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Maximally entangled Rydberg-atom pairs via Landau-Zener sweeps

Dhiya Varghese ,1 Sebastian Wüster,2 Weibin Li ,3 and Rejish Nath 1

1Indian Institute of Science Education and Research, Pune- 411008, India
2Department of Physics, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India

3School of Physics and Astronomy, University of Nottingham, NG7 2R8, United Kingdom

(Received 15 February 2023; accepted 30 March 2023; published 10 April 2023)

We analyze the formation of maximally entangled Rydberg atom pairs subjected to Landau-Zener sweeps
of the atom-light detuning. Though the populations reach a steady value at longer times, the phases evolve
continuously, leading to periodic oscillations in the entanglement entropy. The local unitary equivalence between
the obtained maximally entangled states and the Bell states is verified by computing the polynomial invariants.
Finally, we study the effect of spontaneous emission from the Rydberg state of rubidium atoms on the correlation
dynamics and show that the oscillatory dynamics persists for high-lying Rydberg states. Our study may offer
ways to generate maximally entangled states, quantum gates, and exotic quantum matter in arrays of Rydberg
atoms through Landau Zener sweeps.

DOI: 10.1103/PhysRevA.107.043311

I. INTRODUCTION

Entanglement is an essential resource in quantum tech-
nology [1–5]. Controlled unitary processes or quantum gates
[6–12], dissipative state engineering [13–16], or a combina-
tion of both [17] are used to generate entanglement between
two qubits. Maximally entangled qubit pairs including the
Bell states are realized in different physical platforms such
as ions [11,16–18], atom-photon hybrid systems [19], su-
perconducting qubits [20–23], Josephson phase qubits [24],
and Rydberg atoms [25,26]. The latter are at the forefront of
studies in quantum information processing and many-body
quantum simulations because of the prodigious Rydberg-
Rydberg interactions (RRIs) and the versatility in engineering
them [27–30].

A Landau-Zener (LZ) transition between two energy levels
occurs when a two-level system is driven through an avoided
level crossing [31–33]. In that case, the LZ formula gives
the transition probability between the instantaneous energy
eigenstates or the adiabatic states,

PLZ = exp

(
−π

�2

2v

)
, (1)

where � is the energy gap at the avoided crossing, and v is the
rate at which the avoided crossing is passed. For a slow quench
(v → 0), the population transfer is minimal (PLZ → 0), while
for a sudden sweep (v → ∞), a complete transition (PLZ →
1) occurs. The LZ transition according to Eq. (1) has been
verified using Rydberg atoms [34–40]. An interacting pair
of Rydberg atoms can emulate different LZ models [41,42]
and is relevant in implementing quantum gates [43–45] and
phenomena like population trapping [46]. Crucially, LZ tran-
sitions can also generate entanglement [47–50].

In this paper, we show that a maximally entangled Ryd-
berg atom pair can be created by an LZ sweep from initially
unentangled atoms for any nonzero RRIs. It is in stark con-
trast to the Rydberg blockade, where the maximally entangled

Rydberg atom pair is created via strong RRIs. We characterize
the entanglement between the atoms by the entanglement en-
tropy for the coherent dynamics and quantum discord for the
dissipative dynamics. Depending on the sweep rates and RRI
strengths, various maximally entangled states are formed, and
for a given set of parameters, the maximally entangled states
change periodically in time. They are local unitary equivalent
to the Bell states, and we explicitly verify this by calculating
corresponding polynomial invariants for the two-qubit states
[51–54]. Finally, considering spontaneous emission, we show
that the maximally entangled states via LZ sweeps can be
realized using high-level rubidium Rydberg states.

The paper is structured as follows. In Sec. II, we discuss
the LZ dynamics in a single two-level atom. A pair of Rydberg
atoms under LZ sweep is studied in Sec. III. In particular, the
polynomial local unitary invariants are provided in Sec. III A.
The coherent dynamics and generation of maximally entan-
gled qubit states are discussed in Sec. III B. The effect of
spontaneous emission from the Rydberg state is discussed in
Sec. III C. Finally, we summarize and provide an outlook in
Sec. IV.

II. SINGLE ATOM

First, we briefly discuss the LZ dynamics in a single two-
level atom. The Hamiltonian describing a single two-level
atom with a time-dependent detuning is

Ĥ (t ) = −�(t )σ̂rr + �

2
σ̂x, (2)

where σ̂ab = |a〉〈b| with a, b ∈ {g, r} includes both tran-
sition and projection operators, σ̂x = σ̂rg + σ̂gr , � is the
constant Rabi frequency, and �(t ) = vt is the time-
dependent detuning with sweep rate v. The states {|g〉 , |r〉}
form the diabatic basis, whereas the adiabatic basis con-
sists of the instantaneous eigenstates of the Hamiltonian,
Ĥ (t ) |φ±(t )〉 = E±(t ) |φ±(t )〉. The time-dependent energy
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FIG. 1. (a) Instantaneous energy eigenvalues resulting from lin-
ear variation of detuning in (b). The dashed lines in (a) show the
diabatic energy levels. Far from the avoided level crossing, the dia-
batic and adiabatic levels merge. Across the avoided level crossing
the LZ transition takes place.

eigenvalues are E±(t ) = ±�
2 β∓(t ) with β±(t ) = [�̄(t ) ±

�(t )]/� and �̄(t ) =
√

�(t )2 + �2. The adiabatic and dia-
batic bases are related to each other by the time-dependent
coefficients β±(t ) via

|φ±(t )〉 =
√

�

2�̄
(±

√
β± |g〉 +

√
β∓ |r〉). (3)

Far away from the avoided level crossings (|�| � �), the
adiabatic states coincide with the diabatic ones [see Fig. 1(a)].

Assuming the atom is initially in the lowest state |φ−〉 ∼
|g〉, the transition probability to the excited state |φ+(t )〉 after
a sweep across the avoided level crossing at � = 0 is given
by Eq. (1). The exact dynamics of the system is obtained by
numerically solving the Schrödinger equation: i∂/∂t |ψ (t )〉 =
Ĥ |ψ (t )〉. For a small enough sweeping rate, population from
|g〉 adiabatically transfer to |r〉 [see Fig. 2(a)] and as v

increases the population transfer decreases [see Fig. 2(b)].
Equation (1) agrees well with the exact results. Writing
|ψ (t )〉 = ag(t ) |g〉 + ar (t ) exp(iφ) |r〉, the relative phase φ be-
tween |g〉 and |r〉 starts to vary as �(t ) approaches the avoided
crossing. After the LZ occurs, φ evolves continuously in time
[see Figs. 2(c) and 2(d)]. It indicates that even though the
populations in |g〉 and |r〉 acquire a steady value as t → ∞, the
quantum state evolves through the relative phase φ. The time
evolution of the quantum state is more apparent in the Bloch
sphere representation shown in Figs. 2(e) and 2(f). For small
v, the Bloch vector moves from one hemisphere to the other
and eventually undergoes precession around a particular state
[see Fig. 2(e)]. In contrast, for sufficiently large v, it remains
in the same hemisphere [see Fig. 2(f)]. As we discuss below,
for two qubits, the time dependence of the relative phases has
far-reaching consequences.

FIG. 2. The population and phase dynamics in a two-level atom
under an LZ sweep of the detuning for v = 0.5�2 and v = 5�2. (a
and b) Population dynamics where Pg = |〈g|ψ (t )〉|2 = |ag|2 and Pr =
|〈r|ψ (t )〉|2 = |ar |2. (c and d) Dynamics of the relative phase φ. (e and
f) Trajectory of the Bloch vector on the unit sphere. The horizontal
dashed lines in (a) and (b) show the analytical results in Eq. (1).

III. TWO ATOMS

The Hamiltonian of a pair of two Rydberg atoms is

Ĥ (t ) = −h̄�(t )
2∑

i=1

σ̂ i
rr + h̄�

2

2∑
i=1

σ̂ i
x + V0σ̂

1
rr σ̂

2
rr, (4)

where V0 is the RRI strength. The diabatic states of the pair
of atoms are {|gg〉 , |s〉 , |rr〉}, where |s〉 = (|gr〉 + |rg〉)/

√
2.

The system possesses three avoided crossings as shown in
Fig. 3 as a function of �, separated by V0/2 [41,42]. It can
emulate various three-level LZ models [55]. Up to a global
phase factor, we can write the general state as

|ψ (t )〉 = agg|gg〉 + as exp(iθ1)|s〉 + arr exp(iθ2)|rr〉, (5)

where θ1,2 are the time-dependent relative phases. We quantify
the entanglement between the two atoms using the bipar-
tite entanglement entropy SA(t ) = −Tr[ρ̂A(t ) log2 ρ̂A(t )] =
−∑2

i=1 λi(t ) log2 λi(t ), where ρ̂A is the reduced density ma-
trix of the first atom with its eigenvalues λ1 = (1 − x)/2
and λ2 = (1 + x)/2, where x = √

A + B cos(2θ1 − θ2) with
positive quantities A = (a2

gg − a2
rr )2 + 2a2

s (a2
gg + a2

rr ) and B =
4agga2

s arr . The eigenvalues λi, and hence SA, depend only on
the angle 2θ1 − θ2 when the coefficients agg, as and arr are
fixed. In that case, the entanglement between the atoms in
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FIG. 3. The energy eigenvalues of the two-atom Hamiltonian
Eq. (4) for sufficiently large V0 as a function of the detuning �. The
dashed lines show the diabatic energy levels and solid lines show
the adiabatic energy levels. Far away from the avoided crossings the
diabatic and adiabatic energy levels merge.

the state |ψ (t )〉 is maximized when 2θ1 − θ2 = cos−1(−A/B).
The maximum value depends on V0 and v. When A = B, the
maximum of SA becomes one when 2θ1 − θ2 = ±(2n + 1)π ,
where n = 0, 1, 2, ....

A. Polynomial local unitary invariants

We are interested in the maximally entangled states of a
pair of Rydberg atoms formed by LZ sweeps and verify-
ing their unitary equivalence to the Bell states. The unitary
equivalence between two-qubit states demands a set of 12
polynomial local unitary invariants [51–53] and the determi-
nant of a matrix T12 defined below [54] to be the same. Writing
the two-qubit density matrix as

ρ = 1

22
I⊗2 +

2∑
j=1

3∑
α=1

T α
j σ ( j)

α +
3∑

α1,α2=1

T α1α2
12 σ (1)

α1
σ (2)

α2
, (6)

where σ1,2,3 are the Pauli matrices, I is the identity ma-
trix, σ (1)

α = σα ⊗ I , σ (2)
α = I ⊗ σα , Tj is a three-dimensional

real vector, and T α1α2
12 = 1

22 Tr(ρσ (1)
α1

σ (2)
α2

) forms a 3 × 3 ma-
trix. Two states ρ and ρ ′ are local unitary equivalent if
and only if there are SO(3) operators O1 and O2 such
that

T ′
1 = O1T1, T ′

2 = O2T2 (7)

T ′
12 = (O1 ⊗ O2)T12 = O1T12OT

2 , (8)

where T denotes the transpose of a matrix. It has
been shown that two two-qubit states are local unitary
equivalent if and only if they have the same values
for the following 13 invariants [53]: the inner prod-
ucts 〈T1, (T12T T

12)mT1〉, 〈T2, (T T
12T12)mT2〉, 〈T1, (T12T T

12)mT12T2〉,
Tr(T12T T

12)m′
, and det T12 with the integers m = 0, 1, 2 and

m′ = 1, 2, 3.

FIG. 4. LZ dynamics in a pair of Rydberg atoms for weak RRIs,
v = 2.42�2 and �(ti ) = −100�, where ti is the initial time. (a) The
dynamics of population in the diabatic states for V0 = 0.5�, and the
solid line in (b) shows the bipartite entanglement entropy during the
same dynamics as in (a). The horizontal dashed lines in (a) show
the analytical results and the inset shows the evolution of the angle
2θ1 − θ2. The three instants at which SA ∼ 1 for V0 = 0.5� are
marked by t1,2,3. Increasing to V0 = 2� (dashed line), the frequency
of oscillation of SA is augmented by four times, indicating its linear
dependence on V0.

B. Coherent dynamics

A detailed analysis of the population dynamics subjected
to LZ sweeps in a pair of Rydberg atoms can be found in
Ref. [42]. Here, we explore the phase and correlation dy-
namics of the system initially prepared in |gg〉 after passing
through all three avoided level crossings. The LZ sweep builds
quantum correlations between the atoms that are initially
uncorrelated. For adiabatic evolution (v → 0), the system
eventually arrives at the product state |rr〉. Thus, the corre-
lations which are built across the avoided crossings are lost at
longer times. In the limit v → ∞, the system remains in |gg〉
and is again uncorrelated at longer times. Interesting scenar-
ios emerge for intermediate values of v, where SA oscillates
periodically.

For sufficiently small RRIs, after passing through all three
avoided crossings, the populations are given by Pgg(t →
∞) = P2

LZ and Prr (t → ∞) = (1 − QLZ)2, where QLZ =
PLZ exp(−π�2V0/4v3/2) [42], shown by dashed horizontal
lines in Fig. 4(a). Even though the populations eventually
attain a steady value, the phase 2θ1 − θ2 evolves continuously
over time as shown in the inset of Fig. 4(a). The latter leads
to periodic oscillations in SA [see Fig. 4(b)]. Interestingly,
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FIG. 5. SMax
A and SAmp

A as a function of V0 and v. The darker
region in (a) indicates the emergence of maximally entangled state
and that of (b) indicates a complete oscillation of SA between 0
and 1.

for the chosen parameters (V0 = 0.5� and v = 2.42�2), SA

attains a maximum value SMax
A ∼ 1, i.e., the Rydberg atoms

are maximally entangled and a minimum value ∼0. Thus, the
two atoms periodically entangle and disentangle over time,
coinciding with the beating pattern in |s〉 state. We observe
that the oscillation frequency of SA depends (linearly) only
on V0 [see Fig. 4(b)], whereas the amplitude SAmp

A of oscil-
lations depends nontrivially on V0 and v. In Fig. 5, we show
SMax

A and SAmp
A , which capture the dynamics of SA(t ) entirely.

Strikingly, as seen in Fig. 5(a), a maximally entangled state
is possible to realize for any nonzero V0 with an intermediate
range of v. Thus, the LZ sweep can create maximally entan-
gled states even for relatively weak RRIs, unlike the Rydberg
blockade. It is also evident from Fig. 5 that we can indepen-
dently tune the amplitude and maximum of SA(t ) by varying
either V0 or v. For V 2

0 /v 
 1, one can show that SA periodi-
cally becomes maximum at tn+1 � [(2θ1 − θ2)|t=V0/v

+ (2n +
1)π ]/V0 + V0/v, where the first term is computed at the third
avoided crossing, which occurs at t = V0/v.

Interestingly, every time the system periodically attains
SMax

A = 1 as in Fig. 4(b) for V0 = 0.5�, it is a different quan-

TABLE I. Polynomial local unitary invariants calculated for the
maximally entangled states in Eqs. (9)–(11) and Bell states.

Quantum state Tr(T12T T
12) Tr(T12T T

12)2 Tr(T12T T
12)3 det T12

ψ (t1) 0.187499 0.0117186 0.000732411 −0.0156249
ψ (t2) 0.187498 0.0117185 0.000732399 −0.0156248
ψ (t3) 0.187498 0.0117185 0.000732397 −0.0156247
Bell states 0.1875 0.0117188 0.000732422 −0.015625

tum state. The maximally entangled states seen at the three
instants in Fig. 4(b) for V0 = 0.5� are

|ψ (t1)〉 �
⎡
⎣ 0.54408

0.64031 exp(i 3.94928)
0.54219 exp(i 4.75697)

⎤
⎦ (9)

|ψ (t2)〉 �
⎡
⎣ 0.52322

0.6748 exp(i 1.40484)
0.52046 exp(i 5.95035)

⎤
⎦ (10)

|ψ (t3)〉 �
⎡
⎣ 0.530073

0.66414 exp(i 3.76878)
0.52719 exp(i 4.39459)

⎤
⎦. (11)

Calculating the 13 invariants for the above states, only four
are nonzero for the maximally entangled states, including the
Bell states. In Table I, we show those for the above maximally
entangled states, demonstrating that they are identical to those
of Bell states. This confirms the local unitary equivalence
between the Bell states and the maximally entangled states
in Eqs. (9)–(11).

C. Dissipative dynamics

To investigate the effect of spontaneous emission from the
Rydberg state on the population and correlation dynamics, we
solve the master equation for the two atom density matrix
[56],

∂t ρ̂ = −i[Ĥ (t ), ρ̂] +L[ρ̂], (12)

with the Lindblad super operator given by

L[ρ̂] =
2∑

i=1

Ĉiρ̂Ĉ†
i − 1

2

∑
i

(Ĉ†
i Ĉiρ̂ + ρ̂Ĉ†

i Ĉi ) (13)

where the decay operator Ĉi = √
�σ̂ i

gr with � as the spon-
taneous decay rate of the Rydberg state |r〉. The dissipative
mechanism drives the system eventually into a mixed state.
For a mixed state, the entanglement entropy SA is no longer
a good measure of quantum correlations since it fails to dis-
tinguish between classical and quantum correlations, and the
quantum discordD(A : B) (see the Appendix) is used [57,58].
For � = 0, we getD(A : B) = SA.

The population dynamics for different rubidium Rydberg
states is shown in Fig. 6. Note that the interaction strength
V0 can be varied via interatom separation or n. For small
n [see Figs. 6(a) and 6(d) for n = 23], the decay rate is
significant, and the system attains the steady state (ρgg =
1) relatively quickly. For larger n, the decay rate from
the Rydberg state is low, and the reminiscence of coher-
ent dynamics becomes evident at shorter times. Numerically,
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FIG. 6. LZ dynamics in a pair of rubidium Rydberg states of nS1/2 for v = 2.42�2 and �(ti ) = −100�, where ti is the initial time. The
blue, red, and green show the populations in |gg〉, |s〉, and |rr〉 states, respectively. Along each row, the principal quantum number n changes
and hence the decay rate �. The larger n the smaller the decay rates �. Taking � = 1 MHz, the decay rates are � = 0.1�, 0.007759�, and
0.00087� for n = 23, 50, and 100, respectively. The first row is for V0 = 0.5� and the second row is for V0 = 2�.

we see that ρgg(t → ∞) ∝ 1 − exp(−c1�t ), ρs(t → ∞) ∝
exp(−c2�t ) and ρrr (t → ∞) ∝ exp(−c3�t ), where the con-
stant c1,2,3 shows a

√
v dependence for a fixed V0 and varies

linearly in V0 with a negative slope for a given v. As expected,
the quantum discordD(A : B), where A and B label the atoms,
exhibits decaying oscillatory behavior as shown in Fig. 7.

FIG. 7. The dynamics of quantum discordD(A : B) for the same
dynamics shown in Fig. 6. (a) V0 = 0.5� and (b) V0 = 2�.

The decay constant � reduces the maximum of D(A : B) but
leaves its oscillation frequency intact. Considering the sponta-
neous emission from the Rydberg state, generating maximally
entangled states via LZ sweeps is preferable to having a high
n state.

IV. CONCLUSION AND OUTLOOK

We analyzed the creation of maximally entangled states
in a Rydberg atom pair through LZ sweeps starting from an
initial product state |gg〉. Unlike the Rydberg blockade, where
strong RRIs are required, LZ sweeps generate a maximally
entangled state even for low RRIs. Under an LZ sweep, an
atom pair evolves periodically through various maximally
entangled states. The local unitary equivalence between them
and the Bell states is verified by evaluating the polynomial
invariants. Incorporating the spontaneous emission, we show
that high-lying rubidium Rydberg states are best suited. Note
that our results are equally valid not only for Rydberg atoms,
but for any coupled qubits, such as NMR qubits [58]. Our
studies can be extended beyond two atoms and to many-body
systems to explore the creation of exotic, highly entangled
quantum matter in Rydberg atom arrays [29] via LZ sweeps.
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APPENDIX: QUANTUM DISCORD

To define the quantum discord, we briefly sketch the mu-
tual information in classical information theory. The classical
mutual information between two subsystems A and B is de-
fined as I = HA + HB − HAB, where HA (HB) is the Shannon
entropy of the subsystem A (B), and HAB is the joint entropy
of A and B. An equivalent expression for mutual information
is J = HB − HB|A, where HB|A is the conditional entropy, the
information needed to describe B when A is known, while
in the classical theory I = J , in the quantum version, in
which the Shannon entropy is replaced by the von Neumann
entropy, there exists a discrepancy between I and J which is
quantified by the quantum discord.

In the quantum theory, we have I = SA + SB − SAB and
J (B : A) = SB − SB|A, where SAB = −Tr(ρ̂ log2 ρ̂ ) is the von
Neumann entropy for the state ρ̂, and SAB = 0 for a pure state.
Given a complete set of von Neuman projective measure-
ments {�̂i

A} on the subsystem A with probabilities {pi}, the
conditional entropy of the subsystem B is SB|A = ∑

i piSB|i,
where SB|i is the von Neumann entropy for the reduced
density operator ρ̂ i

B = TrA[(�̂i
A ⊗ IB)ρ̂AB(�̂i

A ⊗ IB)†]/pi with
pi = TrAB[(�̂i

A ⊗ IB)ρ̂AB(�̂i
A ⊗ IB)†] and IB is the identity

operator. It has been shown that the total classical correla-
tion can be obtained as J̃ (B : A) = max{�̂i

A}[SB − ∑
i piSB|i].

The maximization (max{�̂i
A}) is carried across all the possible

orthonormal measurement bases {�̂i
A} of the subsystem A.

Similarly, one can obtain J̃ (A : B), where the measurements
are being carried out on the subsystem B. Finally, the quantum
discord is defined in both ways by swapping A and B as

D(A : B) = I− J̃ (A : B) (A1)

and

D(B : A) = I− J̃ (B : A). (A2)

Note that the quantum conditional entropy depends on the
choice of the observables being measured on the other subsys-
tem, and this results in a discrepancy between I andJ (B : A)
orJ (A : B), which is quantified as the quantum discord. For a
bipartite pure state |ψ (t )〉 the quantum discord coincides with
the entanglement entropy, i.e.,D(A : B)=D(B : A)=SA=SB.
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