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Quantum simulator of link models using spinor dipolar ultracold atoms
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We propose a scheme for the quantum simulation of quantum link models in two-dimensional lattices. Our
approach considers spinor dipolar gases on a suitably shaped lattice, where the dynamics of particles in the
different hyperfine levels of the gas takes place in one-dimensional chains coupled by the dipolar interactions.
We show that at least four levels are needed. The present scheme does not require any particular fine-tuning of the
parameters. We perform the derivation of the parameters of the quantum link models by means of two different
approaches, a nonperturbative one tied to angular-momentum conservation, and a perturbative one. A comparison
with other schemes for (2 + 1)-dimensional quantum link models present in the literature is discussed. Finally,
the extension to three-dimensional lattices is presented, and its subtleties are pointed out.
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I. INTRODUCTION

Quantum simulators are of fundamental importance in the
realm of quantum and science technologies: they are quantum
systems having properties that can be controlled and used to
simulate some target system, whose study is currently hin-
dered by lack of proper classical computational, experimental
or analytical tools [1,2]. In the last decades, there has been a
formidable development in the fields of quantum optics and
atomic physics, allowing for the realization of highly precise
and controllable platforms by means of trapped ions [3], su-
perconducting circuits [4], Rydberg atoms [5], and ultracold
atoms in optical lattices [6]. For these reasons, quantum sim-
ulators play a key role in various areas, including quantum
chemistry, condensed-matter and high-energy physics [7–15].
Various many-body quantum systems have been analyzed as
quantum simulators [16–24], a typical example being pro-
vided by atomic systems loaded in optical lattices, which are
described at low energies by (extended) Hubbard models [25].

Over the past years, the idea and use of quantum simula-
tors to study gauge theories has gained increased relevance.
These theories are at the basis of the standard model in
the field of particle physics and describe the electroweak
and strong interactions through a non-Abelian gauge theory
[26–28]. In condensed-matter and statistical physics, often
gauge theories arise as low-energy effective descriptions of

*Present address: ICFO-Institut de Ciencies Fotoniques, The
Barcelona Institute of Science and Technology, 08860 Barcelona,
Spain; pfontana@sissa.it

strongly correlated phenomena, such as quantum spin liquids,
the quantum Hall effect, and frustrated magnets [29]. The
standard approaches to study gauge theories may present var-
ious drawbacks, depending on the regimes and properties of
interest. A major example is the analysis of quantum chro-
modynamics through Monte Carlo simulations: due to the
well-known sign problem, this numerical method cannot re-
liably approach the analysis of the theory with finite chemical
potential, for example [30,31].

Quantum simulators based on ultracold atomic platforms
emerge as a promising alternative to investigate such phe-
nomena for lattice gauge theories (LGTs) by circumventing
some limitations of classical simulators [7–9]. A first point to
be addressed is related to the implementation of the Hilbert
space of dynamical gauge fields in a quantum simulator, since
it is infinite-dimensional for a single link in the Wilson for-
mulation of LGTs [32]. To overcome this difficulty, one could
replace the continuum gauge groups with discrete ones that
approximate the latter in the proper limit [33,34], or replace
the link variables with discrete degrees of freedom, discretiz-
ing the Hilbert space considering the so-called quantum link
formulation of gauge theories. Even if they possess a finite
number of states, quantum link models (QLMs) preserve the
gauge symmetry of the original model, paying the price of
introducing nonunitary operators on the links of the lattice
[35–37]. Due to the finiteness of the Hilbert space and the
preservation of the local symmetry, they are suitable to be
implemented and analyzed as quantum simulators. While it is
possible to recover the full, nontruncated, Wilson formulation
from QLMs [38–41], they provide an enriched playground
where new phases are expected to appear, making them in-
teresting also from this perspective [42–47].
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FIG. 1. The gauge fields live on the links of the two-dimensional lattice and are highlighted in blue in the elementary plaquette. The
plaquette element Uμν is the ordered product of the links, as presented on the right-hand side.

With respect to the quantum simulation of usual many-
body quantum systems, there are additional features to be
considered in the case of theories with gauge fields. The point
is that the designed quantum platform should be consistent
with the local symmetry, i.e., the gauge invariance of the
theory. While in d = 1 efficient ways to deal with the problem
have been developed [8,16,20,22], in d > 1 it seems that one
necessarily needs to involve rather complicated many-body
interaction terms to simulate the gauge field dynamics. We
mention that interesting physical phenomena can emerge in
d > 1 even in the absence of magnetic terms [48–52]. As a
general consideration, one would like to have quantum simu-
lation schemes which do not crucially depend on fine-tuning
of the parameters of the systems, possibly not intrinsically
perturbative, and extendable to higher dimensions.

For the d > 1 case, both in the Wilson and quantum link
formulations, different proposals have been put forward in-
volving ultracold atoms in an optical lattice and Rydberg
atoms [11,12]. Concerning the first platforms, in Ref. [53] the
gauge invariance of the theory is obtained through angular-
momentum conservation for the gauge-matter interaction,
while the dynamics of the gauge field emerges effectively in
perturbation theory, employing the so-called “loop method” in
d = 2 for the compact quantum electrodynamics (QED), real-
izing the plaquette term in terms of bosons. At variance, using
the dual formulation [54] of the U(1) spin-1/2 model in d = 2,
plaquette interactions are mapped into single constrained hop-
ping processes on the dual lattice. Reference [55] proposes to
simulate this model through Rydberg configurable arrays, in
which the physical states have a blockade character. While in
Ref. [53] the plaquette terms are emerging at fourth-order of a
strong coupling (cold atomic) expansion, in this proposal they
are implemented directly, without the use of any perturbative
expansion. At the same time, the approach of Ref. [55] relies
on the two-dimensional nature of the system, and does not
seem to be easily generalizable to higher dimensions.

In this paper we propose a quantum simulator for the
U(1) spin-1/2 pure Abelian QLM using spinor dipolar Bose-
Einstein condensates (BECs) loaded in a spin-dependent
optical lattice. With respect to Ref. [53], we use only bosonic
atoms of spin 2, so that we have access to five internal states
that, through angular-momentum conservation in the vari-
ous scattering channels, give rise to gauge invariance. As in
Ref. [53], the robustness of gauge invariance is tied to the one
of angular-momentum conservation, and in the present paper

it is used to generate the plaquette term. The same principle
can be achieved without conservation of angular momentum,
provided the ultracold atom parameters are properly tuned in
the strong-coupling regime. The resulting effective Hamilto-
nian describes the dynamics of the gauge field at third-order
in perturbation theory for a square lattice, or at second-order
for a triangular lattice.

The paper is organized as follows: In Sec. II we give a
brief reminder about Abelian LGTs and then introduce the
U(1) spin-1/2 models in d = 2, discussing both the bosonic
and fermionic formulations. In Sec. III we briefly review the
theory about spinor dipolar BECs. In Sec. IV we present our
proposal using ultracold atomic platforms: we show how to
construct our optical lattice and derive the plaquette inter-
actions using two approaches, the first one, nonperturbative
(Sec. IV A), based entirely on angular-momentum conserva-
tion, and the second one based on a perturbative expansion
(Sec. IV B). In Sec. IV C we present the connection with the
target gauge theory. In Sec. V we discuss possible extensions
and generalizations of our proposal. In Sec. VI we summarize
our results and present our conclusions.

II. U(1) LATTICE GAUGE THEORIES
IN TWO DIMENSIONS

The purpose of this section is to set the notation regarding
the target theory and provide a brief review review of the
Hamiltonian formulation for U(1) gauge theories. We focus
on the two-dimensional (2D) case, later generalizing to higher
dimensions. The matter fields live on the vertices of the lattice,
here denoted by n = (n1, n2), while the gauge degrees of
freedom live on the links, denoted by the site n and the direc-
tion towards which they point μ̂ = {1̂, 2̂}. The electric-field
operator acting on the link, connecting site n to site n + μ̂,
is represented by Eμ(n) and commutes nontrivially with the
Wilson operator Uμ(n) on the same link

[Uμ(n), Eν (n′)] = −δμ,νδn,n′Uμ(n),

[U †
μ(n), Eν (n′)] = δμ,νδn,n′U †

μ(n), (1)

with all remaining commutations set to zero. The Wilson
and plaquette operators can be related to the gauge field Aμ

and field strength Fμν ≡ Aν (n + μ̂) − Aν (n) − Aμ(n + ν̂) +
Aμ(n) by Uμ(n) = eieaAμ(n), Uμν (n) = eiea2Fμν (n) (see Fig. 1).
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The Kogut-Susskind (KS) Hamiltonian is H = Hg + Hm,
where

Hg = e2

2

∑
n,μ

E2
μ(n) − 1

4a2e2

∑
P

(Uμν + U †
μν ) (2)

is the pure gauge-field contribution, while Hm is the mat-
ter contribution and depends on the employed discretization
scheme for the fermions on the lattice. When matter is absent,
Eq. (2) represents the KS Hamiltonian of a pure Abelian U(1)
LGT in 2D [56,57]. The KS Hamiltonian is gauge invariant,
i.e., it commutes with the set of local operators

G(n) =
∑

μ

[Eμ(n) − Eμ(n − μ̂)], [H, G(n)] = 0. (3)

Possible gauge-invariant extensions can be added to the
Hamiltonian, in the sense that the above symmetries are pre-
served. More about this point will be discussed below. In the
absence of static charges, which is the case considered in the
present work, the physical states |ψ〉 of the system are those
satisfying Gauss’s law G(n)|ψ〉 = 0 ∀ n.

A. Bosonic quantum link models

Quantum link models [35–37] realize the commutation
relations in Eq. (1) using quantum spin operators as

Uμ(n) = S+
μ (n), U †

μ(n) = S−
μ (n), Eμ(n) = Sz

μ(n). (4)

In this framework, the operators Uμ and U †
μ are no longer

unitary nor commuting, but rather satisfy

[Uμ(n),U †
ν (n′)] = 2Eμ(n)δμ,νδn,n′ , (5)

making the Hilbert space at each link finite. This difference
gives rise to interesting physical phenomena [43,45,46], while
still providing a route to recover the Wilson discretization
as one takes the spin representation S to be large. In the
particular case of S = 1/2 there are only two states per link
associated with the values Eμ(n) = ±1/2 of the electric field.
The Hamiltonian gets simplified because (Sz

μ)2 = 1/4: the
electric part is trivial and we are left with magnetic interac-
tions only. The physics described by the Hamiltonian (2) can
be enriched by introducing the Rokhsar-Kivelson (RK) term,
with coupling λ, giving rise to the Hamiltonian [58]

HRK = Hg + λ
∑

P

(Uμν + U †
μν )2, (6)

which remains gauge invariant. Among all the possible 24

states of the four links joining a vertex n, only six satisfy
Gauss’s law in 2D. Despite the apparent simplicity of the
model, its physics is very rich [7], being closely related to the
quantum dimer model [59].

An alternative way to view this model is provided by map-
ping spins to hardcore bosons. There + or − signs of Eμ(n)
label, respectively, the presence or absence of a hardcore
boson in the link n → n + μ̂ [47]. In terms of bosons, the
gauge operators are written as

Uμ(n) = b†
μ(n), U †

μ(n) = bμ(n), Eμ(n) = nμ(n) − 1
2 .

(7)

The plaquette term becomes

Uμν (n) = bμ(n)bν (n + ν̂)b†
μ(n + ν̂)b†

ν (n) (8)

and can can be interpreted as a correlated hopping of two
bosons. As will be discussed below, we will interpret the
above terms as a particle at the link (μ, n) hopping to the link
(ν, n) and one at (ν, n + n̂u) hopping to (μ, n + n̂u). The RK
term can be written in this language as a sum of two-, three-,
and four-particle interactions. While this is simple to write, it
does not arise as easily in an ultracold atomic setting. For this
reason, we focus only on the generation of the plaquette term
in the present work. In this language, the generators take the
form

G(n) =
∑

μ

[nμ(n) − nμ(n − μ̂)] (9)

and commutes with the Hamiltonian by construction.

B. Fermionic quantum link models

The particle representation opens the door to the construc-
tion of an alternative gauge theory: a gauge theory constructed
with fermionic links [44,47], which is achieved by replacing
the bosonic operators by fermionic ones. This is still gauge
theory (there is still a set of local symmetries) but possibly
hosting different physics due to the different commutation
relations among the gauge-field operators Uμ, U †

μ, and Eμ.
It turns out that for 2D the theories are equivalent, while for
three dimensions (3D) they represent truly different models
[44,47].

For concreteness, in the fermionic case, we can choose as
a basis for the two-dimensional Hilbert space, the states |0〉
and |1〉 = c†

μ(n)|0〉, and identify the Wilson and electric field
through

Uμ(n) = c†
μ(n), U †

μ(n) = cμ(n), Eμ(n) = nμ(n) − 1
2 ,

(10)

where nμ(n) ≡ c†
μ(n)cμ(n) is the number operator. It is

straightforward to verify that Eqs. (1) and (5) are satisfied
with these definitions. As anticipated, the Wilson operators
anticommute.

Fermionic QLMs have been subjected to much less intense
research when compared with their bosonic counterparts.
Their analysis can lead, in principle, to the characterization
of new phases of matter for LGTs. At the same time, quantum
simulators of 2D LGTs with ultracold atoms may profit from
the fermionic interpretation of the plaquette interactions, as
they provide an alternative equivalent way of realizing the
same physics.

III. SPINOR DIPOLAR BOSE-EINSTEIN CONDENSATES

Before addressing the details of our proposal, we give
a brief reminder about spinor dipolar BECs, which are the
basic tool that we need to build up the quantum simulator.
Spinor BECs are degenerate Bose gases with spin internal
degrees of freedom. With respect to usual (scalar) BECs, they
present multicomponent order parameters and display richer
physical phenomena, due to the interplay between superflu-
idity and magnetic effects. As a consequence, they provide
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a useful platform for the study of different physical aspects,
such as the role of symmetry breaking and long-range order
in quantum-ordered materials, quantum phase transitions and
nonequilibrium quantum dynamics [25,60,61].

The general atomic Hamiltonian of spinor BECs can be
written on the basis of symmetry arguments and, apart from
the usual single-particle terms, it includes quantum-number-
dependent interaction terms. For a spin- f BEC we denote
with φm(r) the bosonic field operators, satisfying the canoni-
cal commutation relations [φm(r), φ†

m′ (r′)] = δm,m′δr,r′ , where
m = − f ,− f + 1, . . . , f is the magnetic quantum number
and f is the hyperfine spin of the given atomic species. The
microscopic Hamiltonian is

H = H0 + H ( f )
int ,

H0 =
∫

dr
∑

m

φ†
m(r)

[
− h̄2∇2

2M
+ Utrap(r)

]
φm(r), (11)

H ( f )
int = 1

2

∫
dr

∑
m1,m2,m′

1,m
′
2

Cm1m2
m′

1m′
2
φ†

m1
(r)φ†

m2
(r)φm′

1
(r)φm′

2
(r).

(12)

The single-particle term, H0, includes the possibility of having
a trapping potential Utrap(r). H ( f )

int is the most general on-site
interaction term for hyperfine spin f . For our purposes, it is
enough to consider the f = 2 case

H (2)
int = 1

2

∫
dr[c0 : n2(r) : +c1 : F2(r) : +c2A†

00(r)A00(r)],

(13)

where : O : represents the normal order for the operator O,
c0, c1, and c2 are numerical coefficients related to the scatter-
ing lengths aF in the various channels, and

n(r) =
2∑

m=−2

φ†
mφm, A00(r) = 2φ2φ−2 − 2φ1φ−1 + φ2

0√
5

,

Fi(r) =
2∑

m,m′=−2

φ†
m( fi )mm′φm′ . (14)

The dependence on r, on the right-hand side, was omitted
for simplicity. The above defined quantities are n(r) the total
density operator, A00 the amplitude of the spin singlet pair, and
Fi the spin-density operators, with fi representing the spin-
2 rotation matrices. Without further interactions, the spinor
BECs in spin-independent optical lattices can be described by
the Bose-Hubbard (BH) model [62,63]. Expanding the field
operators in terms of Wannier functions, and introducing the
associated annihilation and creation operators bim, b†

im, the BH
Hamiltonian can be written as

HBH = − t
∑

〈i,j〉,m
(b†

imbjm + H.c.)

+ U0

2

∑
i

ni(ni − 1) + U1

∑
i

(A†
00)i(A00)i

+ U2

2

∑
i

F2
i − μ

∑
i

ni, (15)

with ni = ∑
m b†

imbim, Fiα = ∑
m,m′ b†

im( fα )mm′bim′ and A00 is

the spin singlet amplitude written in terms of bim, b†
im. The

single site interactions are not enough to generate the desired
plaquette terms within our proposal. However, this can be
accomplished by including magnetic dipole-dipole interaction
(MDDI) terms, and considering spinor dipolar BECs. The
MDDI couples the spin degrees of freedom with the orbital
ones, conserving the total angular momentum. For spinor
BECs, the MDDI can be relevant, as it is spin dependent and
long ranged. Its Hamiltonian in second quantization is given
by

Vdd = cdd

2

∫
drdr′ ∑

ν,ν ′
: Fν (r)Qνν ′ (r − r′)Fν ′ (r′) :,

Qνν ′ (r) = δνν ′ − 3r̂ν r̂ν ′

r3
, (16)

with the coefficient cdd ∝ d2 related to the electric-dipole
moment. In the optical lattice Hamiltonian this generates a
series of long-range terms

Hdd = 1

2

∑
i �=j

U ij
dd ninj,

U ij
dd ≡ cdd

∫
drdr′|w(r − ri )|2 1 − 3 cos2 θ

|r − r′|3 |w(r′ − r j )|2,
(17)

where θ is the angle between the dipole moment and the
vector r − ri. The full Hamiltonian HEBH = HBH + Hdd falls
in the class of the so-called extended Bose-Hubbard models.
Depending on the values of t , U0, U1, and Udd , which can be
tuned independently, the extended BH has different quantum
transitions and phases, including Mott insulator, superfluid,
and even supersolid phases, provided that more than nearest
neighbors interaction terms are considered in the extended
Hamiltonian [64–66].

In principle, the dipolar interaction is dominant in gases of
polar molecules when the application of a strong electric field
is considered, due to their strong electric-dipole moments.
In this case, these are called spin-polarized dipolar BECs.
The dipole-dipole interaction can be properly tuned through
a rotating field [67], allowing for the control of the interaction
strength cdd , which can be positive or negative according to
the relative orientation of the dipoles. On the other hand, the
MDDI can be neglected in several ultracold atomic systems,
such as scalar alkali-metal atoms, while they play an impor-
tant role for other species, e.g., Cr and Dy [68,69]. We refer to
the reviews [60,61], and the references therein for more details
on the various physical properties of spinor (dipolar) BECs.

IV. PLAQUETTE TERMS FROM ANGULAR-MOMENTUM
CONSERVATION

In this section we describe how the plaquette interactions
in the 2D Abelian spin-1/2 QLMs can be interpreted as
a correlated hopping obtained through angular-momentum
conservation. The use of angular-momentum conservation in
scattering processes to ensure local gauge invariance was
introduced in Ref. [53]. In that case, it guarantees that the
gauge-matter interaction satisfies gauge invariance. By other
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FIG. 2. (left panel) Spin-dependent optical lattice with atoms on the vertices in the five internal states mF = 0, ±1, ±2, whose color code is
reported in the table. The dotted vertical lines represent avoided hoppings. (right panel) Simulated lattice (light blue lines) alongside the allowed
hoppings on the original spin-dependent optical lattice (inclined gray lines). While it is easier to visualize the simulator as it is represented in
the left panel, the mapping to the gauge theory is more transparent when the lattice is rotated by 45◦, as in the right panel.

side, plaquette terms are still obtained perturbatively. In con-
trast, our target model does not include matter and uses the
conservation of angular momentum as a means to obtain ro-
bust plaquette terms of the pure gauge theory.

In our proposal, we consider a spin-2 dipolar BEC loaded
in a square optical lattice whose structure is shown in the left
panel of Fig. 2. This figure has to be read as follows: the
bosons are located on the different vertices of the lattice, and
the lattice itself has a spin-dependent structure, so an atom can
sit at a generic site n if it has the magnetic quantum number
mF = 0,±1,±2 associated with that site. In other words, the
color with which the site n is painted, in Fig. 2, is assoiated
with the magnetic quantum number of the atom that can sit
here. This could be accomplished in two ways: (a) by realizing
a state-dependent optical superlattice, with different periods
and minima [70], or (b) by introducing a one-site one-body
term in the Hamiltonian penalizing or favoring, at the site i,
particles with different internal states. We discuss in the next
sections details concerning these approaches.

As a second condition, we require the presence of asym-
metric hopping amplitudes within the lattice. With reference
to the left panel Fig. 2, we denote with tx and ty the horizontal
and vertical hopping parameters and we assume that tx  ty,
in a way that only horizontal hoppings processes are possible.
In the left panel of Fig. 2, this is represented by dotted (≈ty)
and full (≈tx) lines, i.e., the dotted lines mean “no hopping.”
The simulated lattice, whose dynamics will be analyzed, is
plotted in the right panel of Fig. 2, rotated for convenience by
45◦. Here we associate each well in which the spinor dipolar
BEC lies to a single link of the simulated lattice, and we
assume that the hopping of the atoms can happen only along
its diagonals, due to the requirement on tx and ty.

The crucial point, on which we are going to elaborate
later, is that in this setup with the described requirements, a
plaquette term is generated by correlated hoppings induced
by angular-momentum conservation. The geometric structure
of the plaquette, as in the left panel of Fig. 3, guarantees that
the correspondent correlated hoppings generate the plaquette
term. Additionally, by judicious choice of the four hyperfine
levels, no correlated hoppings occur at vertices, as in the left
panel of Fig. 3. We anticipate that it is not enough to have four
different colors meeting at a vertex, in order to forbid gauge
symmetry breaking processes.

For these reasons, we consider two types of periodic se-
quences for the hyperfine levels along the diagonals in the
right panel of Fig. 2:

D1 : mF = −1 → 0 → 2 → −2 → −1 → · · · ,

D2 : mF = 0 → −1 → −2 → 2 → 0 → · · · , (18)

already depicted in Fig. 2. Only four out of five possible hy-
perfine levels are used in our proposal for the spin-dependent
superlattice. However, the use of total spin 2 is necessary in
order to avoid correlated hopping processes at the vertices (see
Appendix A for more details).

We are now ready to show how the plaquette term emerges
in the ultracold atom dynamics. We are going to do it using
the two approaches mentioned in the previous paragraphs. In
the first scenario (a), the superlattice is realized by superim-
posing different state-dependent optical lattices. The plaquette
interaction emerges directly from the optical lattice structure
and the ultracold atom Hamiltonian, without the need of using
perturbation theory in some large Bose-Hubbard parameter.
For this reason, we refer to this as the nonperturbative scheme.
In the second scenario, dubbed before as approach (b), we
enforce the structure of the optical lattice by means of large
one-site one-body terms in the Hamiltonian, deriving the
plaquette terms using a perturbative expansion on a proper
gauge-invariant manifold. We refer to this case as the per-

FIG. 3. (left panel) Generic plaquette structure in the simulated
lattice with the same color appearing at opposite links. (right panel)
Generic vertex structure in the simulated lattice with all four different
link colors meeting at a vertex.
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turbative scheme, following the same lines of the existing
proposals in the literature [39,53,71].

A. Nonperturbative scheme

To generate the one-dimensional chains depicted in the left
panel of Fig. 2 we consider a state-dependent trapping poten-
tial of the form Utrap,mF (r) = Ux,mF (x) + Uy,mF (y) + Uz,mF (z).
We require that the potentials along y and z directions are
very deep to prevent hoppings along the vertical direction and
confine the particles into the two-dimensional plane. The form
of the potential along the x direction is

Ux,mF (x) = A1 cos2 [q(x + δmF )] + A2 cos2 [2q(x + δmF )],
(19)

obtained by superimposing two laser beams with different
amplitudes A1, A2 and momenta q, 2q, respectively. This is to
ensure the desired periodicity of the full optical superlattice,
which is finally obtained by summing over all the selected
internal states of Fig. 2 (see Appendix B).

We compute the optical lattice Hamiltonian by expand-
ing the field operators in terms of the Wannier functions
associated with Utrap,mF (r), as described in Sec. III for the
spin-independent case. The final result is

HNP =
∑

i,j

∑
m

T m
ij (b†

imbjm + H.c.)

+
∑

i,j
k,p

∑
m,m′
	,	′

U mm′		′
ijkp b†

imb†
k	bjm′bp	′ , (20)

and we refer to Appendix B for all the technical details of the
computation and the explicit expression of the Hamiltonian
amplitudes.

In the hopping term we considered the only nontrivial
contributions compatible with the conservation of angular
momentum. We observe that, due to the structure reported in
Fig. 2, the case in which a boson can hop from i → j within
the same sublattice involves fourth neighboring sites along the
x̂ direction. This term is safely negligible due to the small
overlap of the Wannier functions, that are highly localized
around the superlattice sites.

For the interaction terms, we require that the amplitudes
satisfy some conditions in a way to generate the plaquette
term. First, we assume the hardcore boson limit for any in-
ternal state, i.e., a strong on-site repulsion U mmmm

iiii ≡ U m
i , for

any value of m much larger than any other energy scale in
the system. We also have U mm′		′

ijkp = 0 for any combination
of the internal indices not satisfying the angular-momentum
conservation.

In light of these considerations, we can disregard the hop-
ping terms in Eq. (20), and the only relevant terms coming
from the interactions are

HNP =
∑
〈i,j〉
m,	

U m	
ij nimnj	 +

∑
i,j,k,p∈�

m,	

U m	
� b†

imb†
k	bp	bjm, (21)

i.e., nearest-neighbors extended interactions and the plaquette
terms, with amplitudes depending on the overlaps of Wannier
functions modulated by the presence of dipolar interactions.

This description guarantees that the plaquette terms are
obtained directly, without the use of perturbation theory, as

one of the most local processes allowed by conservation of
angular momentum. By “most local,” we emphasize that there
are other processes which preserve angular momentum. For
example, a particle hopping to its fourth neighbor (same color)
along the diagonal in the right panel of Fig. 3 described above.
This process is “less local” in a rather concrete sense, and
it is expected to be highly suppressed in the ultracold atom
dynamics.

B. Perturbative scheme

The purpose of this section is to show how the plaquette
terms can emerge in perturbation theory, even without con-
servation of angular momentum, if the lattice parameters are
properly tuned in a suitably defined strong-coupling regime to
enforce the superlattice structure of Fig. 2. More precisely,
in the scheme (b) we favor the occupation of certain sites
of the lattice by atoms with a certain mF by adding on-site
energies to penalize the occupation with atoms carrying un-
wanted values of mF . By doing the mapping of the system
on a Bose-Hubbard Hamiltonian, there will be on-site energy
terms of the form ≈εimb†

imbim. When the εim of the appropriate
mF are very large, then the corresponding site is occupied by
the desired species. At this point, one has to do a perturbative
expansion with large values of such on-site energies to obtain
the plaquette term. Therefore, the difference with the previous
section is that here we do perturbation theory in large values
of certain Bose-Hubbard parameters, while in the previous
scheme the conservation of the angular momentum enables
us to avoid it, and obtain the plaquette term directly. The
main point we want to make is that we retrieve the structure
of Eq. (21), but now with extra terms that we are going to
calculate explicitly.

We consider then an ultracold atom Hamiltonian that
has regular hopping terms along a one-dimensional line, a
one-body potential that promotes the superlattice structure,
and angular-momentum-preserving interactions among near-
est neighbors. By performing a perturbative expansion for
large amplitude values of the one-body potential, we can con-
struct an effective Hamiltonian that exhibits gauge invariance
at lowest orders, and contains all other angular-momentum-
conserving processes suppressed at higher orders. We also
consider the hardcore bosons limit, so that we have, at most,
one particle per site. In other words, there is a strong contact
repulsion between bosons characterized by a parameter U0

much larger than the relevant energy scales of the problem.
Explicitly, the full Hamiltonian reads H = H0 + H1 where

H1 = Hhop + Hint ≡ −tx
∑

〈i,j〉d ,m

(b†
imbjm + H.c.)

+ 1

2

∑
〈i,j〉,m,m′

V ij
mm′b

†
imb†

jm′bim′bjm, (22)

with the operators satisfying the hardcore bosons commuta-
tion relations [bim, b†

jm′ ] = δmm′δij(1 − 2b†
imbim). In addition to

these terms we add a one-body term

H0 = −h
∑
i,m

εimb†
imbim, (23)
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(a) (b)

FIG. 4. (a) The six vertices of the spin-dependent optical lattice
compatible with Gauss’s law. Filled circles represent sites occupied
with a single particle, empty circles do not contain particles. (b) Fully
flippable ground state of H0, see Eq. (23), made of disconnected
flippable plaquettes.

with h  tx,V ij
mm′ , and the function εim is such that it is equal

to 1 if m is the hyperfine state associated with site i (according
to Fig. 2) and zero otherwise. This will enforce the desired
lattice structure. Of course, this choice for h implies that we
have two large energy scales in the system (h and U0), and
the further assumption that any effect of the on-site interac-
tion is much beyond the scale we are interested in (see the
Appendix C for more details).

We pause here to establish the connection with the nonper-
turbative scheme. The sum of the two Hamiltonians (22) and
(23) does not correspond exactly to the scenario described in
Sec. IV A. In fact, the hopping terms presented in (22) imply
that particles with the same angular momentum can sit at
nearest-neighbor sites, in contrast with the situation described
in Fig. 2, for example. In turn, the Hamiltonian (23) enforces
this lattice structure through an energy penalty. This allows
the construction of the gauge theory as an effective theory
at low energies, and the quantum numbers referred to here
could be different from angular-momentum quantum num-
bers. However, the spin-dependent lattice structure described
in Sec. IV A represents a much more robust construction, as
the plaquette terms rely on angular-momentum conservation,
and not on the large magnitude of h with respect to the other
parameters of the model.

In the same spirit of Ref. [53], the idea is to prepare the
system in a gauge-invariant configuration that is a ground
state of H0. The dynamics generated by the full Hamiltonian
H = H0 + H1 is gauge invariant at low energies, and our
aim is to construct an effective Hamiltonian in perturbation
theory, using h as large scale, giving rise to the plaquette
interaction. We have then to characterize the ground states of
H0 that are compatible with the hardcore bosons constraint
and with Gauss’s law. Calling N the number of lattice sites
and Np the number of particles in the lattice, we have two
trivial cases, i.e., Np = 0 (empty lattice) and Np = N (full
lattice), for which the dynamics is completely frozen. The
other possibilities are represented by gluing different vertices
compatible with Gauss’s law, reported in Fig. 4 (left panel), to
form the full square lattice. The fully flippable ground state is
composed by alternating filled antidiagonals, as shown in the
right panel of Fig. 4.

We denote with M0 the ground-state manifold of H0. The
system must be prepared in a state |α〉 ∈ M0, and we work
in a subspace M ⊂ M0 which is gauge invariant. As h is

the largest scale in our system, we construct a low-energy
Hamiltonian H (eff) within M0, which includes the plaquette
interactions as correlated hoppings emerging from H1. Up to
third-order in perturbation theory, the effective Hamiltonian is

H (eff) = t2
x

h

∑
〈i,j〉d ,m,m′

nimnjm′ − 1

h

∑
〈i,j〉,m,m′

(
V ij

mm′
)2

nimnjm′

+ 1

h2

∑
i′,j,j′∈�

m,m′

(
V jj′

mm′
)2

V j′i′
mmnj′mni′mnjm′

+ t2
x

h2

∑
i,i′,j,j′∈�

m,m′

V ii′
mm′b†

j′mb†
jm′bi′m′bim + H.c., (24)

and we refer to Appendix C for details on the computation.
We observe that the last term in the previous equation corre-
sponds exactly to the plaquette interaction, as the effect of two
correlated hoppings and a spin-exchange interaction, deriving
from the dipolar term in H1. The pictorial virtual processes are
shown in Fig. 5.

The other terms appearing in the first line of Eq. (24)
arise from the second-order of the perturbative expansion and
are related to back-and-forth hoppings (≈t2

x /h) and double
spin-exchange (≈V 2/h) between nearest neighbors. Similarly,
the first term in the second line arises from the third-order
of the expansion and is related to spin-exchange interac-
tions (≈V 3/h2) within a given plaquette. These terms are not
present in the initial model but are diagonal on the occupation
number and, therefore, associated with products of the electric
field at different links, in the gauge theory language. As a
consequence, they are trivially gauge invariant.

C. Gauge theory interpretation

The Hamiltonians in Eqs. (21) and (24) can be interpreted
in the language of QLMs. We can identify

Uim = b†
im, U †

im = bim (25)

as the link operators of the associated LGT. In this way, the
plaquette term has the desired form, and the mapping of the
operators is such that the commutation relation of the QLMs
are satisfied, using the hardcore bosonic commutation rela-
tions. Indeed, it is immediate to verify that

[Uim,U †
jm′ ] = δijδmm′ (2nim − 1) = 2δijδmm′

(
nim − 1

2

)
, (26)

allowing for the identification of the electric-field operator in
terms of the particle number operator,

Eim ≡ nim − 1
2 . (27)

As anticipated [Uim,U †
jm′ ] = 2δijδmm′Eim. This is an explicit re-

alization of the spin-1/2 QLMs, because, due to the hardcore
boson constraint, the eigenvalues of nim ∈ {0, 1}, and there-
fore the possible values of the electric fields are Eim = ±1/2.
With this comparison, different particle sectors of the underly-
ing bosonic theory are associated with different electric-field
sectors of the related QLM. While we have always assumed
that the we were dealing with ultracold bosonic gases, the
hardcore constraint makes the translation to fermionic link
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(a) (b) (c)

FIG. 5. Virtual processes that build-up a plaquette flip, emerging at third-order in perturbation theory. (a) Spin-exchange interactions
change the internal state of the atoms in the position x, y; (b) two hoppings from x → x′ and y → y′; (c) final state after the whole process,
with the flipped plaquette.

models trivial. As a consequence, and to the best of our knowl-
edge, this constitutes the first proposal for the realization of
the fermionic link models introduced in Refs. [44,47].

With the mapping in Eq. (25), the nonperturbative Hamil-
tonian can be written in the gauge theory language as

HNP =
∑
〈i,j〉
m,	

U m	
ij EimEj	 +

∑
i,j,k,p∈�

m,	

Jm	
NPb†

im(U� + U †
�). (28)

In this Hamiltonian, the first term is the square of electric
fields of nearest-neighbor links in the target lattice, while the
second term is the desired plaquette interaction with coupling
given by Jm	

NP ≡ U m	
� . The explicit expressions for these am-

plitudes as functions of the optical superlattice components is
reported in Appendix B.

On the other hand, the effective Hamiltonian derived in
perturbation theory is

H (eff) = λ1

∑
〈i,j〉d ,m,m′

EimEjm′ −
∑

〈i,j〉,m,m′
λ

(mm′ )
2 EimEjm′

+
∑

i′,j,j′∈�
m,m′

λ
(mm′ )
3 Ei′mEjm′Ej′m −

∑
�

J (mm′ )(U� + U †
�),

(29)

with λ1, λ2, λ3, J > 0 defined in terms of the ultracold atom
lattice parameters as

λ1 = t2
x

h
, λ

(mm′ )
2 =

(
V ij

mm′
)2

h
, λ

(mm′ )
3 =

(
V jj′

mm′
)2

V j′i′
mm

h2
,

J (mm′ ) = t2
x V ii′

mm′

h2
. (30)

We observe, as already commented, that the plaquette term
is properly generated within this perturbative scheme along-
side asymmetric terms containing the square of the electric
field. The asymmetry in the sums and the different coeffi-
cients λ1, λ2, λ3 are directly related to the construction of
the spin-dependent optical lattice. The physics of the model
in Eq. (29) can be analyzed for some values of the param-
eters. We consider λ3 = 0 to discuss what happens in the
parameters space spanned by λ1, λ2. We also restrict our

analysis to the half-filling case, since in this sector there is the
fully flippable ground state of H0. Clearly, for λ1 = λ2 = 0,
our model is equivalent to the RK Hamiltonian with λ = 0.
When the two parameters are switched on, we can discuss
two limiting cases: for λ1  λ2, the Hamiltonian favors the
configurations in which the diagonals of the simulated lattice
are independently filled as in the right panel of Fig. 4. In the
opposite limit, i.e., for λ2  λ1, the spin-exchange interaction
between nearest neighbors dominates. When instead both the
parameters are such that λ1, λ2  J , this situation is exactly
the one shown in Fig. 4. This is analogous to the λ → −∞
limit of the RK model, displaying therefore a Néel state [7,42].
We point out these features to highlight the fact that, despite
the low-energy properties of Eq. (29) and the RK model are
very similar, further considerations about the specific phases
of our effective model at intermediate couplings may not be
easy to guess. In general, we may expect that the two phase
diagrams should be different, based on the different symme-
tries of Eqs. (29) and (6).

V. EXTENSIONS AND GENERALIZATIONS

In this section we discuss how to generalize our proposal to
different cases. The most important is the extension to higher
dimensions, and we discuss explicitly the d = 3 case. We
then address how the proposal can be generalized to other
geometries, with the aim to generate U(1) plaquette terms in
lower-order perturbation theory and to extend our analysis to
discrete gauge groups. Finally, we comment about the higher-
spin QLMs, closely related to the relaxation of the hardcore
bosons constraint in the underlying microscopic model.

A. Higher dimensions: The d = 3 case

The extension to d = 3 is challenging for all the schemes
that have been proposed so far in d = 2. In our proposal this
is manifest by the increment of the number of atomic species.
While the perturbative scheme will exhibit gauge-breaking
terms, we argue that, by using on the nonperturbative one
based on angular-momentum conservation, such terms are
highly suppressed relatively to the gauge-invariant dynamics.
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FIG. 6. Structure of the staples for (a) x links (red full dot), (b) y
links (orange full dot), and (c) z links (black full dot) in d = 3. As
in d = 2, we represent with blue links the target lattice. The full dots
represent bosons. The colored links in (a)–(c) are the links that the
particle can occupy after hopping in the various possible directions.
(d) Vertex structure in d = 3. The blue and red links identify the
sublattices in which the particles moving in different planes can hop.
Pi, Ni are the possible internal states of the hardcore bosons at the
given link.

To see this, we discuss how the extension to d = 3 would
work by using the same lattice and the same number of inter-
nal states employed in d = 2, i.e., four out of five hyperfine
levels of the spinor dipolar BEC. The principle that allowed
the construction of the plaquette term in d = 2 was to asso-
ciate the increase of the electric field in one of the links of the
plaquette, with the decrease of one of the other links. We can
then associate the change of two links with a single hopping
term, and the full plaquette term with a correlated hopping.
The resulting particles move in single (diagonal) lines. The
exact same principles apply in d = 3. The extra dimension
lifts the lines into planes, i.e., particles become confined in
planes.

To identify these planes, it is useful to consider each link
separately and construct the relative staples that constitute the
set of all links which are coupled to the central one, as shown
in Fig. 6. The centers of links of the lattice, where the particles
reside, can be identified with the positions (n1, n2, n3) + μ̂/2,
with μ̂ one of the Cartesian unit vectors and nν integers. Fig-
ures 6(a)–6(c) represent the cases μ = 1, 2, 3, respectively.
The links to which the particle can hop are colored the same
as the particle. It becomes clear that particles at position r =
(n1, n2, n3) + μ̂/2 can (only) hop to positions r ± μ̂/2∓̂ν̂/2
with μ �= ν. We can conclude that the planes along which the
hardcore bosons move are described by the equation r · n = c,
where n = (1, 1, 1) and c is a constant that distinguishes the
different parallel planes.

Having identified the planes, the subsequent task consists
in identifying the values of angular momentum associated
with each link in a way that allows for the generation of
plaquette terms but still forbids hoppings at the vertices, i.e.,
gauge symmetry breaking terms. The first part is constructed
in complete parallel with the d = 2: by associating the same
angular momentum to opposite links of the plaquette, we
guarantee that the plaquette terms are such that conserve angu-
lar momentum. Guaranteeing that these are the only allowed

processes is less straightforward. We refer to Fig. 6(d) to
denote a generic vertex and call Ni and Pi the internal states
of the two sublattices that are associated with two different
planes. The full lattice is constructed by reflecting this vertex
relatively to the different planes and gluing them, as repre-
sented in Fig. 7(a). The equations that must be imposed for Ni

and Pi result from requiring two types of conditions. As a first
point, differences of angular momentum across sublattices
must be unequal so that such hoppings are removed from the
dynamics. Second, within a sublattice, we must guarantee that
each link does not have any neighbor with the same angular
momentum in which it can hop to. These requirements lead
to

|Ai − Aj | �= |Bk − B	| ∀ (i, j), (k, 	) ∈ {(1, 2), (2, 3), (3, 1)}
and A, B ∈ {P, N}, (31)

Ni �= Nj, Pi �= Pj, Ni �= Pj ∀ i �= j, (32)

where the first equation comes from the first type of condition
and the other two from the second. The inspection of these
equations show that they cannot be satisfied with four levels,
see Table I and the discussion in the caption. We conclude that
to extend our scheme to d = 3 we have to increase the number
of levels from four to five levels.

We point out that, within the perturbative scheme, there
is yet the problem that, even using five levels, we have the
occurrence of gauge breaking terms of the form

HGB = − txtytz
h2

∑
x.y∈�

b†
ymbxm (33)

at the same order in perturbation theory as the plaquette term.
If these terms are really competing with the plaquettes, the
effective theory is not gauge invariant and this formulation
needs further refinement. In this scheme we need to use ad
hoc hopping terms, which by the way must have a tunneling
coefficient of opposite sign with respect to the sign of the tx,y,z
hopping parameters entering the microscopic Bose-Hubbard
Hamiltonian of Eq. (22). In principle, this can be accom-
plished by adding further lattices, one for each internal level,
suitably located to allow just the needed hoppings. These
have to be shaken lattices [72], in a way to enforce the right
sign for the hopping parameters. It is clear that this particular
extension appears to be rather involved, and its realizability
is far from being easy or conceivable. Finally, by modify-
ing properly the superlattice structure, it could be possible
to remove these third-order hoppings from the low-energy
effective theory.

However, recall that the presented perturbation theory
scheme was introduced in order to offer a quantitative
approach that shows how the plaquette term is the dominant
dynamical process of the system, and that it can also emerge
without conservation of angular momentum. If we follow
the nonperturbative scheme, i.e., the construction of plaque-
tte terms using the conservation of angular momentum, the
process in Eq. (33) would correspond to tunneling to a third
neighbor directly. In a real experimental setting, we expect
that the atomic wave function can extend, even if slightly, to
its nearest neighbors. Together with the dipolar interaction,
which promotes exchange of angular momentum, the corre-
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FIG. 7. (a) Structure of the lattice in d = 3 with four out of five internal states. For the explicit values of the levels Ni, Pi we refer to Table I.
We highlight here with different colors the sublattices in which the particles can hop, compatible with the planes identified in the main text.
(b) Graphical structure of the gauge breaking terms that appear alongside the plaquettes, associated with a particle hopping from x → y along
the blue path �.

lated hopping appears as the simplest dynamical process. We
then argue that plaquette terms, which involve only nearest
neighbors, are highly dominant over the above process in the
nonperturbative framework.

To follow the perturbative scheme, we need to use ad
hoc hopping terms, which by the way must have a tunneling
coefficient of opposite sign with respect to the sign of the tx,y,z
hopping parameters entering the microscopic Bose-Hubbard
Hamiltonian of Eq. (22). In principle, this can be accom-
plished by adding further lattices, one for each internal level,
suitably located to allow just the needed hoppings. These
have to be shaken lattices [72], in a way to enforce the right
sign for the hopping parameters. It is clear that this particular
extension appears to be rather involved, and its realizability
is far from being easy or conceivable. Finally, by modify-
ing properly the superlattice structure, it could be possible
to remove these third-order hoppings from the low-energy
effective theory.

While it would be interesting to investigate if a suitable
modification of the supperlatice would remove these terms in
perturbation theory, we believe that the key advantage of the

TABLE I. Some solutions to Eqs. (31). As commented in the
main text, it is impossible to satisfy them with the same number of
internal levels employed in d = 2. To preserve the lattice structure
and the scheme employed in the previous section, we need five out
of eight internal levels.

P1 P2 P3 N1 N2 N3

−3/2 1/2 7/2 −7/2 −5/2 7/2
−7/2 5/2 7/2 −7/2 −1/2 3/2
1/2 −3/2 7/2 −5/2 −7/2 7/2
5/2 −7/2 7/2 −1/2 −7/2 3/2

proposal is to tie the conservation of angular momentum to
the correlated hopping that generates the plaquettes and, in
that case, these processes should be irrelevant.

B. Triangular lattice

The main purpose of this section is to show that these prin-
ciples are generalizable to other geometries and, inclusively,
we can use fewer internal states to generate plaquette inter-
actions in lower order in perturbation theory. In this specific
case, we are able to use three consecutive internal states, i.e., a
spin-1 dipolar BEC, to generate plaquettes at second-order in
perturbation theory. Moreover, as we are going to discuss, the
proposal looks arguably simpler in this geometry, if compared
with the square lattice one. The phase diagram of the spin-1/2
QLMs on a triangular lattice, in the presence of the RK term,
as studied in Ref. [73].

The structure of the triangular lattice is presented in
Fig. 8(b). The particles are constrained to hop along one-
dimensional vertical lines, that we alternate with a set of
two-level systems placed on the hypotenuses of the triangles.
The sites of the spin-dependent optical lattice coincide with
the sides of the target (triangular) lattice. According to the
color code of Fig. 2, we use here the three internal states
mF = 0,±1, that can be realized by using a spin-1 dipolar
BEC. With this geometry, the plaquettes of the lattice can be
identified graphically as in Fig. 8(a). They are made of three
links and we adopt the convention U� = UzUxUy, alongside
the corresponding one for U †

�. Here the Gauss’s law takes
a similar form, with the generator of gauge transformations
being an oriented sum of the six links joining at each vertex of
the triangular lattice. Explicitly G(n) = ∑

μ[Eμ(n) − Eμ(n −
μ̂)], with μ representing the three directions x, y, and z as in
Fig. 8. By the judicious choice of the internal states for each
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FIG. 8. (a) Hopping processes generating the plaquette terms in the triangular lattice. (b) Structure of the triangular lattice using three
internal states. The color code is the same as that of Fig. 2, while the horizontal lines are the two-level systems described in the main text. The
gray dotted lines represent the d = 1 systems along which hopping processes can occur.

site, in the nonperturbative scheme plaquette terms arise as
one of the angular-momentum conserving local processes.

Alternatively, using the perturbative scheme, this can be
made precise by constructing a Hamiltonian along the same
lines discussed before. If we denote by ty the coefficient of the
hopping term along the vertical lines, in the hardcore bosons
limit the Hamiltonian reads

H� = Hhop + Hint ≡ −ty
∑

〈i,j〉lines,m

(b†
imbjm + H.c.)

+ 1

2

∑
〈i,j〉,m,m′

V ij
mm′b

†
imb†

jm′bim′bjm, (34)

where the sum over nearest neighbors in the second term is
extended to all the links of the triangular lattice, including
those hosting the two-level systems. In turn, the hopping only
occurs between neighbors along the line.

With this structure, we can proceed with perturbation
theory exactly in the same logic of the square lattice, i.e.,
introducing H0 as in Eq. (23) and take h as the largest scale
in the system. While the first-order in the expansion vanishes,
as in the square lattice, in this case the plaquette term emerges
directly at second-order in perturbation theory. The effective
Hamiltonian here contains two terms, i.e.,

H (eff)
� = − t2

y

h

∑
〈i,j〉lines,m

nim(1 − njm)

− ty
h

∑
i,j,k∈�

m,m′

V jk
mm′b

†
kmb†

jm′bkm′bim, (35)

where the first one is associated with back-and-forth hoppings
along the lines, and the second one is the plaquette term. To
make concrete the mapping with the gauge theory, we identify

the link operators on the different sides of the triangle as

Uz = b†
zm′bzm, Uy = b†

ym, Ux = bxm, (36)

making reference to the notation of Fig. 8(a). With this iden-
tification, the underlying LGT effective Hamiltonian has the
form

H (eff)
� = λ�

∑
〈i, j〉lines,m

EimEjm −
∑
�

J (mm′ )
� (U� + U †

�). (37)

As in the square lattice case, we have the generation of the
plaquette term plus an asymmetric term in the square of the
electric field, due to the optical lattice structure. This is again
different from the full RK model on the triangular lattice [73],
and the various phases of the two models are in principle
different.

C. Higher-spin quantum link models

In Sec. IV we showed how to simulate spin-1/2 QLMs
using ultracold gases of hardcore bosons, i.e., working in the
limit U0 → ∞. This allows for single- particle occupations
and makes each link of the target lattice an effective spin-1/2
variable. Here we comment about the relaxation of the hard-
core constraint on the ultracold bosons and about the quantum
simulation of higher spin QLMs.

First of all, let us consider U0 � ∞: then one could resort
to a Schrieffer-Wolff transformation [74] to find the corre-
sponding effective-field theory and the terms generated by the
finite U0, i.e., the nonhardcore condition. Out of this proce-
dure, one expects to obtain terms that can be incorporated at
low energies in the parameters of the QLM: in other words, the
QLM parameters are renormalized by U0 (as an example see
Ref. [75] for the computation in the case of the extended BH
model at half filling). Of course, this expectation is valid as
soon that U0 is varied in a way such that other phases appear.
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The implementation of higher spin QLMs is related to
the previous comment. Indeed, suppose that one is able to
allow for multiple particles occupations at different sites of
the optical lattice, e.g., that one can impose that in each site
there may be at most a certain number of bosons of the same
level. By imposing that the number of particles within the
lattice is fixed, the above-mentioned procedure could be used
to obtain the simulation of higher spin QLMs. However, it is
not a finite U0 the key ingredient to have such models, but
rather higher-body terms to fix the maximum occupation of
the lattice sites.

VI. CONCLUSIONS

In this paper we presented a proposal for the quan-
tum simulation of Abelian spin-1/2 quantum link models
(QLMs) using spinor dipolar Bose-Einstein condensates
(BECs) loaded in spin-dependent optical lattices. We showed
that plaquette interactions can be obtained, and are directly
related to correlated hoppings of bosons within a spin-
dependent lattice.

To derive the effective theory corresponding to a gauge
theory, we considered two different approaches. The first
one, that we referred to as the nonperturbative scheme, does
not employ perturbation theory as the analytical tool to de-
rive the plaquette interaction. We propose to load a spin-2
dipolar BECs in a spin-dependent superlattice obtained by
the superimposition of several spin-dependent lattices. By
requiring angular-momentum conservation and expanding in
the correct basis of lattice bosonic operators, we derived an
optical superlattice Hamiltonian containing plaquette inter-
actions as one of the local processes compatible with the
symmetries of the system. In this approach, it is not needed to
do a perturbative expansion in large parameters of the Bose-
Hubbard Hamiltonian describing the system. The plaquette
term H� is straightforwardly obtained, and the corresponding
Hamiltonian (21) features the H� term and a density-density
interaction, having coefficients which can be, to a certain
extent, tuned. A study of the phase diagram of Eq. (21) when
the its parameters are varied would be, in our opinion, very
interesting.

In the second scheme, that we called the perturbative
scheme, we considered an extended Bose-Hubbard (BH)
model with anisotropic hoppings and isotropic nearest neigh-
bors interactions, with a further site-dependent energy penalty
term to enforce the lattice structure. By doing perturbation
theory using the on-site energies as large parameters, we
derived an effective Hamiltonian, whose gauge theoretical
interpretation includes the plaquette interactions at third-order
in perturbation theory. This process is associated with corre-
lated hoppings of bosons within elementary squares, with a
subsequent spin-dependent interaction to make their internal
states compatible with the spin-lattice structure. We notice
that in this second, perturbative, scheme, extra terms not
present in Eq. (21) are, at variance, present.

The use of angular-momentum conservation in scattering
processes to ensure gauge invariance was used in Ref. [53].
In that case, it guarantees that the gauge-matter interaction
satisfies gauge invariance. By other side, plaquette terms are
still obtained perturbatively. In contrast, our target model

does not include matter and uses the conservation of angular
momentum as a mean to obtain robust plaquette terms of
the underlying pure gauge theory. The net result is that we
must use at least four internal states of a spinor dipolar gas,
moving in one-dimensional chains coupled by the dipolar in-
teractions. Without angular-momentum conservation, on-site
energies superimposed via additional superlattices are needed
to produce the target lattice. Conversely, by relying entirely on
angular-momentum conservation and building the superlattice
with a superimposition of spin-dependent lattices, we ob-
tained the plaquette interactions without any large parameter’s
expansion, in parallel with gauge-matter coupling obtained
in Ref. [53]. We think, for these reasons, that it is worth
ascertaining whether this can be concretely an advantage
to simulate QLMs with respect to the perturbative scheme,
where the requirements related to perturbative arguments on
the experimental control of the atoms are absent.

We further discussed possible extensions of our proposal
to the triangular lattice, showing that it is possible to lower
the perturbative order at which the plaquette terms appear,
with the proper choice of the spin-dependent lattice, and to
higher spin QLMs, allowing for multiple site occupations with
a fixed number of bosons. In this last case it is not trivial
to generalize our proposal, since we get nonlocal effective
interactions in the perturbative expansions, and the plaquette
term is coupled to the electric field. Finally, our proposal can
be generalized to the three-dimensional case by increasing the
number of internal states employed in d = 2: with respect to
the four levels used in d = 2, we need to use five internal
states in d = 3. This is done by identifying the planes in which
the particles move [44] and derive a set of equations for the
internal states of the links in the third spatial directions. These
equations can be satisfied at the cost of introducing extra
atomic species. In the perturbative scheme, gauge breaking
terms emerge, which should be removed by adding ad hoc
terms. These complications show, in our particular example,
the difficulties of extending a scheme from d = 2 to d = 3.

To put our results in the wider context of quantum simu-
lations of higher-dimensional lattice gauge theories (LGTs),
we observe that these last are currently challenging to realize
in the realm of quantum simulators, even if there have been a
lot of recent technical progresses in the field [11,12,15,76].
This is mainly due to local symmetry of the model, and
its direct implementation in controllable physical systems.
Our proposal employs many-body interaction symmetries to
achieve this target. The main advantage of our scheme is to
relate the local conservation of angular momentum to the
gauge symmetric plaquette terms. Even in the perturbative
scheme, there is advantage coming from the order at which
the plaquette terms come out with respect to Ref. [53], where
it appears at fourth-order, here it shows up at third-order,
involving only two correlated hoppings between bosons. A
disadvantage is provided by the complications to generalize
the scheme to d = 3, as discussed, anyway noticing that—to
the best of our knowledge—the extension to d = 3 is an issue
for all the schemes present in literature so far.

There are open questions that are worth pursuing. First
of all, it would be interesting to understand the role of
the additional terms coming from the perturbative expan-
sion regarding the phase diagram of the model. In the gauge
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theoretical interpretation they are anisotropic in the elec-
tric field and may give rise to a different phase diagram if
compared with the Roksha-Kivelson (RK) Hamiltonian [58],
based on symmetry arguments. From the condensed-matter
perspective, due to the extended nature of the Bose-Hubbard
Hamiltonian, they could be related to supersolid phases
[64–66]. Another important point regards the inclusion of
matter. There is no straightforward way of doing this within
this proposal but may be possible through the inclusion of
ancillary particles. This difficulty is also present in the pro-
posal of Ref. [55], where it is proposed a way to include static
charges, but not dynamical ones. In the present proposal, static
charges can be easily included by violating Gauss’s law at the
desired sites in the initial state. In the proposal of Ref. [53], in-
stead, they include dynamical matter by increasing the number
of fermionic species, in addition to the ancillary ones. Finally,
it would be interesting to generalize the presented scheme to
non-Abelian gauge theories. However, the advantage gained
in encoding plaquettes in correlated hopping is quickly lost
by the increasing complicated substructure of the superlattice
required by non-Abelian symmetries. A more reasonable goal
may consist on considering discrete groups, in order to ex-
plore different physics and, possibly, simplify the superlattice
structure.
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APPENDIX A: DETERMINATION OF THE NUMBER
OF SPECIES

We motivate here the choice of four internal states for our
proposal on the square lattice. To do this, we show what are
the inconsistencies when less internal states are considered in
the construction of the spin-dependent optical lattice.

Let us first discuss the case of Ns = 2 internal states (left
panel of Fig. 9). We consider two diagonals of the lattice, with
generic internal levels A, B and A′, B′ that can assume only
two integer values. If we want to generate the plaquette term
through angular-momentum conservation, we have to impose
the condition

�1 = B′ − A′, �2 = B − A ⇒ �1 + �2 = 0. (A1)

These conditions will inevitably lead to unwanted hoppings at
the vertices (see the green square in the left panel of Fig. 9)
since they break gauge symmetry.

If we try to repeat the same reasoning with Ns = 3 internal
levels (right panel of Fig. 9), we can solve this inconsistency in
the first vertex (red square in Fig. 9) by choosing C and C′ such
that �1 + �2 = 0, and at the same time �3 + �2 �= 0, with
�3 = C′ − C. We have then two different types of plaquettes
in this scheme. However, inconsistencies arise again when we
go to the subsequent vertex (green square in the right panel
of Fig. 9), and try to combine A, A′ with X , X ′ that could be

either B (B′) or C (C′) internal states. Also in this case, for any
X , X ′ there are unwanted hopping processes at this vertex.

The solution to this is to use four internal states, but this is
still not enough. To avoid hopping at the vertices throughout
all the lattice, there must be two internal states m, m′ such
that their difference is |m − m′| > 1, as in our proposal of
Fig. 2. The minimal requirement is then to use four out of
five hyperfine levels, as developed in the main text.

APPENDIX B: DERIVATION OF THE HAMILTONIAN (21)

We show here the computations leading to the Hamiltonian
presented in Eq. (21). The initial point is the solution of
the single-particle Hamiltonian H0 with the spin-dependent
optical potential Utrap,mF (r), defined in Sec. IV A. In this
Appendix we fix δmF = n(mF )π/4q, with n(mF ) such that
n(−2) = 0, n(−1) = 1, n(0) = 2, n(2) = 3, to reproduce the
superlattice structure of Fig. 10 (right panel). With this choice,
the lattice spacing of the optical superlattice is aSL = π/4q,
with q = 2π/λL the laser wave vector.

Due to the periodicity of the potential, we can apply the
Bloch theorem and obtain the eigenfunctions of the single-
particle problem, which will be factorized in the spatial
components. If we assume that the particle can be in any of
the considered internal states, the single-particle Hamiltonian
density H(r) looks like

H(r) =
∑

mF ∈{−2,−1,0,2}
φ†

mF
(r)

[
− h̄2∇2

2M
+ Utrap,mF (r)

]
φmF (r)

≡ �†(r)K�(r), (B1)

where we defined the column vector �(r) =
(φ−2(r), φ−1(r), φ0(r), φ2(r))T and a block-diagonal matrix
K. This can be seen as a single-particle problem with four
levels, and it is enough to analyze it along the x̂ direction,
due to the separability of the potential. The lowest energy
bands of Eq. (19) are shown in Fig. 10 (left panel). Since
we assumed that all the potentials along x̂ are the same apart
from a shift, we see that the energies of the first four bands
are equal. For the same reason, the Bloch functions u(mF )

k (r)

FIG. 9. Lattice structure with Ns = 2 (left panel) and Ns = 3
(right panel) internal states. The quantum numbers are denoted re-
spectively with A, B, and C. The primed letters denote a different
permutations of the internal states along the two lattice diagonals.
The green (red) square encloses the vertices that are problematic
(correct) in the spirit of our proposal.
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FIG. 10. (left panel) Band structure of Utrap,mF (x) for a fixed internal level and in units of the recoil energy Er = h̄2q2/2M. (right panel)
Superimposition of all the potential along the x axis to generate the periodic structure in Fig. 2, with lattice spacing given by aSL (gray arrow).
In both these plots we fixed A1 = 32, A2 = −8, and q = π .

will be the same for each internal states, but shifted by the
superlattice spacing aSL.

Summarizing we have

uk(r) = (
u(−2)

k (r), u(−1)
k (r + aSLx̂), u(0)

k (r + 2aSLx̂), u(2)
k

(r + 3aSLx̂)
)T

,

E0,k =
∑

mF ∈{−2,−1,0,2}
ε

(mF )
0,k . (B2)

Given this form of the Bloch functions, the procedure to derive
the optical lattice Hamiltonian is the standard one [25], with
the difference that we have to employ the Wannier functions
in the expansion of the field operator �(r), i.e.,

w0,mF (r − ri) ≡ 1

N
∑

k

e−ik·(r−ri−naSL x̂)u(mF )
k [r + n(mF )aSLx̂]

⇒ φm(r) =
∑

i

w0,mF (r − ri)bim. (B3)

By inserting this expansion in Eqs. (11) and (16) we end up in
Eq. (20) with amplitudes

T m
ij =

∫
drdr′ ∑

ν,ν ′

∑
	,k

Wm		m
ikkj (r, r′)F νν ′

m		mQνν ′ (r − r′),

(B4)

U mm′		′
ijkp =

∫
drdr′ ∑

ν,ν ′
Wm	m′	′

ijkp (r, r′)F νν ′
mm′		′Qνν ′ (r − r′),

(B5)

where we defined

Wm	m′	′
ikjp (r, r′) ≡ w∗

0,m(r − ri )w
∗
0,	(r′ − rk )w0,m′ (r − r j )

× w0,	′ (r′ − rp), (B6)

F νν ′
mm′		′ ≡ [ fν]mm′ [ fν ′]		′ . (B7)

The plaquette terms are directly contained in Eq. (B5) as one
of the most local processes in the optical superlattice, leading

to a nontrivial contribution to the Hamiltonian without the
need of using perturbation theory.

Indeed, by looking at the target lattice in Fig. 2 (right
panel), the values of the internal states on the opposite links
composing the plaquettes are the same. This means to con-
sider m = 	′ and 	 = m′ in Eq. (B5). Moreover, we can define
R ≡ r − r′ and simplify the structure of F · Q as

∑
ν,ν ′

[ fν]m	[ fν ′]	m(δνν ′ − 3R̂ν R̂ν ′ )

= fm	 · f	m − 3[fm	 · R̂][f	m · R̂], (B8)

with the spatial scalar product defined as A · B ≡ ∑
ν AνBν .

We have therefore to evaluate how these contributions extend
throughout the lattice.

On the basis of the considered optical superlattice struc-
ture, we argue the most significant extended terms arise when
the lattice sites are such that 〈i, j〉 and 〈k, p〉, i.e., when the pla-
quette process is considered, for two reasons. The first one is
angular-momentum conservation: the only correlated hopping
processes emerging in the optical superlattice are generating
the plaquettes, the others being forbidden as explained in
the main text. The second reason is based on the localized
feature of Wannier’s functions, which is preserved even in
the presence of the dipolar potential. Actually, the effective
dipole-dipole interactions in optical lattices are modified with
respect to the continuum ones. The modifications related to
the overlap of the Wannier’s functions, i.e., the computation
of the integral in Eq. (B5), affect the exchange channel: the
power-law decay of the dipolar interaction gets modulated by
an exponential decay for short (or moderate) separations on
the optical lattice [77].

APPENDIX C: PERTURBATION THEORY
CONTRIBUTIONS

We present here the computations in perturbation theory
that give rise to the effective model in Eq. (24). The starting
point is the full Hamiltonian H = H1 + H0, with h  tx,V ij

mm′ .
Making reference to the definition of M0 given in the main
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∼

2

ℎ
∼ 0 ∼

2

ℎ

(a) (b) (c)

FIG. 11. Virtual processes at second order in perturbation theory.
In all the panels, light blue lines are representing the target lattice,
while gray lines the optical one, according to the convention of the
main text. (a) Back-and-forth hopping process x → x′ → x, gener-
ating the term in Eq. (C3). This process can happen if x is occupied
and x′ is empty, independently of the other two sites of the plaquette.
(b), (c) Processes associated with the HintKHint contribution of
Eq. (C3). The only trivial situation is when all of the nearest neigh-
bors of x are empty.

text, we define respectively the projector on M0 and the
restricted inverse of (H0 − E0) as

P0 =
∑

α∈M0

|α〉〈α|, K =
∑

α/∈M0

|α〉〈α|
E0(α) − E0(0)

, (C1)

where E0 is the eigenvalue of H0, and proceed with the com-
putations order by order [78]. At first-order the contribution is
H (eff)

1 = P0H1P0, and it is always zero. This is because, both
for the hopping and interaction term, with a single application
of H1 we move out of the ground-state manifold. Therefore,
once P0 acts again, the projection gives zero. At second-order
we have H (eff)

2 = −P0H1KH1P0, and the two nontrivial con-
tributions are

P0HhopKHhopP0 = − t2
x

h

∑
〈x,x′〉d ,m,m′

nxm(1 − nx′m′ ), (C2)

P0HintKHintP0 = −1

h

∑
〈x,y〉,m,m′

(
V xy

mm′
)2

nxmnym′ . (C3)

The graphical representation of the virtual processes asso-
ciated with these two terms is shown in Fig. 11. Concerning
the pure hopping contribution of the first equation, it is associ-
ated with back-and-forth hopping processes happening along
the diagonals; for the interaction part, in the second line, we
have that two generic nearest neighbors in the optical lattice
interact mutually. These are the only processes that do not
vanish when projected back to the ground-state manifold M0.

(a) (b) (c)

FIG. 12. Virtual processes due to three spin-exchange inter-
actions at third-order in perturbation theory. We have (a) the
spin-exchange between y − y′, followed by (b) those involving y′ −
x′ and again (c) y′ − y. The final state here coincides with the initial
one. This process can happen if all the three involved sites contain the
bosons in the proper initial states, according to the lattice structure.
In all the panels, light blue lines represent the target lattice, while
gray lines represent the optical lattice, according to the convention of
the main text.

At third order we get two nontrivial contribution, including
the plaquette term already commented in the main text. The
structure of the effective Hamiltonian is

H (eff)
3 =P0H1KH1KH1P0 − 1

2 {P0H1K2H1P0,P0H1P0}
≡ H̃3 + H̃2, (C4)

where H̃2 is a combination of lower order terms, and H̃3 is the
real third-order contribution. Due to the fact that

H̃2 = − 1
2

{
P0H1K2H1, H (eff)

1

}
(C5)

and since H (eff)
1 = 0, this term vanishes. We are left only with

H̃3, and among the various contributions the only nontrivial
ones are P0HintKHhopKHhopP0, generating the plaquette term,
and P0HintKHintKHintP0, due to the spin-exchange interac-
tions within a given plaquette. We make reference to Fig. 12
for the representation of the virtual process in this last case,
which is constrained to have the sites x′, y, y′ in the plaque-
ttes occupied by particles compatible with the spin-dependent
lattice structure. The total third-order contribution is therefore

H̃3 = t2
x

h2

∑
x,x′,y,y′∈�

m,m′

V xx′
mm′b†

y′mb†
ym′bx′m′bxm + H.c.

+ 1

h2

∑
x′,y,y′∈�

m,m′

(V yy′
mm′ )2V y′x′

mm ny′mnx′mnym′ . (C6)
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