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We theoretically consider effectively one-dimensional quantum droplets in a symmetric Bose-Bose mixture
confined in a parabolic trap. We systematically investigate ground and excited families of localized trapped
modes which bifurcate from eigenstates of the quantum harmonic oscillator as the number of particles departs
from zero. Families of nonlinear modes have nonmonotonous behavior of chemical potential on the number of
particles and feature bistability regions. Excited states are unstable close to the linear limit, but become stable
when the number of particles is large enough. In the limit of large density, we derive a modified Thomas-Fermi
distribution. Smoothly decreasing the trapping strength down to zero, one can dynamically transform the ground-
state solution to the solitonlike quantum droplet, while excited trapped states break in several moving quantum
droplets.
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I. INTRODUCTION

Formation of liquidlike quantum droplets in weakly in-
teracting Bose-Bose mixtures is a remarkable manifestation
of the beyond-mean-field effects [1]. In three-dimensional
mixtures, the existence of quantum droplets becomes possible
due to the presence of quantum fluctuations which stabilize
the system against collapse. At the same time, the liquid
phase also persists in low-dimensional geometries [2]. Quan-
tum droplets have been created in several experiments with
two-component mixtures [3–7] (and, prior to that, atomic
droplets stabilized by quantum fluctuations have been re-
alized in single-component gases of dipolar atoms [8–11]).
The beyond-mean-field corrections that enable formation of
quantum droplets in a two-component mixture can be taken
into account using a system of two Gross-Pitaevskii (GP)
equations (or, using a single equation, in the case of sym-
metric mixture), whose specific form heavily depends on
the effective dimensionality of liquid [1,2] and is essen-
tially different from the previously studied GP equations with
cubic or cubic-quintic nonlinearity [12,13]. Effectively one-
dimensional (1D) quantum droplets have been studied in
several works [14–22]. In particular, it has been found that
these states feature solitonlike behavior and rich dynam-
ics [14]. A recent study [22] presents the analysis of kinks
and holes nestling in the spatially extended binary mixture.
Solutions of this type can be interpreted as counterparts of
conventional dark solitons [23,24]. Multidimensional quan-
tum droplets have also been in the focus of active recent
research; see, e.g., Refs. [25–30] and review papers [31–33].

A particularly interesting topic is an effect of external
trapping on the properties of quantum droplets. For mul-
tidimensional quantum droplets in dipolar gases confined
in a harmonic trap, it has been found that the resulting
ground-state phase diagram can feature a region of mul-
tistability [34]. Modulational instability in trapped dipolar
Bose-Einstein condensates (BECs) leads to formation of mul-
tiple droplets [35]. For quantum droplets in binary mixtures,

annular potentials can facilitate the formation of rotating mul-
tidimensional droplets [26,27]. Formation and dynamics of
quantum droplets of bosonic mixtures loaded in 1D optical
lattices has been studied in [17,36]. Various aspects related to
the effectively nonlinear behavior of quantum droplets, such
as the onset of instabilities, bifurcations of nonlinear states
from the linear limit, adiabatic excitation of quantum droplets,
and symmetry breaking, have been explored for potentials of
different shapes [37,38].

In the mean-field theory of BECs, it is well known that,
apart from the fundamental ground state, externally trapped
condensates can also exist in the so-called nonground (or
excited) states [39–41]. The first (single-node) nonground
state can be interpreted as a trapped dark soliton [24] in
the effectively 1D geometry or as a vortex state [42] in the
2D geometry. Experimental realization of these states can be
achieved using the phase-imprinting method [23,43]. More
complex excited states have wave functions with incremen-
tally increasing number of zeros and can be considered as
nonlinear states of the macroscopic quantum oscillator [44].
Various properties of such trapped excited states have been
systematically considered in numerous publications for 1D
(cigar-shaped) geometry [44–53] as well as for multidimen-
sional cases; see in particular [54–65] and collections of
available results in [25,42,66,67]. The excited states can be
dynamically stable [52,53,65] and perform persistent periodic
motion around the center of the trap [68–70].

The vast body of knowledge accumulated for trapped
BECs naturally suggests that we deepen our understanding
of the role of external confinement in the formation and
behavior of quantum droplets and, in particular, explore in
a more systematic way the corresponding nonground states
that can potentially emerge in the presence of the confine-
ment. In this paper, we aim to perform a systematic study
of one-dimensional quantum droplets in a symmetric Bose-
Bose mixture loaded in a harmonic (parabolic) potential.
Apart from the ground nodeless states, the resulting system
admits a sequence of families of excited states whose wave
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functions have the incrementing number of zeros and bifurcate
from the eigenstates of the quantum harmonic oscillator. We
demonstrate that in the presence of the trapping either the
ground-state family or the excited families have bistability
regions, where stable states with different numbers of parti-
cles coexist at the same value of the chemical potential. The
peculiar spectrum of the quantum harmonic oscillator results
in the instabilities of small-amplitude quantum droplets from
the excited families. These instabilities, however, disappear as
the number of particles increases above a certain threshold.
In the large-density limit, the trapped states can be described
by a modified Thomas-Fermi approximation. Numerical sim-
ulations of dynamics indicate that smooth decrease of the
trapping strength down to zero transforms the ground state to
the solitonlike quantum droplet, and nonground states break
into several quantum droplets moving with different veloci-
ties. We also simulate periodic motion of the quantum droplets
around the center of the trap. Several similarities and dis-
similarities are found between the trapped beyond-mean-field
system and the model with conventional cubic interactions, as
well as in comparison to the effectively 1D model with the
beyond-mean-field corrections but without the trap.

Organization of the paper is as follows. In the next Sec. II
we formulate the governing model equation. Section III
presents a detailed study of stationary modes and Sec. IV
addresses several dynamical scenarios corresponding to the
found states. Concluding Sec. V summarizes the main results
and briefly outlines possible directions for future work.

II. MODEL

In the effectively 1D geometry, formation of liquid droplets
results from the balance between the mean-field repulsive con-
tribution to the energy per particle and a beyond-mean-field
attractive correction. In the case of the symmetric mixture
of two species (↑ and ↓), the dynamics can be described
by a single modified GP equation. Assuming that atoms are
harmonically confined in a quasi-1D (i.e., cigar-shaped) ge-
ometry with the transverse trapping frequency ω⊥ being much
larger than the frequency of the longitudinal trapping ω0, we
use the following model [2,14]:

ih̄�t = − h̄2

2m
�xx −

√
2m

π h̄
g3/2|�|� + δg|�|2�

+ m

2
ω2

0x2�, (1)

where g = g↑↑ = g↓↓ > 0 is the repulsive intraspecies cou-
pling coefficient and δg = g↑↓ + √

g↑↑g↓↓ gives the dif-
ference between the intraspecies repulsion and interspecies
attraction g↑↓ < 0. We assume δg > 0. In order to present
our main results, we transform Eq. (1) into the dimensionless
form adopting characteristic units and normalization of the
wave function that result in equal coefficients in front of the
nonlinear terms [14]:

x = π h̄2√δg

2mg3/2
x′, t0 = π2h̄3δg

2mg3
t ′, (2)

where x′ and t ′ are dimensionless variables, and

� =
√

2mg3/2

π h̄δg
� ′. (3)

Rewriting Eq. (1) and omitting primes we arrive at the follow-
ing normalized equation:

i�t = −�xx + ν2x2� − |�|� + |�|2�, (4)

where ν = h̄3π2δgω0/(4mg3) is a dimensionless coefficient
that governs the parabolic trap strength.

In what follows, we analyze a slightly more general model
that explicitly contains nonlinear coefficients σ2 � 0 and σ3 �
0 in front of the nonlinear terms:

i�t = −�xx + ν2x2� − σ2|�|� + σ3|�|2�. (5)

While we bear in mind that the default case corresponds to
σ2 = σ3 = 1, the relevance of Eq. (5) is justified by the fact
that the generalization to other values of σ2 and σ3 is techni-
cally simple and yet may yield some additional understanding.

Temporal dynamics governed by Eq. (5) conserves quanti-
ties N = ∫ ∞

−∞ |�|2dx and

E =
∫ ∞

−∞

(
|�x|2 + ν2x2|�|2 − 2σ2

3
|�|3 + σ3

2
|�|4

)
dx,

(6)

which give the number of atoms and total energy for each
component of the mixture, respectively (with the normaliza-
tion explained below).

III. STATIONARY MODES

A. Families of nonlinear modes

Stationary nonlinear modes for Eq. (5) admit the repre-
sentation �(x, t ) = e−iμtψ (x), where μ is the dimensionless
chemical potential. Spatial shape of the stationary wave func-
tion ψ (x) is determined by the following equation:

ψxx + (μ − ν2x2)ψ + σ2|ψ |ψ − σ3ψ
3 = 0, (7)

subject to the zero boundary conditions at infinity, i.e.,
limx→±∞ ψ (x) = 0. The case ν = 0 and σ2 = σ3 = 1 was
in detail analyzed in [2,14]. In this case an explicit soli-
tonlike solution is available which has the form ψs(x) =
−3μ[1 + √

1 + 9μ/2 cosh
√

−μx2]−1. It exists within the fi-
nite interval of chemical potentials μ ∈ (−2/9, 0), such that
limN→0+ μ(N ) = 0 and limN→∞ μ(N ) = −2/9.

In the linear case σ2 = σ3 = 0, Eq. (7) transforms to an
eigenvalue problem whose spectrum is well known. It consists
of a sequence of equidistantly spaced discrete eigenvalues
which can be listed in the ascending order as μ̃n = ν(2n + 1),
where index n = 0, 1, . . . enumerates the eigenstates. The cor-
responding eigenfunctions ψ̃n(x) read

ψ̃n(x) = 4
√

νHn(
√

νx)e−νx2/2/

√√
π2nn!, (8)

where Hn(x) are Hermite polynomials [71]. Equation (8) im-
plies the normalization

∫ ∞
−∞ ψ̃2

n dx = 1. (Notice that hereafter
we use tildes to distinguish the solutions that pertain to the
linear case.)
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Regarding the nonlinear stationary equation (7), for the
case of mean-field nonlinearity (σ2 = 0) it is rather well
known [44,46,49,52] that families of nonlinear modes branch
off from the trivial zero solution ψ (x) ≡ 0 at μ = μ̃n. To
designate the corresponding bifurcation, we will sometimes
say that nonlinear modes bifurcate from the linear limit. Look-
ing for a similar bifurcation for trapped quantum droplets
described by Eq. (7) with σ2 �= 0, we use the following per-
turbation expansions for small-amplitude nonlinear modes:

ψn(x) = εψ̃n + ε2ψ (2)
n + ε3ψ (3)

n + · · ·, (9)

μn = μ̃n + εμ(1)
n + ε2μ(2)

n + · · ·, (10)

where ε � 1 is a small real parameter whose meaning is
evident: Close to the bifurcation, for the number of particles
corresponding to ψn we have Nn = ∫ ∞

−∞ ψ2
n dx = ε2 + o(ε2).

Proceeding in the standard way, we substitute expansions (9)
and (10) to Eq. (7) and collect the terms having equal powers
of ε. While at the order ε the resulting equation is satisfied au-
tomatically, at the order ε2 we obtain (∂2

x + μ̃n − ν2x2)ψ (2)
n =

−μ(1)
n ψ̃n − σ2|ψ̃n|ψ̃n. The solvability condition for the latter

equation requires its right-hand side to be orthogonal to ψ̃n.
This requirement determines the leading correction to the
chemical potential:

μ(1)
n = −σ2

∫ ∞

−∞
ψ̃2

n |ψ̃n|dx. (11)

The latter coefficient is obviously nonzero and, close to the
bifurcation point, the dependence of the nonlinearity-induced
shift of chemical potential on the number of particles Nn is
nearly square root: μ − μ̃n ≈ μ(1)

n

√
Nn, which is in contrast

to the linear law |μ − μ̃n| ∝ Nn in the case of cubic interac-
tions and the power law |μ| ∝ N2/3 for 1D quantum droplets
without the trapping potential [14]. For σ2 > 0 the coefficient
μ(1)

n is obviously negative, which means that sufficiently close
to the bifurcation, i.e., for 0 < Nn � 1, chemical potential of
the nonlinear family μn is less than that of the linear mode:
μn < μ̃n. This behavior is typical for BECs dominated by the
attractive nonlinearity. However, it can be expected that, as
the effective nonlinearity becomes stronger, the system will
be dominated by the cubic repulsive nonlinearity for which
the typical behavior is dμ/dN > 0.

The nonmonotonous behavior of the chemical potential
μ on number of particles N has indeed been observed for
numerically obtained stationary modes, either for the fam-
ily of ground states or for families of excited states. In the
left panels of Fig. 1 we plot families of stationary modes
bifurcating from four linear eigenstates (n = 0, 1, 2, 3) and
visualized as dependencies μn(Nn) − μ̃n. In our numerical
simulations we have considered harmonic trapping of two dif-
ferent strengths: ν2 = 1 (“strong trap”) and ν2 = 0.01 (“weak
trap”). For comparison, in Fig. 1 we additionally plot the anal-
ogous dependence for quantum droplets with zero trapping
ν2 = 0, where μ(N ) is a monotonously decreasing function.
As expected from the above considerations, in the presence of
the trapping each dependence μn(Nn) is nonmonotonous and
has a number of particles N∗

n , where the chemical potential
acquires its mimimal value μn(N∗

n ) = μ∗
n. For each family

the difference between the chemical potential of the corre-
sponding linear state μ̃n and the minimal chemical potential

FIG. 1. Dependencies of chemical potential μ (on the left) and
mean-square width W (on the right) on the number of particles N
for the solitonlike quantum droplet with no trapping (lower panels,
ν2 = 0) and for several families (n = 0, 1, 2, 3) in the presence of
harmonic trap of two difference strengths: “strong trap” ν2 = 1 and
“weak trap” ν2 = 0.01. For trapped states, each panel shows the
difference μn − μ̃n, where μ̃n is the nth eigenvalue of the linear
problem. For widths of trapped states, we plot ratios Wn/W̃n, where
W̃n is the width of the corresponding linear eigenfunction ψ̃n. Small
circles show minima of the curves. For comparison, in panels with
chemical potentials we plot the analogous dependencies for purely
cubic mean-field nonlinearity. For curves labeled as “cubic” we have
σ2 = 0, σ3 = 1 and for all other curves σ2 = σ3 = 1. Solid and dot-
ted fragments of plotted curves correspond to stable and unstable
solutions, respectively. This figure shows only the behavior near
the linear limit, i.e., for relatively small number of particles N . A
“global” picture for larger numbers of particles is presented in Fig. 3.

μ∗
n has approximately the same value: �n := μ̃ − μ∗

n ≈ 0.24.
Moreover, this “universal” value does not change much sub-
ject to the change of the trap strength (compare the curves for
strong and weak trapping). The numerical estimate �n ≈ 0.24
is rather close to the analytical value 2/9 ≈ 0.22 that limits
the existence range of chemical potentials in the absence of
the confinement. In the meantime, the number of particles
N∗

n , where the minimal chemical potential μ∗
n is achieved, is

appreciably different for the considered trap strengths: For the
weak trap the minimum of μ∗

n is achieved at a larger number
of particles. For fixed trap strength, the sequence of critical
numbers of particles N∗

n is increasing: In particular, for the
strong trap we get N∗

0 ≈ 0.57, N∗
1 ≈ 0.77, N∗

2 ≈ 0.91, and
N∗

3 ≈ 0.99. The existence of a global minimum of chemical
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FIG. 2. (a) Dependencies of energy E on number of particles N
for several lower families of nonlinear modes (n = 0, 1, 2, 3) in the
presence of strong harmonic trap ν2 = 1. Circles correspond to the
points N = N∗

n of zero curvature, where ∂2E (N∗
n )/∂N2 = 0. (b) De-

pendencies μ(N ) in the weak trap ν2 = 0.01. Thin horizontal lines
correspond to chemical potentials of linear states. In both panels,
solid and dotted fragments of plotted curves correspond to stable and
unstable solutions, respectively. In this figure σ2 = σ3 = 1.

potential can have implications for thermodynamic properties
of the condensate. Indeed, since for families of stationary
states we have μn = ∂En/∂Nn, where En is the energy defined
by (6), then around the point N∗

n the dependence E (N ) has
zero curvature: E (Nn) = E (N∗

n ) + μ∗
n(Nn − N∗

n ) + O((Nn −
N∗

n )3). Since for each family the dependence En(Nn) is a
monotonously increasing function [plotted in Fig. 2(a)], the
existence of extrema N∗

n allows one to find pairs of nonlinear
states with equal chemical potentials but different energies.

In right panels of Fig. 1 we show the mean-square width of
nonlinear modes defined as Wn =

√
N−1

n

∫ ∞
−∞ x2|ψn|2dx. The

dependencies Wn(μn) are also nonmonotonous, but the num-
bers of particles corresponding to the droplets of minimal size
are different from those corresponding to the minimal chemi-
cal potentials (at the same time, for different families and fixed
trap strength the minimal width is achieved for approximately
the same number of particles). The nonmonotonous depen-
dence of the mean-square width on the number of particles is
similar to that for untrapped solitonlike quantum droplets (see
the downmost panel in the right column of Fig. 1). However,
in contrast to the case of zero trap, in the linear limit N → 0
the widths of trapped states remain finite and do not diverge.

While Fig. 1 zooms in the behavior of nonlinear modes
close to the linear limit, in Fig. 3(a) we present a more global
diagram which shows the behavior of nonlinear modes in the
region of strong effective nonlinearity. In the limit μ � 1 and
N � 1 [i.e., the Thomas-Fermi (TF) limit [12,13]], the large-
density modes are dominated by the cubic nonlinearity. Using
μ−1/2 as a small parameter, we observe that in the leading
order the TF distribution of the ground-state family coincides
with the standard one [12], i.e., ψ2

0,T F = σ−1
3 (μ − ν2x2) for

x lying within the TF radius: |x| � ν−1√μ. Taking into ac-
count the next order of the asymptotic series, we find that the
beyond-mean-field correction leads to the following modifica-
tion of the TF ground-state solution:

ψ2
0,T F ≈ σ−1

3 (μ − ν2x2 + σ2

√
μ − ν2x2/

√
σ3), (12)

which is illustrated in Fig. 3(b). The number of parti-
cles corresponding to the modified TF distribution (12)

FIG. 3. (a) Dependencies of chemical potential μ on number of
particles N for several families of nonlinear modes (n = 0, 1, 2, 3) in
the presence of the harmonic trap. Solid and dotted fragments cor-
respond to stable and unstable solutions, respectively. Dash-dotted
line labeled as “TF” shows the dependence (13) obtained analytically
for the ground-state family in the Thomas-Fermi limit. (b) Nonlinear
modes for n = 0 and n = 1 at μ = 30. Bold dashed line labeled as TF
shows the analytical profile in the Thomas-Fermi limit obtained from
Eq. (12). For comparison, with thin dashed line labeled as “TF cubic”
we show the conventional Thomas-Fermi cloud [12] μ − ν2x2. In
this figure, we consider strong trap ν2 = 1 and σ2 = σ3 = 1.

amounts to

N0,T F = (σ3ν)−1

(
4

3
μ3/2 + πσ2

2
√

σ3
μ

)
. (13)

Therefore, although the beyond-mean-field correction does
not change the TF radius, it results in the positive (and linear
in μ) addition to the number of particles (which might seem
counterintuitive in view of the fact that the nonlinear terms
proportional to σ2 and σ3 are competing).

B. Bistability of trapped states

Let us now proceed to a discussion of stability of stationary
nonlinear modes. Standard procedure of linear stability anal-
ysis (see the Appendix) indicates that dynamical behavior of
small-amplitude perturbations on top of the nonlinear mode
is determined by the spectrum of the following eigenvalue
problem:

�ζ = L+L−ζ , (14)

where

L± = ∂2
x + μ − ν2x2 + σ2

2
(3 ± 1)|ψ | − σ3(2 ± 1)ψ2, (15)

� is the eigenvalue, and ζ = ζ (x) is the corresponding eigen-
function. Stationary mode ψ (x) is said to be stable if all
eigenvalues � are real and nonnegative. Otherwise the solu-
tion ψ (x) is said to be unstable and the growth rate of the
exponential dynamical instability is determined by the posi-
tive imaginary part Im

√
�. Eigenvalue problem (14) has two

evident analytic solutions. The first one corresponds to � = 0
with eigenfunction ζ = ψ (x) and obviously reflects the in-
variance of the model under the phase rotation. The second
analytical solution (which is the peculiarity of the parabolic
potential) is given as � = 4ν2 and ζ = xψ (x) [52,70] and
proves to be useful for understanding of linear stability of
small-amplitude nonlinear modes.
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The equidistant spectrum of the parabolic potential results
in the specific stability picture of small-amplitude nonlin-
ear states [52]: For small-amplitude modes bifurcating from
the nth linear state, the stability spectrum in the linear limit
contains exactly n double eigenvalues that result from the
“resonances” between different intrinsic modes. When small-
amplitude nonlinear states branch off from the linear limit,
each double eigenvalue splits either into a pair of real eigen-
values or into a complex-conjugate pair and the latter situation
implies that the bifurcating small-amplitude modes are unsta-
ble. Splittings of double eigenvalues can be analyzed using
the perturbation theory which was previously used in sev-
eral similar situations [52,65,72–74] and, for self-containment
of our paper, is summarized in the Appendix. The results
of the perturbation analysis for small-amplitude modes can
be outlined as follows. For the lowest family, n = 0, there
are no double eigenvalues in the spectrum and therefore
small-amplitude ground states are stable. For the single-
node family, n = 1, there is exactly one double eigenvalue
equal to � = 4ν2. Splitting of this double eigenvalue into
a complex-conjugate pair is a priori impossible due to the
presence of the exact solution mentioned above (because the
eigenvalue � = 4ν2 must always be present in the spectrum)
and therefore the single-node states are also stable close to
the linear limit. For n = 2 there are two double eigenvalues
situated at � = 4ν2 and � = 16ν2 and the latter one does
split into a complex-conjugate pair, which means that the
small-amplitude solutions of this family are unstable. Similar
instability also takes place for families n = 3 and n = 4 (we
hypothesize that all families with larger n are also unstable
near the linear limit). From the perturbation theory it is evident
that, when the dynamical instability is present, its increment is
proportional to ε and, respectively, proportional to N1/2. This
behavior is different from the purely cubic case, where the in-
stability increment of small-amplitude modes is proportional
to N [52,74].

We further employ the numerical solution of the eigenvalue
problem (14) to address the stability of nonlinear modes of
larger amplitude; see Figs. 1, 2(a), and 3(a), where solid
and dotted fragments of plotted curves correspond to stable
and unstable nonlinear modes, respectively. Regarding the
ground-state family n = 0 and the single-node family n = 1,
we observe that their solutions remain stable for modes of
any arbitrary amplitude. This, in particular, means that these
families feature bistability regions, where the same family of
nonlinear modes has two stable states with equal chemical po-
tentials but different numbers of particles. Similar bistability
has been earlier encountered for a BEC with spatially inho-
mogeneous scattering length [75] and for self-sustained [76]
and guided [77] optical solitons in the cubic-quintic medium.
We emphasize that in the case at hand the bistability takes
place exactly due to the presence of the confining poten-
tial, since for zero trapping strength the dependence μ(N ) is
monotonous [14]; see also the plot μ(N ) for ν2 = 0 in Fig. 1.

Proceeding to the numerical study of next families n = 2
and n = 3, we confirm that close to the linear limit nonlinear
states are unstable; see the corresponding panels in Fig. 1.
In the meanwhile, the increase of the number of particles N
leads to the stabilization of these families. In terms of the
linear stability spectrum, such a stabilization corresponds to a

moment when the complex-conjugate pair of unstable eigen-
values returns to the real axis. The change from instability
to stability occurs for the number of particles less than that
corresponding to the minimal value of the chemical poten-
tial. This means that these families also contain intervals of
bistable chemical potentials, although these intervals are more
narrow than those for the two lowest families with n = 0 and
n = 1. For larger numbers of particles, families n = 2 and
n = 3 have additional finite instability windows which are not
shown in Fig. 1, but become visible in the more global dia-
gram presented in Fig. 3(a). However, for sufficiently large N
these families again become stable, which could be expected
from the stability analysis in the TF limit (with purely cubic
nonlinearity) performed in [53]. We also notice that in the
case at hand the change of the slope dμ/dN from negative
to positive does not result in the stability change [78] (as it
often happens in other nonlinear wave systems, where the
Vakhitov-Kolokolov stability condition [79] ensures that the
solution is unstable when dμ/dN > 0).

The fact that the difference �n between the linear eigen-
value μ̃n and the minimal chemical potential μ∗

n weakly
depends on the strength of the trapping implies that the two
considered trap strengths correspond to different situations.
Indeed, the chemical potentials of linear eigenstates form an
equidistant sequence: �μ := μ̃n+1 − μ̃n = 2ν, and for the
strong trap ν2 � 1 the difference between the linear eigen-
values is much larger than the difference �n ≈ 0.24, i.e.,
2ν � �n. However, for the weak trap ν2 � 1, the inequality
2ν < �n takes place. In this case the linear eigenvalue μ̃n

(which can be considered as a chemical potential for a gas
of noniteracting particles in the harmonic trap) belongs to the
interval of bistable chemical potentials of the next family with
n + 1. This situation is illustrated in Fig. 2(b).

IV. SIMULATIONS OF DYNAMICS

Nonlinear dynamics of found stationary states has been
simulated by integrating the time-dependent GP equa-
tion (5) with a split-step method. To examine the dynamical
(bi)stability of stationary states, we solve the initial value
problem with the initial condition taken in the form of the
stationary wave function perturbed by a random noise: �(t =
0, x) = ψ (x){1 + 0.025[r1(x) + ir2(x)]}, where perturbations
r1,2 are obtained as normally distributed pseudorandom num-
bers. These simulations confirm the existence of bistable
states on the lowest (n = 0) and the first excited (n = 1)
families. Regarding the next families, n = 2 and n = 3, in
accordance with the linear stability predictions, we have ob-
served that small-amplitude nonlinear modes are unstable.
However, as the amplitude (i.e., number of particles) becomes
large enough, the solutions become stable. This difference in
stability of excited states of different amplitudes is illustrated
in Fig. 4, where unstable and stable dynamics are visualized
for nonlinear states coexisting at equal values of the chemical
potential.

Apart from the direct stability tests, we have addressed sev-
eral other dynamical scenarios. In particular, we ran a series
of simulations where the strength of the trapping potential
ν2 = ν2(t ) was smoothly decreased down to zero. In this case
the nonlinear mode that initially belonged to the ground-state
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FIG. 4. Plots |�(x, t )| for nonlinear dynamics corresponding to
stationary modes with n = 2 (upper panels, solutions at μ ≈ 4.831)
and n = 3 (lower panels, solutions at μ ≈ 6.822). Solutions of
smaller amplitudes are unstable and those with larger amplitudes are
stable. Here ν2 = 1 and σ2 = σ3 = 1.

family transformed to a solitonlike quantum droplet, while a
nonlinear mode from the first family (n = 1) decoupled in a
pair of mutually repulsing droplets of identical form. These
results are illustrated in Figs. 5(a) and 5(b), respectively. Simi-
lar behavior can be observed for further families. For instance,
Fig. 5(c) shows how the localized mode from the family n = 2
breaks into three droplets, one of which is quiescent while two
others are moving in opposite directions. As becomes evident
from Fig. 5(d), in this case the amplitude of moving droplets
is slightly larger than that of the quiescent central droplet. In
a similar way, the initially trapped localized state from the
family n = 3 fans into four droplets: Two moving to the right
with different velocities and two others moving to the left [see
Figs. 5(e) and 5(f)].

It is known that any stationary mode ψ (x) of the GP
equation with the harmonic potential generates a family
of periodically moving solutions given by the explicit
formula [80,81] �(x, t ) = ψ[x − X (t )]e−iμt+iẊ (t )x/2, where
X (t ) is an arbitrary solution of the differential equa-
tion Ẍ + 2ν2X = 0 (here dot and double dot denote first and
second derivatives in time t). Clearly, X (t ) can be interpreted
as a center of mass of the oscillating solution. Exact solutions
of this form enable the systematic investigation of periodically
moving quantum droplets. Moreover, assuming that the initial
condition is prepared as a superposition of two well-separated
quantum droplets, �(x, t = 0) = ψ1[x − X1(0)]eiẊ1(0)x/2

+ ψ2[x − X2(0)]eiẊ2(0)x/2, |X1(0) − X2(0)| � 1, it is possible
to simulate the dynamics corresponding to simultaneous
oscillations of two droplets in the same trap. In Fig. 6 we

FIG. 5. Plots |�(x, t )| for nonlinear dynamics corresponding to
initial condition chosen as a stationary mode with n = 0, 1, 2, 3 as
the harmonic trap strength ν2(t ) is smoothly decreased from 1 to 0.
Dependencies ν2(t ) are plotted with bold curves. Dots in (a) show the
profile of the solitonlike quantum droplet at ν2 = 0 corresponding to
the number of particles equal to that of the initial condition; (d) and
(e) show shapshots of solutions with n = 2 and n = 3 taken at t =
400 and t = 300, respectively.

present two examples of composite oscillating solutions.
While preliminary numerical simulations suggest that the
periodic movement robustly persists for an indefinite time,
an accurate stability study for the oscillating droplets is a
relevant task for future work. For the GP equation with the
mean-field cubic nonlinearity such a surprisingly regular
behavior of a pair of colliding harmonically trapped ground
states has been earlier documented in [81] and explained
by reducing the GP equation to a dynamical system which
treats solitary waves as classical particles and happens to be
completely integrable in the two-particle case.

V. CONCLUSION

The main goal of our paper has been to develop a sys-
tematic analysis of quasi-one-dimensional quantum droplets
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FIG. 6. Pseudocolor plots of composite oscillating solutions
composed of two nodeless ground states from the family n = 0
having equal chemical potential μ = 0.82 and different numbers of
particles N ≈ 0.15 and N ≈ 1.32 (a), and one ground state with
n = 0 corresponding to μ = 0.82 and N ≈ 1.32 and one single-node
state with n = 1 corresponding to μ = 2.8 and N ≈ 1.57 (b). In this
figure ν = 1 and σ2 = σ3 = 1.

confined in the parabolic potential. Apart from the funda-
mental ground states, we have extended the consideration
onto the families of nonground excited states which are well
known in the mean-field BEC theory but have received com-
paratively little attention in the modified model with the
beyond-mean-field corrections. The main results of our study
can be summarized as follows.

(1) Apart from the family of trapped ground states, there
exists a sequence of excited families. Either the ground-
state family or excited states bifurcate from eigenstates of
the underlying quantum harmonic oscillator and feature non-
monotonous behavior of the chemical potential on the number
of particles. Each family has the minimal chemical potential.
The difference between the chemical potential in the linear
limit and the minimal chemical potential exhibits a remark-
able universality, i.e., weakly depends on the family number
and on the strength of the parabolic trap.

(2) Either the ground-state family or excited-state families
feature a bistability region, where two stable nonlinear modes
coexist at the same chemical potential but with different num-
bers of particles.

(3) Excited states are unstable close to the linear limit, but
become stable as the number of particles increases.

(4) In the large-density limit, the trapped states can be
described using a modified Thomas-Fermi (TF) distribution
which contains a larger number of particles than the con-
ventional TF cloud in BECs with purely cubic mean-field
repulsion.

(5) Smooth decrease of the harmonic trap strength dynam-
ically transforms the ground state into a solitonlike quantum
droplet, while a single-node trapped state transforms into a
pair of parting droplets. More complex trapped states break
into multiple droplets.

(6) Trapped states perform stable oscillations around the
center of the trap. A pair of repeatedly colliding trapped states
can feature regular dynamics.

These results call for a natural generalization onto the
effectively multidimensional geometries, where the forma-
tion of trapped vortices and vortex rings and their eventual
stabilization using the weak unharmonicity of the trapping

potential [58,65] would be a particularly interesting subject.
Another natural extension is to address the role of the confine-
ment in an essentially two-component asymmetric mixture,
where additional instabilities can emerge [22]. Finally, it can
be relevant to explore the effect of the external trapping in
the modified theory of quantum droplets which accounts for
bosonic pairing [82,83] and provides a better agreement be-
tween the analytical estimate of the quantum droplet energy
and diffusion Monte Carlo simulations [2,18,19]. The pair-
ing theory is expected to modify the balance between the
competing repulsion and attraction in the corresponding effec-
tive one-dimensional Gross-Pitaevskii equation and therefore
can lead to a quantitative change of the results presented
herein.
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APPENDIX: LINEAR STABILITY ANALYSIS

Using the standard substitution for the perturbed solution
� = e−iμt [ψ (x) + ξ (x, t )] and performing the linearization of
the GP equation (5), we find that the perturbation ξ (x, t ) obeys
the following equation (we bear in mind that wave function ψ

is real valued):

iξt =−ξxx − (μ − ν2x2)ξ− σ2

2
|ψ |(3ξ + ξ̄ ) + σ3ψ

2(2ξ + ξ̄ ),

(A1)
where ξ̄ is the complex conjugate of ξ . Separating the pertur-
bation into real and imaginary parts, ξ = χ + iϕ, we obtain
a pair of equations χt = −L−ϕ, ϕt = L+χ , where operators
L± are given in Eq. (15). Therefore, the stability eigenprob-
lem can be written down as �ζ = L+L−ζ , where � is the
eigenvalue. The solution is said to be stable if and only if all
eigenvalues � are real and nonnegative.

Using the pertubation expansions (9) and (10), for stability
of nonlinear modes bifurcating from the nth linear eigenstate,
we have L+L− = L2

n + εMn + o(ε), where Ln = ∂2
x + μ̃n −

ν2x2, and

Mn = Ln
(
μ(1)

n + σ2|ψ̃n|
) + (

μ(1)
n + 2σ2|ψ̃n|

)
Ln. (A2)

At ε = 0 the linear stability operator becomes equal to L2
n. For

each n = 0, 1, . . . there are exactly n double (more precisely,
semisimple) eigenvalues in the spectrum: �n,k = 4ν2(k −
n)2, where k = 0, 1, . . . , n − 1 (see [52] for more detailed
discussion). As ε departs from zero, each double eigenvalue
generically splits into a pair of simple eigenvalues. This pro-
cess can be described using the expansion �

(1,2)
n,k = 4ν2(k −

n)2 + εω(1,2)
n + o(ε), where coefficients ω(1,2)

n are eigenvalues
of the 2 × 2 matrix

M̃n,k =
( 〈Mnψ̃k, ψ̃k〉 〈Mnψ̃k, ψ̃2n−k〉

〈Mnψ̃2n−k, ψ̃k〉 〈Mnψ̃2n−k, ψ̃2n−k〉
)

.
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The entries of matrix M̃n,k can be represented as

〈Mnψ̃k, ψ̃k〉 = 2σ2(n − k)
∫

|ψ̃n|
(
3ψ̃2

k − 2ψ̃2
n

)
dx,

〈Mnψ̃k, ψ̃2n−k〉 = −〈Mnψ̃2n−k, ψ̃k〉 = 2σ2(n − k)
∫

|ψ̃n|ψ̃kψ̃2n−kdx,

〈Mnψ̃2n−k, ψ̃2n−k〉 = −2σ2(n − k)
∫

|ψ̃n|
(
3ψ̃2

2n−k − 2ψ̃2
n

)
dx,

where
∫ = ∫ ∞

−∞. Since the eigenfunctions ψ̃n(x) are available in the explicit form from Eq. (8), matrices M̃n,k and their
eigenvalues can be found with a computer algebra software.
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