound state, cot δ0(iγB) = i
with binding momentum γB > 0, is satisfied both for attractive
coupling, C0 < 0, and for repulsive coupling, C0 > 0. This is
due to the strong infrared quantum effects which give rise
to the logarithm when C0 is treated to all orders. Neglecting
range corrections, the binding momentum is given by

γB = μ exp

(
1

α(μ)

)
= 1/a2, (21)

with binding energy εB = −γ 2
B /M.

The RG evolution of α(μ) clarifies the distinction between
attraction and repulsion. Consider the C0 beta function:

β(C0) = μ
d

dμ
C0(μ) = M

2π
C0(μ)2. (22)

Solving this equation gives the RG evolution:

α(ν) = α(μ)

1 − α(μ) ln
(

ν
μ

) . (23)

In the attractive case, α(ν) = −|α(ν)|, and the coupling is
asymptotically free, whereas in the repulsive case, α(ν) =
|α(ν)|, and the coupling increases monotonically with scale
until it hits the Landau pole at ν = μ exp[1/α(μ)] which
coincides with the binding momentum. This is illustrated in
Fig. 3 with the choice μ = 1 and |α(1)| = 1.10 One sees that
in the repulsive case, the singularity of the S matrix coincides
with the position of the Landau pole, which marks the up-
per limit of the perturbative description in terms of α, and
is therefore unphysical. The physical cutoff of the EFT is
therefore determined by the smaller of this scale and the scale
R−1 which characterizes the range of the interaction. In the
attractive case, the universal interaction is UV complete, and
the EFT is valid below the scale R−1.

10Note that here natural units are chosen such that μ = 1 corre-
sponds to a typical infrared physical scale of the system.

FIG. 4. Leading p-wave contributions to scattering. The empty
circle (square) corresponds to an insertion of the C′

2 (C′
4) operator.

C. Scattering in the EFT: p wave

The contribution to the p-wave scattering amplitude up to
next-to-leading order (NLO) is given by the sum of Feynman
diagrams shown in Fig. 4 which give

T1(k, φ) = −C′
2 k · k′ − C′2

2 Mk′
ik j

(
μ

2

)ε

×
∫

dd−1q
(2π )d−1

(
qiq j

k2 − q2 + iδ

)
− C′

4 k2k · k′

= k · k′
[
−C′

2 − C′2
2

1

2 − ε
I1(k) − C′

4 k2

]
. (24)

Defining the renormalized coefficient, C′
4(μ), with MS gives

C′
4 ≡ C′

4(μ) − C′2
2

M

8π

[
γ − ln π − 2

ε
− 1

]
, (25)

and the renormalized scattering amplitude is then

T1(k, φ) = k · k′
[
−C′

2− C′2
2

Mk2

8π
ln

(
− k2

μ2

)
− C′

4(μ) k2

]
.

(26)

Now matching to the scattering amplitude of Eq. (8) gives

σp = MC′
2

8
, αp(μ) = 4πC′

4(μ)

MC′2
2

, (27)

where ap = μ−1 exp [αp(μ)].
A noteworthy feature of the p-wave interaction, which is

also the case in three dimensions, is that, if the leading op-
erators, C′

2 and C′
4, are treated to all orders, then subleading

counterterms are required [40]. The highly singular nature of
the p-wave interaction renders the all-orders renormalization
subtle, and analogous to all-orders renormalization of range
corrections in the s wave [41]. In this paper, only the leading
order (LO) in the perturbative expansion of the p-wave scat-
tering amplitude will be considered. An important distinction
from the s wave is that the leading p-wave effect, due to C′

2,
does not run with the RG in MS when one-loop effects are
included.

IV. FINITE-DENSITY TECHNOLOGY

A. Ideal gas and in-medium modifications

In two dimensions, the density ρ = N/A, with N the num-
ber of particles and A the spatial area enclosing the particles,
of a noninteracting system with Fermi momentum kF and
degeneracy g is

ρ = g
∫

d2k
(2π )2

θ (kF − k) = gk2
F

4π
. (28)

Here, a common Fermi momentum is considered for all spin
components, that is, a spin-balanced Fermi gas. With free

043314-5
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single-particle energy ωk ≡ k 2/(2M ), the energy density E0

of a noninteracting Fermi gas is

E0 = g
∫

d2k
(2π )2

ωk θ (kF − k) = ρ
1

2

k2
F

2M
. (29)

The energy per particle is E/N = E0/ρ, and can be written as

E/N = εFG = k2
F

4M
= 1

2
εF , (30)

with εF ≡ k2
F /(2M ).

Feynman diagrams can be used to compute the effect of
interactions on the energy density, and the relevant Feynman
rules can be found in Refs. [7,12]. In particular, the interaction
vertices can be read off from Eq. (1) and, for corrections to
the energy at weak coupling, internal lines are assigned prop-
agators iG0 (̃k)αγ , where k̃ ≡ (k0, k) is the three-momentum
assigned to the line, α and γ are spin indices, and

iG0 (̃k)αγ = iG0 (̃k)δαγ

= iδαγ

(
θ (k − kF )

k0 − ωk + iδ
+ θ (kF − k)

k0 − ωk − iδ

)
= δαγ

(
i

k0 − ωk + iδ
− 2πδ(k0 − ωk )θ (kF − k)

)
.

(31)

The second line breaks the propagator into “free” and “in-
medium” components.

B. In-medium counting scheme

In medium, the free-space power counting of Eq. (2) gets
simply modified by setting E = 0 which gives

χ = d + 1 +
∞∑

n=2

∞∑
i=0

[2i + (d − 1)n − d − 1]V n
2i. (32)

This contributes to the energy density at order kχ
F Rχ−d−1

where the powers of R follow from dimensional analysis.
For universal interactions (C0 only), χ = d + 1 + (d − 3)V 2

0 .
Therefore, in three dimensions, χ = 5 + V 2

0 and there is a per-
turbative expansion with a new power of kF R accompanying
each insertion of C0. By contrast, in two dimensions, χ = 4,
and the energy density is given by

E = k4
F f (α), (33)

where f is a function of α such that E0 = k4
F f (0). In the

Fermi-liquid regime considered here, f admits a power series
expansion in α, and the goal is to compute

EFL =
nmax∑
n=0

En (34)

up to nmax. This paper will consider nmax = 3 corresponding
to three orders in α.

C. Thermodynamic potential and superfluid gap

The EFT and power counting outlined above apply to the
two-dimensional Fermi gas with weak repulsive coupling α.
In the presence of an arbitrarily weak attractive interaction,
the BCS mechanism causes the Fermi surface to become un-
stable. This leads to pairing superfluidity (superconductivity)
for neutral (charged) fermions which spontaneously breaks
the particle-number symmetry through the formation of a gap,
or condensate [42,43]. In making comparisons with numerical
simulations in the attractive regime, it is necessary to subtract
the contribution to the energy density that arises from the
presence of the superfluid gap.11

The superfluid gap in two dimensions was originally com-
puted in Refs. [28,29]. Here the s-wave gap in two dimensions
is computed in the MS scheme in two ways: by a direct
construction and minimization of the renormalized thermody-
namic potential, following Ref. [44], and via a direct solution
of the self-consistent gap equation [11,45–47].

As long as C0 < 0, it is necessary to treat the interactions
which are kinematically enhanced by the BCS mechanism
to all orders, in direct violation of the power-counting rules
introduced above. For consideration of pairing phenomena,
it is convenient to view the EFT somewhat more expan-
sively. Beginning with the effective Lagrangian defined in
Eq. (1), with universal interactions only and g = 2, one goes to
Euclidean space via t → −iτ , and L → −LE to give

LE = ψ†

[
∂τ −

−→∇ 2

2M
− μF

]
ψ + C0

2
(ψ†ψ )2, (35)

and a chemical potential, μF , has been introduced for ψ (not
to be confused with the DR scale μ). The partition function is
then

Z =
∫

DψDψ† exp

[
−

∫
d3xLE

]
. (36)

Now if Z can be computed at finite temperature T , then the
thermodynamic potential is known and given by

β �(A, μF , T ) = − lnZ (A, μF , T ), (37)

where A is the area and β ≡ 1/T with kB = 1. The solu-
tion can be found by introducing a complex auxiliary field
� = C0ψ↑ψ↓ which decouples the four-Fermi interaction and
whose expectation value gives the superfluid gap. The Eu-
clidean action is now bilinear in the fermion fields and is
formally solved in terms of a fermionic determinant.

Neglecting fluctuations in the fields, that is assuming
� = const = 0, gives the bare thermodynamic potential at
zero temperature [44]:

�(A, μF ,�,�∗) = A

{
− 1

C0
|�|2 −

∫
d2q

(2π )2

[√
(ωq − μF )2 + |�|2 − (ωq − μF )

]}
. (38)

11Note that a unified EFT treatment of the weakly attractive Fermi liquid has been developed in Ref. [12].
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These divergent integrals may be evaluated with DR using the formula12

Ĩ (�) =
(

μ

2

)ε ∫
dd−1q

(2π )d−1

1√
(ωq − μF )2 + |�|2 = M

2π

[
2

ε
+ ln

(
μ2π

MμF

)
− γ − ln

(√
1 + |�|2/μ2

F − 1
)]

. (39)

Renormalizing with MS using Eq. (14), and exchanging the renormalized coupling for the two-body binding energy using
Eq. (21) then gives the renormalized thermodynamic potential [44]:

�(A, μF ,�,�∗) = A
M

4π
|�|2

[
ln

√
μ2

F + |�|2 − μF

|εB| − μF√
μ2

F + |�|2 − μF

− 1

2

]
. (40)

This remarkable formula immediately reveals that the super-
fluid state is energetically favorable and is intrinsically related
to two-body binding [28,29]. The minimum of the poten-
tial occurs at � = �∗ = �LO and defines the leading-order
gap:

�2
LO = ε2

B + 2μF |εB|. (41)

The density is given by

ρ = − 1

A

∂�(A, μF ,�,�∗)

∂μF
= M

2π

(
μF +

√
�2

LO + μ2
F

)
(42)

and, after using Eq. (28), results in

2 εF = μF +
√

μ2
F + �2

LO. (43)

Combining Eqs. (21) and (43) gives finally, for μF > 0,

�LO =
√

2 εF |εB|, μF = εF − 1
2 |εB|, (44)

in agreement with Refs. [28,29].
It is instructive to obtain this result using Feynman dia-

grams as they render in-medium corrections more transparent.
The gap equation is shown diagrammatically in Fig. 5 where
the C0 vertex is represented by a dotted line to distinguish
which fermion lines are being contracted [48]. This is eval-
uated to LO by taking the two-particle irreducible potential
equal to the tree-level contact vertex, Vpp = C0, and using a
propagator which accounts for the gap [11,44]. The result is

�LO = −C0

∫
d3q

(2π )3

�LO

q2
3 + (ωq − μF )2 + |�LO|2 , (45)

where q3 is the third component of Euclidean momentum.
The gap is the self-consistent solution to this equation, which
treats C0 to all orders even if it is arbitrarily weak because
of the kinematical enhancement (BCS instability) of the loop
function for |q| ∼ kF . Performing the q3 integration leaves

− 1

C0
= 1

2
Ĩ (�LO). (46)

12Note that one may take a derivative of the integral with respect to
|�|, evaluate using DR, and then integrate with respect to |�|.

Using Eq. (39) and renormalizing with MS using Eq. (14) then
gives

1

C0(
√

MμF )
= M

4π
ln

(√
1 + �2

LO

μ2
F

− 1

)
(47)

which immediately recovers Eq. (41).
The energy density of the paired state is given by

E = A−1� + μF ρ = E0 − M

4π
�2

LO. (48)

In the literature this approximation of the energy is denoted
mean-field BCS theory. The contribution of the gap to the
energy per particle is thus given by [11,47,49–51]

(E/N )� = 1
2εB. (49)

Therefore, evidently the existence of a bound state is a nec-
essary and sufficient condition for the existence of s-wave
pairing, in contrast to the three-dimensional case [28,29]. At
weak, attractive coupling, the contribution of the gap to the
energy is exponentially suppressed, which, as will be seen,
allows a meaningful perturbative expansion in α.

The NLO contribution to the gap takes into account
the particle-hole (“ring”) correction to the two-particle irre-
ducible potential Vpp [11,47,49–51] as shown in the bottom of
Fig. 5. This accounts for the polarizability of the finite-density
medium which effectively screens the contact interaction. For
the kinematics which lead to the BCS instability, k1 = −k2 ≡
k, k′

1 = −k′
2 ≡ k′, and k = k′ = kF , the potential may be

FIG. 5. Top: The gap equation diagrammatically, with the empty
triangle denoting an insertion of the gap. Bottom: The shaded cir-
cle represents an insertion of the two-particle irreducible potential
−iVpp, with the dotted lines denoting a C0 interaction. Crossed dia-
grams and diagrams which cancel are not shown.
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computed in the gapless EFT with kF R 
 1 to give

Vpp =C0(δαγ δβδ − δαδδβγ )

+ iC2
0

∫
d3q

(2π )3
[G0(q̃) G0(q̃ + P̃+)δαγ δβδ

− G0(q̃) G0(q̃ + P̃−)δαδδβγ ] (50)

where P̃± = (0, k ± k′). Spin indices have temporarily been
restored and α, β (γ , δ) are the spin indices of the incom-
ing (outgoing) particles. To project the potential onto the s
wave one must integrate over all cos θ = k̂ · k̂′. However, it
is straightforward to show that Vpp computed to one loop
contains no partial waves higher than � = 0 [52]. There-
fore the two terms with P̃± contribute equally to Vpp which
becomes

Vpp =C0 + 2MC2
0

∫
q<kF

d2q
(2π )2

[
1

P2−/2 + q · P− − iε

+ iπδ(P2
−/2 + q · P−)θ (kF − |q + P−|)

]
, (51)

where spin indices have again been suppressed. Evaluating the
integral13 results in

Vpp = C0 + M

2π
C2

0 . (52)

The gap equation then becomes

− 1

C0

(
1 + M

2π
C0

)−1

= − 1

C0
+ M

2π
+ O(C0) = 1

2
Ĩ (�NLO).

(53)

Neglecting the O(C0) corrections on the left-hand side then
leads to the gap energy up to NLO,

�NLO = 1

e
�LO, (54)

in agreement with Ref. [50].
As the omitted corrections to Vpp are O(C3

0 ), one expects
that Eq. (54) is valid up to corrections of O(α�NLO). It is im-
portant to stress that while the computation of the gap is valid
for all interparticle separations k−1

F , the EFT giving rise to
this screening correction is strictly valid at large interparticle
separations. Indeed, at strong coupling, the paired fermions
are expected to become tightly bound, leading to the BCS-
BEC crossover to a gas of repulsive bosons. Clearly, in this
limit, screening effects will become negligible as the diameter
of the pair will be much smaller than k−1

F , and therefore it
is expected that the LO gap contribution to the energy per
particle, εB/2, will be exact. Notice, however, that mean-field
BCS theory in the strong-coupling molecular limit misses the
correct interaction energy between composite bosons [20,50].
In particular, the first term in Eq. (48) is not correct in the BEC
limit, because it should include the interaction energy of the
composite bosons.

13This integral appears in the NNLO correction to the energy den-
sity and is evaluated below [see Eq. (79)].

FIG. 6. Leading-order diagram (the bow tie) contributing to the
energy density. The black circle corresponds to an insertion of the C0

operator.

V. WEAKLY COUPLED FERMI GAS:
UNIVERSAL CORRECTIONS

A. Fermi-liquid regimes

The goal in what follows is to compute the energy density
in the weak-coupling, Fermi-liquid regime, |α| 
 1, which
has been shown to divide into a repulsive and an attractive
branch as

E =
{
EFL, α > 0

EFL − M
4π

�2, α < 0,
(55)

where � = �NLO[1 + O(α)]. Note that although the energy
due to pairing is exponentially small in |α|, it is included in
order to be able to consistently compare with the Monte Carlo
simulations. In what follows the perturbative calculation of
EFL in powers of α is described order by order.

B. Leading order

The LO diagram which contributes to the energy density,
EFL, is shown in Fig. 6 and yields

E1 = 1

2
C0 g(g − 1)

(
lim

η→0+

∫
d3k

(2π )3
eik0η iG0 (̃k)

)2

. (56)

The dk0 integration is performed using contour integration,
which picks up the θ (kF − k) pole, and the remaining d2k
integral up to kF is trivial. The result is

E1 = ρ (g − 1)
k2

F

8π
C0, (57)

and is sometimes referred to as the mean-field contribution.
Using Eq. (16) to replace the bare coupling with the renormal-
ized coupling, and using Eq. (20) to express the final result in
terms of α, it is found that

E1 = ρ(g − 1)
k2

F

4M

{
α(μ) + O[α(μ)2]

}
. (58)

At this order, the RG scale is arbitrary and will be set once the
NLO contributions are taken into account. The factor of g − 1
will be common to all universal corrections and reflects that
this interaction must vanish for single-component fermions
due to Pauli statistics.

C. Next-to-leading order

The NLO calculations in this section and the NNLO cal-
culations in the following section reproduce the results first
found in Refs. [16,17]. The nominal NLO corrections come
from the diagrams in Fig. 7. Figure 7(b) is “anomalous” and
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(a) (b)

FIG. 7. Next-to-leading-order diagrams contributing to the en-
ergy density. Only diagram (a), the beach ball diagram, is
nonvanishing.

is identically zero. The contribution from Fig. 7(a), the beach
ball diagram, is

E2 = − i
C2

0

4
g(g − 1)

∫
d3 p1

(2π )3

∫
d3 p2

(2π )3

×
∫

d3k

(2π )3
G0( p̃1) G0( p̃2) G0(P̃ + k̃) G0(P̃ − k̃),

(59)

where P̃ = ( p̃1 + p̃2)/2 and it is convenient to define q̃ =
( p̃1 − p̃2)/2. Using the in-medium form of the propagator, it
is found that only terms with two in-medium insertions on
either side of a loop survive the contour integration. Without
loss of generality, the two in-medium insertions may be placed
on the p̃1,2 loop. This puts p̃1,2 on shell and restricts their
momenta to be below the Fermi surface. After performing the
contour integrals, the energy becomes

E2 = MC2
0

4
g(g − 1)

∫
p1,2<kF

d2p1d2p2

(2π )4
[2I0 + 2I1 + I2],

(60)

where

I0 =
(

μ

2

)ε ∫
dd−1k

(2π )d−1

1

q2 − k2 + iδ
, (61)

I1 = −
∫

d2k
(2π )2

θ (kF − |P + k|) + θ (kF − |P − k|)
q2 − k2 + iδ

, (62)

I2 = −2iπ
∫

d2k
(2π )2

δ(k2 − q2)θ (kF − |P − k|)
× θ (kF − |P + k|), (63)

and MS is used to define I0 [= I0(q)/M]. The energy is
manifestly real and, for p1,2 < kF ,

Im(2I0 + 2I1 + I2) = 0. (64)

After changing to dimensionless variables, s = P/kF and
t = q/kF , the real parts are found to be

Re I0 = 1

4π

[
ln

(
t2k2

F

μ2

)
+ γ − ln π − 2

ε

]
,

Re I1 = − 1

2π
[ln t − H (s, t )], (65)

where [16]

H (s, t ) = 2 θ (1 − s − t ) ln

√
1 − (s + t )2 +

√
1 − (s − t )2

2
√

t

+ θ (s + t − 1) ln s. (66)

After integrating by parts, the following identity is obtained:∫
p1,2<kF

d2p1d2p2

(2π )4
f (s, t )

= 2k4
F

π3

∫ 1

0
ds s

∫ √
1−s2

0
dt t J (s, t ) f (s, t ) (67)

where f (s, t ) is an arbitrary function and

J (s, t ) = π

2
θ (1 − s − t ) + θ (s + t − 1) arcsin

1 − s2 − t2

2st
.

(68)
Applying this to Eq. (60), one finds

E2 = MC2
0 g(g − 1)

k4
F

π3

∫ 1

0
ds s

×
∫ √

1−s2

0
dt t J (s, t )[Re I0 + Re I1]. (69)

Notice that the ln(t ) term cancels in the integrand and the
remaining integration over Re I0 in Eq. (69) gives

δE2 = ρ(g − 1)
k2

F

8π

C2
0 M

4π

[
ln

(
k2

F

μ2

)
+ γ − ln π − 2

ε

]
.

(70)

Adding this contribution to the LO energy density, choosing
μ = kF , and replacing the bare parameters with renormalized
parameters using Eq. (16), one finds

E1 + δE2 = ρ (g − 1)
k2

F

8π
C0(kF ) + O[C0(kF )3]. (71)

The integration over I1 in Eq. (69) gives

δE ′
2 = ρ(g − 1)

k2
F

16π2
MC2

0

(
3

4
− ln 2

)
. (72)

Again, using Eq. (16) to renormalize this contribution, and
with E2 = δE2 + δE ′

2, one finds to NLO

E1 + E2 = ρ(g − 1)
k2

F

4M

[
α(kF ) + α(kF )2

(
3

4
− ln 2

)
+ O[α(kF )3]

]
, (73)

where Eq. (20) has been used to express the final result in
terms of α. This recovers the result of Refs. [25,26]. Note that
3/4 − ln 2 = 0.056 85 is small as compared to a number of
order 1. The small size of this correction has been observed
in comparison with MC simulations [19], which suggest a
stronger deviation from the mean-field result, and motivates
the study of higher-order effects.

D. Next-to-next-to-leading order

The NNLO corrections come from the diagrams in Fig. 8.
Figures 8(c)–(e) are all anomalous and evaluate to zero. The
ladder diagram, Fig. 8(a), gives a logarithmically-divergent
contribution to the energy:

EL
3 = g(g − 1)

C3
0

6

∫
d3 p1

(2π )3

∫
d3 p2

(2π )3
G0( p̃1) G0( p̃2)

×
[∫

d3k

(2π )3
G0(P̃ + k̃) G0(P̃ − k̃)

]2

. (74)
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(a) (b) (c)

(d) (e)

FIG. 8. Next-to-next-to-leading-order diagrams contributing to
the energy density. Only diagrams (a) and (b) are nonvanishing.

As with the beach ball diagram, only terms with two in-
medium insertions on either side of a loop are nonzero and

these will again be placed on the p̃1,2 loop. Many of the
nonvanishing terms are identical due to the cyclic symmetry
of the diagram and the integrals involved are the same as in
the evaluation of the beach ball. Here, the imaginary parts
will need to be kept and the following relation is particularly
useful:

Im(I0 + I1 + I2) = I2

2i
= −J (s, t )

2π
, (75)

which holds for s2 + t2 < 1. After performing the contour
integration, the energy reads

EL
3 = g(g − 1)

C3
0

6
M2

∫
p1,2<kF

d2p1d2p2

(2π )4

[
3(I0 + I1 + I2)2 − I2(3I0 + 3I1 + 2I2)

]
= ρ(g − 1)C3

0 M2k2
F

3π4

∫ 1

0
ds s

∫ √
1−s2

0
dt t J (s, t )

{
−J (s, t )2 + 3H (s, t )2 + 3H (s, t )

[
γ − ln π − 2

ε
+ ln

(
k2

F /μ2
)]

+ 3

4

[
γ − ln π − 2

ε
+ ln

(
k2

F /μ2
)]2}

, (76)

where in the second line, Eqs. (65), (67), and (75) have been used. Replacing the bare coupling with the renormalized coupling
in E1 + E2 + EL

3 , and setting μ = kF to remove the RG scale dependence at this order, results in

EL
3 = ρ(g − 1)

k2
F

4M

[
α(kF )3(0.160 79) + O[α(kF )4]

]
, (77)

where the integrals over J3 and JH2 have been performed numerically. This is in agreement with the result of Appendix A of
Ref. [16].

The ring diagram, Fig. 8(b), gives the finite result

ER
3 = − i

6
g(g − 1)(g − 3)C3

0

∫
d3P

(2π )3

[
i
∫

d3k

(2π )3
G0(k̃) G0(k̃ + P̃)

]3

. (78)

After performing the contour integration, the term in brackets becomes

IR = M
∫

d2k
(2π )2

[(
θ (kF − k)

P2/2 + k · P − MP0 − iδ
+ P0 → −P0

)
− 2iπδ(MP0 − P2/2 − k · P)θ (kF − k)θ (kF − |k + P|)

]
. (79)

It is convenient to calculate the real and imaginary parts sep-
arately. The imaginary part has three terms which, after the
change of variables k → k − P/2, give

Im IR = Mπ

∫
d2k

(2π )2
δ(MP0 − k · P)

[
θ (kF − |k − P/2|)

+ θ (kF − |k + P/2|) − 2θ (kF − |k − P/2|)
× θ (kF − |k + P/2|)]

= M

4π
I (ν̄, x) (80)

where [17]

I (ν̄, x) = 1

x

√
1 − (x − ν̄)2, for |x − 1| < ν̄ < x + 1,

I (ν̄, x) = 1

x

[√
1 − (x − ν̄)2 −

√
1 − (x + ν̄)2

]
,

for 0 < ν̄ < 1 − x, (81)

and dimensionless variables, x = P/(2kF ) and 2xν̄ =
MP0/k2

F , have been defined. Before calculating the real part,
notice that ER

3 must be proportional to Im (IR)3 to be real, and
therefore will always include at least one factor of I (ν̄, x).
Therefore, Re IR need only be defined in the semi-infinite
strip where I (ν̄, x) has support (Fig. 2 in Ref. [17]). In this
domain

Re IR = M

4π
R(ν̄, x) (82)

where

R(ν̄, x) = 2 − 1

x

√
(x + ν̄)2 − 1,

for |x − 1| < ν̄ < x + 1,

R(ν̄, x) = 2, for 0 < ν̄ < 1 − x, 0 < x < 1. (83)
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FIG. 9. Effective range contribution to the energy density. The
red square corresponds to an insertion of the C2 operator.

The energy density is then

ER
3 = − i

6
g(g − 1)(g − 3)C3

0

∫
d3P

(2π )3
(IR)3

= ρ(g − 1)(g − 3)k2
F

C3
0 M2

24π4

∫ ∞

0
dx x2

×
∫ x+1

ν̄min

d ν̄
[
3R(ν̄, x)2I (ν̄, x) − I (ν̄, x)3

]
, (84)

where ν̄min = max(0, x − 1). Evaluating the integral14 and
setting the RG scale to kF then gives

ER
3 = ρ(g − 1)(g − 3)

k2
F

4M

{
α(kF )3(2 ln 2 − 1) + O[α(kF )4]

}
.

(85)

Finally, the complete NNLO expression is given by

E1 + E2 + EL
3 + ER

3

= ρ(g − 1)
k2

F

4M

[
α(kF ) + α(kF )2

(
3

4
− ln 2

)
+ α(kF )3[0.160 79+(g − 3)(2 ln 2−1)]

+ O[α(kF )4]

]
. (86)

Note that with g = 2, 0.160 79 − (2 ln 2 − 1) = −0.225 50,
which is a factor of 4 larger in magnitude than the α(kF )2

coefficient.

VI. WEAKLY COUPLED FERMI GAS:
NONUNIVERSAL CORRECTIONS

A. Range corrections

According to the power-counting formula, Eq. (32), an
insertion of the C2 operator gives an O(k6

F ) contribution to
the energy density. However, effective range corrections, and
indeed corrections from all orders in the effective range ex-
pansion, are also driven by the C0 operator and therefore will
be doubly suppressed in the dilute and weak-coupling limits.
From the diagram in Fig. 9,

Eσ2
2 = ρ(g − 1)

k4
F

32π
C2, (87)

14The final integration is simpler if one uses rotated coordi-
nates, x = (ξ + η)/2, ν̄ = (ξ − η)/2 where the integration region is
−ξ < η < ξ , 0 < ξ < 1 and −1 < η < 1, ξ > 1.

FIG. 10. Leading three-body contribution to the energy density.
The gray square corresponds to an insertion of the D0 operator.

and finally, in terms of renormalized parameters and the two-
dimensional effective range defined in Eq. (20),

Eσ2
2 = ρ(g − 1)

k2
F

4M
α(kF )2 π

8

(
σ2k2

F

)
. (88)

B. Three-body effects

From the diagram in Fig. 10,

ED0
0 = ρ(g − 2)(g − 1)

k4
F

96π2
D0, (89)

and finally

ED0
0 = ρ(g − 2)(g − 1)

k2
F

4M

1

24π2

(
MD0k2

F

)
. (90)

This scales with the Fermi momentum like a range correction,
but with no additional suppression in α. As a local three-body
interaction, it vanishes for g < 3 due to Pauli statistics.

C. P-wave corrections

From the diagram in Fig. 11,

Eσp

0 = ρ(g + 1)
k4

F

32π
C′

2, (91)

and finally, using Eq. (27),

Eσp

0 = ρ(g + 1)
k2

F

4M

1

π

(
σpk2

F

)
. (92)

This again scales with the Fermi momentum like a range
correction, but with no additional suppression in α, and no
longer vanishes for g = 1 due to the p-wave wave function
being antisymmetric.

VII. GENERAL SCALE-DEPENDENT
FORM AND THE CONTACT

The energy per particle of the weakly coupled Fermi gas in
two dimensions including contributions of O(α3) and O(k2

F )
in the universal interaction and nonuniversal interactions of

FIG. 11. P-wave contribution to the energy density. The empty
circle corresponds to an insertion of the C′

2 operator.
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O(k4
F ) is

EFL/N = EFL/ρ = εFG

[
1 + (g − 1)α + (g − 1)α2

(
3

4
− ln 2 + π

8
σ2k2

F

)
+ (g − 1)α3

[
0.160 79 + (g − 3)(ln 4 − 1)

]
+ (g + 1)

1

π

(
σpk2

F

) + (g − 2)(g − 1)
1

24π2

(
MD0k2

F

)]
, (93)

where α ≡ α(kF ). Omitting nonuniversal effects, it is convenient to use the RG evolution of α, via Eq. (23), to express the energy
in terms of the arbitrary scale λkF , where λ is an arbitrary real number.15 One obtains

EFL/N = εFG
{
1 + (g − 1)α(λkF ) + (g − 1)α(λkF )2( 3

4 − ln 2λ
) + (g − 1)α(λkF )3[0.160 79 + (g − 3)(ln 4 − 1)

− (
3
2 − ln 4λ

)
ln λ

] + O[α(λkF )4]
}
, (94)

with

α(λkF ) = −[ln (λkF a2)]−1. (95)

Note that

λ
d

dλ
EFL/N = O[α(λkF )4], (96)

and therefore any choice of λ leads to the same physical pre-
diction at the order in α computed. However, it is convenient
to choose λ to be consistent with the relevant physical scales
and optimize perturbation theory. Below, the variation in λ

will be used to estimate the uncertainty due to neglecting
higher orders in the perturbative expansion.

The contact [53–55] is an observable of short-range inter-
acting gases relating the derivative of the energy with respect
to the coupling constant to various static and thermodynamic
properties, such as the large momentum tail of the momen-
tum distribution or the high-frequency tail of relevant spectral
functions. The theoretical and experimental determination of
the contact has thus become a stringent test of internal consis-
tency. Here the s-wave16 contact density is defined as

C = 2πM
dE

d ln kF a2
= 2πM

d (ρE/N )

d ln kF a2
. (97)

In order to compare the prediction from Fermi-liquid theory
with MC simulation it is convenient to define the contact
with gap subtracted as CFL. Keeping universal interactions and
assuming g = 2 (two-component fermions) gives

CFL/k4
F = 1

4α2
[
1 + (

3
2 − ln 4

)
α

+ 3[0.160 79 − (ln 4 − 1)]α2 + O(α3)
]
.

(98)

This is plotted in Fig. 12 where the gray shaded band cor-
responds to varying the RG scale by 10% around the Fermi
surface, i.e., λ = 1 ± 0.05. The comparison with MC simula-
tions is discussed in Sec. IX.

15Note that the expression for the energy density with arbitrary λ is
precisely the expression that would have been obtained if the scale μ

had been kept arbitrary throughout the perturbative calculation.
16Contacts for the p-wave interaction and for the effective range

may also be defined [56–61].

VIII. LADDERS AND RINGS TO ALL ORDERS

There have been many efforts to treat classes of diagrams to
all orders in the interaction strength α, particularly in the case
of three dimensions [62], where such resummations provide
some insight regarding the energy density of the Fermi gas at
unitarity [6,10,11,13,14,16].

The complete ladder and ring diagram resummations have
been computed for the Fermi gas in two dimensions in Ap-
pendix A of Ref. [16] and in Ref. [17], respectively, and the
results will be reproduced here for the purpose of comparison
with MC simulations. Figure 13 provides a schematic illustra-
tion of the ladder and ring diagrams. The resummed energy
density is

EFL/N = εFG
[
1 + L(α) + α3R(α)

]
= εFG

{
1 + α + α2

(
3
4 − ln 2

)
+α3[R(α) + L̃(α)]

}
, (99)

FIG. 12. The contact density, CFL in units of k4
F , vs coupling

strength. The gray dashed curve is derived from the O(α2) Fermi-
liquid energy and the solid black curve is from O(α3). The gray
band corresponds to varying the RG scale in the O(α3) Fermi-liquid
energy and is a measure of the uncertainty associated with truncating
the perturbative expansion, as discussed in the text. Note that the MC
data have the gap contribution removed.

043314-12



TOWARD PRECISION FERMI-LIQUID THEORY IN TWO … PHYSICAL REVIEW A 107, 043314 (2023)

FIG. 13. Schematic representation of ladder diagrams to all or-
ders (left) and ring diagrams to all orders (right). The black circle
corresponds to an insertion of the C0 operator.

where [16]

L(α) = −32

π

∫ 1

0
ds s

∫ √
1−s2

0
dt t arctan

J (s, t )

H (s, t ) − α−1
,

(100)

L̃(α) is defined by Eq. (99), and

R(α) = − 16

α3π

∫ ∞

0
dx x2

∫ x+1

ν̄min

d ν̄

{
αI (ν̄, x)[αR(ν̄, x) + 1]

+ arctan
αI (ν̄, x)

αR(ν̄, x) + 2
+ 3 arctan

αI (ν̄, x)

αR(ν̄, x) − 2

}
,

(101)

where ν̄min = max(0, x − 1), and I (ν̄, x) and R(ν̄, x) are de-
fined above [17]. This ring function satisfies the asymptotic
conditions R(±∞) = −1/6, and both the ladder and ring
functions and their sum are plotted in Fig. 14. Note that
the resummed energy density agrees with the perturbative
expansion up to O(α3). It is therefore somewhat indicative
of the uncertainty associated with the truncation of the per-
turbative expansion, as will be seen below. Beyond that, its
implications, while interesting, are evidently academic and
aspirational.

IX. COMPARISON WITH MONTE CARLO SIMULATIONS

Numerical simulations of the energy density of the two-
dimensional Fermi gas in the weakly repulsive regime, and
from the weakly attractive BCS regime to the strongly cou-
pled BEC regime, using MC techniques, have been carried
out in Refs. [19–24,63,64]. The original study by Bertaina
and Giorgini [19] used fixed-node diffusion Monte Carlo

FIG. 14. Resummed ladder and ring functions, L̃(α) and R(α),
respectively, and their sum, vs coupling strength. The dashed black
line is the asymptotic value of the ring function, −1/6.

FIG. 15. Energy per particle with mean-field piece subtracted
vs coupling strength. The gray dashed curve is NLO and the solid
black curve is NNLO. The gray band corresponds to varying the RG
scale at NNLO and is a measure of the uncertainty associated with
truncating the perturbative expansion, as discussed in the text. The
red curve is the complete ladder and ring resummation. The MC data
are as described in the text.

(DMC). This study was then augmented by Bertaina [20], who
increased the statistics in the attractive branch, and also con-
sidered the repulsive branch. Dramatic improvements were
then carried out by Shi et al. [21], who used auxiliary-field
diffusion Monte Carlo (AFDMC), and achieved a more accu-
rate nodal surface (guiding wave function). The results of Shi
et al. were then largely confirmed by Galea et al. [22], who
used fixed-node DMC with a refined nodal surface.

With g = 2 and omitting for now range corrections and
other nonuniversal effects, which are mostly negligible in the
simulations, one has from Eq. (93) the prediction

EFL/N = εFG
[
1+α+α2(0.056 85)− α3(0.225 50)+ O(α4)

]
.

(102)

It is useful to define the mean-field contribution as EMF/N =
εFG[1 + α]. Figure 15 plots the energy per particle with the
mean-field contribution subtracted and shows that including
the O(α3) contribution does indeed restore the agreement
between theory and MC simulation on the attractive side. Fig-
ure 16 magnifies this comparison for small negative α. Note
that all simulation data shown in the figures in the attractive
regime have the NLO gap energy subtracted, as is necessary to
compare with the Fermi-liquid predictions, as discussed above
and indicated in Eq. (55). In most MC simulation papers,
the energy density is expressed as a function of ln (kF a2D) =
ln (kF a2) − γ + ln 2, and therefore one must either translate
between the two scattering length conventions or use the free-
dom in changing the RG scale to achieve the same effect. The
gray shaded band again corresponds to varying the RG scale
by λ = 1 ± 0.05. The red curve is the complete ladder and
ring diagram sum.

Galea et al. [22] obtain smaller energies than Bertaina
and Giorgini [19] as the coupling increases, a reflection of
the more accurate nodal surface. Because fixed-node DMC
is a variational method, it is expected that the lower energies
provide a more accurate calculation of the ground state. The
method used by Shi et al. [21], AFDMC, is free of the sign
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FIG. 16. Energy per particle with mean-field contribution sub-
tracted vs coupling strength. Magnification of Fig. 15 near the origin
of the attractive branch.

problem in the spin-balanced case, meaning that in princi-
ple they do not have problems of accuracy stemming from
a variational nodal surface, which affect the DMC method
used in both Galea et al.’s [22] and Bertaina and Giorgini’s
[19] papers. However, it includes the mapping from a lat-
tice to a continuous model which strictly holds only in the
low-energy regime. Another systematic source of error in all
MC simulations is the correction for finite-size effects, which
assumes Fermi-liquid theory, and an effective mass equal to
the noninteracting case, M∗ = M. This effect is accounted for
by Bertaina and Giorgini [19] with an increased uncertainty.
In Shi et al.’s [21] paper, the results presented account for the
finite-size correction. However, subtracting the finite-size cor-
rection brings in additional assumptions: in particular, the
difference in energy between the finite-size system and the
thermodynamic limit is used, as calculated with BCS theory,
which is not exact. In summary, Shi et al.’s results are affected
by finite-size inaccuracies, which they correct, and the lattice
to continuous mapping, while Galea et al.’s [22] and Bertaina
and Giorgini’s [19] results are affected both by variational
inaccuracy in the nodal surface and finite-size effects, which
are corrected by both Bertaina and Giorgini [19] and Galea
et al. [22].17

The repulsive two-dimensional Fermi gas has been studied
with fixed-node DMC in Refs. [20,64] for both a hard-disk
potential, where a2D is equal to the disk diameter R, and a
soft-disk potential where a2D = 0.5R. These results are also
reported in Fig. 15 for α > 0, and are magnified in Fig. 17
for small α. Here, the fixed-node DMC results are systemat-
ically slightly higher in energy than the uncertainty band of
the EFT prediction. This may be due to slower convergence
of the perturbative expansion due to the beyond mean-field
contribution alternating sign on the repulsive side. Beyond
the inaccuracies in the MC data associated with finite-size
effects (which are corrected as in the attractive case) and the
nodal surface of the trial wave function, nonuniversal effects
may also be important in the repulsive regime. For exam-

17The finite-size correction function implemented by Galea et al. is
taken from Refs. [65,66].

FIG. 17. Energy per particle with mean-field contribution sub-
tracted vs coupling strength. Magnification of Fig. 15 near the origin
of the repulsive branch.

ple, in the case of a hard-disk potential, the s-wave effective
range is comparable to the a2D parameter

√|σ2| = a2D/
√

2π

[37]. In Figs. 15 and 17, for α(kF ) > 0, the effective range
contributions (computed for the hard disk) are included in
the Fermi-liquid prediction at O(α3). This amounts to a 5%
effect at α(kF ) ≈ 1. Note that the fixed-node DMC results for
both the soft- and hard-disk potentials are consistent within
error bars suggesting that effective range effects are not the
major driver of discrepancy between fixed-node DMC and
EFT. Both Figs. 16 and 17 highlight that it would be worth
pursuing new high-precision MC simulations in the weakly
interacting regime, where both finite-size effects and effective
range nonuniversality are accurately determined. This is par-
ticularly relevant in the repulsive case.

The contact density predictions are compared with MC
simulations of the (short-range behavior of the) antiparallel
pair distribution function taken from Ref. [20] in Fig. 12.

FIG. 18. Energy per particle with mean-field piece subtracted vs
coupling strength. MC data are included over all attractive coupling
strengths from the BCS region to the BEC region. The data are as
described in the text, with LO gap energy subtracted, and connected
by the green curve for ease of viewing. The solid black curve is
the NNLO Fermi-liquid prediction. The red curve is the complete
ladder and ring resummation, and the blue curve is the [1,2] Padé
approximant, as discussed in the text.
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The gap (molecular) contribution to the contact density is
subtracted from the data in the attractive regime. Note that
the contact density, unlike the energy per particle shown in
Fig. 15, does not have the mean-field contribution subtracted.

Finally, Fig. 18 shows the remarkably smooth and con-
sistent MC data, here with the LO gap energy subtracted
(see discussion at the end of Sec. IV C), out to the strong-
coupling (BEC) region, where the fermions are expected to
form tightly bound pairs which in turn Bose condense. In
the three-dimensional case, resumming perturbation theory
via Padé approximants and other methods appears to capture
strong-coupling trends fairly accurately [67]. While the [2,1]
Padé approximant formed from the results of this paper has
a low-lying singularity, the [1,2] Padé approximant (shown in
Fig. 18) is much closer to the data than the full ladder-ring
sum.

X. CONCLUSION

Quantum mechanics on a plane is remarkably rich and yet
dramatically distinct from its three-dimensional counterpart,
even in the context of the ultracold, weak-coupling results
that are considered in this paper. While challenging to realize
experimentally, the weakly coupled Fermi gas in two dimen-
sions is tractable analytically and can be simulated to high
accuracy using quantum MC techniques. In this paper, the
universal interaction has been computed to one order higher
than known previously, and the results have been shown to
be in excellent agreement with MC simulations for attractive
coupling. In addition, various nonuniversal effects of interest
have been computed, with the hope that they will inspire
specially crafted MC simulations to test their validity. The
EFT methodology, with the choice of DR to tame the singular
nature of the interaction, proves to be a highly efficient means
of systematically improving the description without having to
specify the potential.

There are many straightforward generalizations of the re-
sults in this paper. The most obvious extension is to compute
one order higher in the universal interaction. In three dimen-

sions, the calculation of the energy density has been taken
to one higher order [68,69] in the diagrammatic expansion,
which is in correspondence with O(α4) effects in two di-
mensions. It is noteworthy that at that order there are ≈30
Feynman diagrams, most of which are not of ring or ladder
type. At this nominal fourth order, resumming perturbation
theory via Padé approximants and other methods appears
to capture beyond-perturbation-theory strong-coupling trends
accurately [67].

Other interesting extensions of the work in this paper in
the context of the two-dimensional Fermi gas include the case
of dilute Fermi gases with population imbalance [64,70], cor-
rections to the Fermi-liquid quasiparticle parameters [25,26],
which have been computed to subleading orders in three di-
mensions [9], and quantum corrections to the energy density
for the p-wave interactions (computed in three dimensions in
Ref. [14]). In addition, the role of the p-wave effective range
in the many-body system is of current interest both in two
and three dimensions [56,58–61,71] and may be profitably
studied using the EFT methods of this paper. Also of interest
are various corrections and extensions regarding the pairing
phenomena. While the p-wave pairing gap was considered in
the original papers that addressed superfluidity [28,29], the
results were somewhat mysterious due to the highly singular
nature of the p-wave interaction. It would be illuminating to
address this problem using EFT methods.
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