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While the properties and the shape of the ground state of a gas of ultracold bosons are well understood
in harmonic potentials, they remain for a large part unknown in the case of random potentials. Here we use
localization-landscape (LL) theory to study the properties of the solutions to the Gross-Pitaevskii equation (GPE)
in one-dimensional (1D) speckle potentials. In the cases of attractive interactions, we find that the LL allows
one to predict the position of the localization center of the ground state (GS) of the GPE. For weakly repulsive
interactions, we point out that the GS of the quasi-1D GPE can be understood as a superposition of a finite number
of single-particle states, which can be computed by exploiting the LL. For intermediate repulsive interactions, we
introduce a Thomas-Fermi-like approach for the GS which holds in the smoothing regime, well beyond the usual
approximation involving the original potential. Moreover, we show that, in the Lifshitz glass regime, the particle
density and the chemical potential can be well estimated by the LL. Our approach can be applied to any positive-
valued random potential endowed with finite-range correlations and can be generalized to higher-dimensional
systems.
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I. INTRODUCTION

Cold atom experiments are a remarkable platform to
explore quantum theories and to test open questions in con-
densed matter physics. The modern developments in cooling
and trapping techniques [1] have enabled to achieve Bose-
Einstein condensation of matter waves [2,3], thus opening the
possibility to study their behavior in random optical potentials
[4–7]. Bose-Einstein condensates, occurring in dilute samples
and at very low temperature, of the order of tens of nK, are
characterized by the macroscopic occupation of the ground
state (GS) of the gas, described by a highly coherent and
fully symmetric wave function. In the absence of interactions
among atoms, the interference between the multiple scattering
paths of an initially traveling particle can completely inhibit
its diffusion, eventually leading to an exponential localization
of the wave function [8–10]. This phenomenon, known as An-
derson localization, has been actually observed [4–6,11] and
theoretically studied [12–15] with matter waves in different
settings during the past 15 years.

The presence of interactions between atoms can signifi-
cantly modify this picture. The study of the interplay between
an external quenched disorder and an interacting Bose gas has
motivated many theoretical [16–20] and experimental works
[21–27]. The many-body interactions make computations of
the many-particle states incredibly much harder. However, by
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treating the interactions through a mean-field approach, one
can reduce the dimensionality of the problem and model the
gas by a one-particle nonlinear Schrödinger equation, also
called the Gross-Pitaevskii equation (GPE) [28]. Theoretical
investigations on these systems have been carried out from
different perspectives, focusing on stationary states [29–33],
excitations [34–37], dynamics [38–42], out-of-equilibrium
physics [43–45], phase transitions [46–49], superfluidity [50],
and solitons [51–53].

While the stationary states of the GPE in the weakly inter-
acting limit [33,46] and the Thomas-Fermi limit for repulsive
interactions [29,33] are quite well understood, we still lack
theoretical tools to tackle the intermediate regime and the
strongly attractive limit.

In the case of strong repulsive interactions, it was shown
that, for a chemical potential μ much larger than the stan-
dard deviation of the disorder V0, the kinetic term of the
GPE can be neglected according to the Thomas-Fermi ap-
proximation [3]. Hence, the macroscopic state at equilibrium
follows the modulations of the random potential, as it was
shown by considering speckle potentials [29,31,47] and Gaus-
sian random potentials [19]. In correlated speckle potentials,
Sanchez-Palencia pointed out that the stationary state be-
comes sensitive to a smoothed random potential [29] rather
than the original one. This was predicted to take place when
the correlation length σ is smaller than the healing length ξ ,
i.e., the maximum length of the spatial variations of the state
ψ that contribute to the kinetic energy of the atoms [3]. In the
presence of disorder, the integrated density of states (IDoS),
which is the number of states below a given energy, exhibits
a low-energy drop characterized by a stretched exponential
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behavior, known as Lifshitz tail [54,55], which is related to
the existence of large regions of negligible potential [56]. In
2007 Lugan et al. [46] proposed a schematic quantum-state
diagram and predicted in the same geometry the occurrence
of the Lifshitz glass phase for strong disorder and weakly
repulsive interactions. In this regime, the Bose gas splits into
fragments whose shapes are given by nonoverlapping single-
particle (SP) states belonging to the Lifshitz tails of the IDoS.

Regime diagrams for the repulsive case were also built by
Falco et al. [30,32]. The authors examined random potentials
with unbounded probability distributions and different corre-
lation profiles, superimposed with harmonic potentials along
all directions. Four different regimes were distinguished,
based on the spatial behavior of the particle density: harmonic,
Thomas-Fermi, nonergodic, and fragmented regimes. How-
ever, in the aforementioned studies the collective N-particle
states were not computed explicitly, but estimates of the typi-
cal size of the atomic cloud or of its fragments were provided
as functions of the characteristic lengths associated to the
random potential and of the coefficient of the nonlinear term
g(N − 1) of the GPE.

A numerical investigation of the ground state ψ0 for
weakly repulsive and attractive interactions was carried out
in the work of Cheng et al. [33], who considered 1D speckle
potentials and showed that, for weak interactions, the state
remains exponentially localized with a localization length
that increases for stationary solutions of the defocusing GPE,
whereas it decreases for the focusing GPE.

The work presented here intends to fill the gap of knowl-
edge between the noninteracting and the Thomas-Fermi
regime as well as in the strongly attractive limit by exploiting
the concept of localization landscape (LL) [57] which was
initially introduced for the non-interacting problem. We ex-
hibit analytical approximations of the many-particle state in
1D speckle potentials in several cases, and also unveil con-
nections with the SP states which were previously analyzed
merely in fully harmonic potentials [58,59] and in symmetric
double-well potentials [60].

Our paper is structured as follows. In Sec. II we present the
physical system, introducing the Gross-Pitaevskii equation,
the features of the correlated random potential and the LL
function used throughout the work. In the remaining sections,
we investigate the regions in the interaction-disorder plane
depicted in Fig. 1.

In Sec. III we examine the attractive case and we point out
that the localization center of the GS of the GPE is well pre-
dicted by the absolute minimum of the effective potential. We
also numerically show that the disorder-averaged localization
length decreases as the nonlinear coefficient or the disorder
parameter are increased.

Section IV is devoted to the case of repulsive interactions.
Here the ground state of the GPE is displayed for a wide range
of random potential amplitudes and nonlinear coefficients.
In Sec. IV A 1 and in Appendixes A and B, we illustrate
that the GS of the GPE for weakly repulsive interactions and
speckle potentials can be predicted by an expansion over a
finite number of (localized) SP states. The quality of the LL
approach is assessed by comparing those states, computed
by exact diagonalization of the SP Hamiltonian, against the
solutions of the eigenvalue problem restricted to the regions

FIG. 1. Interaction-disorder diagram in which the numbers of the
sections pinpoint the regions of the plane where the ground state of
the GPE is examined.

of the lowest minima of the effective potential derived from
the LL [61].

In Sec. IV A 2 we show that, for intermediate repulsive
interactions, the LL-based effective potential sets the typical
variation scale of the macroscopic wave function. We point
out that the last mentioned quantity can be well approximated
using a Thomas-Fermi-like ansatz.

In Sec. IV B we compute the GS in a regime where it is
given by a superposition of SP wave functions which do not
spatially overlap with each other and whose energy lies in the
Lifshitz tails of the IDoS. In this case, we show that the num-
ber of particles in each of the SP wave functions, occurring at
the wells of the effective potential, are well predicted by the
LL starting from a relation derived by Lugan et al. [46].

In Sec. V we draw the conclusions and outline the possible
perspectives of this work.

II. THE LOCALIZATION LANDSCAPE OF THE
GROSS-PITAEVSKII EQUATION

A. The Gross-Pitaevskii equation

We consider an ultracold dilute Bose gas in which inter-
action events are binary, i.e., involve only two particles at a
time, and are characterized by a length scale that is smaller
than the de Broglie wavelength so that the scattering events
are dominated by s-wave processes. Under these conditions,
the ground state of the many-particle system is given by
the common wave function ψ (r), normalized to unity, which
obeys the Gross-Pitaevskii equation[

− h̄2

2m
∇2 + V (r)

]
ψ (r) + 4π h̄2as

m
(N − 1)|ψ (r)|2ψ (r)

= μψ (r), (1)

where as represents the s-wave scattering length. To ensure
the validity of Eq. (1) for a quantum gas, as must satisfy
a low-density assumption, 〈ρ〉|as|3 � 1 [3], 〈ρ〉 = N〈|ψ |2〉
being the spatial average of the particle density. Moreover,
one has to note that this nonlinear coupling can be exper-
imentally tuned by means of Feshbach resonances [62]. By
applying a tight harmonic confinement on one or two dimen-
sions [29,46], it is possible to assess the effect of disorder on
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the macroscopic wave function in low-dimensional quantum
gases. In the following, we focus on potentials exhibiting a
one-dimensional (1D) disorder along Ox, which means that
the total potential can be written as

Vtot (x, y, z) = VR(x) + 1
2 mω2

⊥(y2 + z2), (2)

where VR is the 1D random potential and ω⊥ is the pulsation
of the two-dimensional (2D) harmonic well in the directions
y and z. Assuming that h̄ω⊥ is much larger than the level
spacing between two consecutive eigenvalues of the nonin-
teracting 1D problem, the ground state of this potential can be
factorized as

ψ0(r) = ψ0(x) φ
(ho)
0 (y, z), (3)

where

φ
(ho)
0 (y, z) =

√
mω⊥
π h̄

exp

[
− mω⊥

2h̄
(y2 + z2)

]
(4)

is the ground state of the 2D harmonic oscillator in
the (y, z) plane. The two wave functions ψ0 and φ

(ho)
0

satisfy the normalization conditions
∫

dx|ψ0(x)|2 = 1 and∫
dy dz|φ(ho)

0 (y, z)|2 = 1, respectively. After integrating out
the 2D harmonic wave function, one finds that ψ0 obeys
[29,63][

− h̄2

2m

∂2

∂x2
+VR(x) + h̄ω⊥ + 2h̄ω⊥as(N − 1)|ψ0(x)|2

]
ψ0(x)

= μψ0(x). (5)

The nonlinear coupling appearing in the last term of the
Schrödinger operator is characterized hereafter by the con-
stant

g := 2h̄ω⊥as. (6)

The random potential VR is a correlated speckle potential,
typically engineered by exploiting the coupling between the
atomic dipole moment and the electric field generated by
shining coherent light on a diffusive plate [64]. Owing to the
central limit theorem, both the real and the imaginary parts of
the electric field in the observation point, for a high number of
scattering events [65], follow a Gaussian probability distribu-
tion. This leads to the formation of the speckle pattern where
the probability distribution of the random potential amplitude
is given by a Rayleigh law,

P(VR) = 
H (VR/V0)

V0
e−VR/V0 , (7)


H (x) being the Heaviside step function and V0 the disorder
strength. V0 is inversely proportional to the detuning be-
tween the laser frequency and the atomic transition frequency
[62]. It is positive for blue-detuned speckles or negative for
red-detuned ones. The spatial correlation profile C(x) of the
potential is chosen to be Gaussian, as one of those used in
Ref. [14]:

C(x) := [VR(0) − V0][VR(x) − V0] = V 2
0 e− x2

2σ2 , (8)

in which σ denotes the correlation length. The symbol ·̄ in-
dicates the ensemble average over all configurations of the
disordered potential.

For a 1D domain of length L (−L/2 � x � L/2), the en-
ergy associated to the ground state of the GPE (5) is given by
[3]

E0 =
∫ L/2

−L/2

[
h̄2

2m

∣∣∣∣dψ0(x)

dx

∣∣∣∣
2

+ (VR(x) + h̄ω⊥)|ψ0(x)|2

+ g(N − 1)

2
|ψ0(x)|4

]
dx, (9)

whereas the corresponding chemical potential reads

μ = E0 + g(N − 1)

2

∫ L/2

−L/2
|ψ0(x)|4 dx. (10)

B. The localization landscape

In order to understand the behavior of the 1D ground state
ψ0 of the GPE, we start from the SP Hamiltonian H sp:

H sp := − h̄2

2m

∂2

∂x2
+ h̄ω⊥ + VR(x). (11)

The localization landscape, introduced in Ref. [57], is then
defined as the solution to

H spu = 1. (12)

In this article, we choose to impose the Dirichlet boundary
conditions on the LL (but they could be as well periodic, since
they play no real role on localization effects):

u(x)|x=± L
2

= 0. (13)

By decomposing an eigenstate ψ sp of H sp as ψ sp = uϕsp,
where ϕsp is an auxiliary function and using (12), the time-
independent Schrödinger equation H spψ sp = E spψ sp can be
rewritten as

− h̄2

2m

[
1

u2

∂

∂x

(
u2 ∂

∂x
ϕsp

)]
+ 1

u
ϕsp = E spϕsp. (14)

We see that the auxiliary function obeys a Schrödinger-like
equation in which the Laplacian is replaced by a slightly more
complicated elliptic operator whereas the original potential
V (x) := VR(x) + h̄ω⊥ is substituted by the effective potential
VLL(x), defined as

VLL(x) := u(x)−1. (15)

It has been shown that this rewriting of the Schrödinger equa-
tion allows one to view the exponential localization (Anderson
localization) of the lowest-lying states as a semiclassical con-
finement process in the smoother disordered potential VLL

[57,61]. The LL also permits one to identify the position of
those states without solving the full eigenvalue problem [66]
and accounts for the behavior of the tails of the integrated
density of states [67].

For the sake of simplicity, in the following treatment all
quantities will be nondimensionalized, based on the units of
the correlation function of the random potential. Hence, the
lengths will be expressed in units of the correlation length σ

and the energies in units of the correlation energy Eσ := h̄2

mσ 2

[14], which represents the zero-point energy for a particle
confined in a spatial region of size equal to the correlation
length σ .
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C. Numerical methods

For computing the ground state of the GPE, we adopt a
Crank-Nicolson method introduced by Muruganandam and
Adhikari [68]. This method is based on the iteration an
imaginary-time evolution process, performed by first con-
sidering only the potential and the nonlinear terms, then by
involving the kinetic term of the GPE (5) which is discretized
to the second order in the grid step �x. The initial wave func-
tion is taken equal to the ground state ψ

sp
0 of the noninteracting

Hamiltonian H sp and it is computed by solving the eigenvalue
problem

H spψ
sp
i = E sp

i ψ
sp
i , (16)

by using a divide-and-conquer algorithm for the diagonaliza-
tion of symmetric matrices. Starting from this SP state, the
evaluation of ψ0 proceeds as detailed in Ref. [68], with an
intermediate solution at the subsequent time-step computed
by retaining only the kinetic term. The potential as well as
the nonlinear term are then introduced in a first-order time
integration with the aim of achieving the complete evolution
after a single time step. The bipartite procedure thus outlined
is repeated Npas ∼ 105 times, a value which can be tuned to
check the convergence of the result. The stationary state of
the GPE thus obtained vanishes at the boundaries of the 1D
domain.

Besides, in the computation of the energy associated to ψ0

and of the corresponding chemical potential, both the integra-
tions in Eqs. (9) and (10) are performed numerically, using
Cavalieri-Simpson’s 3/8 rule [69].

The landscape function is calculated from Eq. (12) by
using a finite-element method and applying the boundary con-
ditions shown in Eq. (13).

III. ATTRACTIVE INTERACTIONS

The spatial behavior of the ground state of the GPE is
first investigated in the case of attractive interactions. To this
end, we examine the effect of both interactions and disorder
on ψ0. In the numerical simulations, we deal with samples
of atoms with the same transverse-confinement length l⊥ :=√

h̄
mω⊥

(equal to 11.1 in our case) as the one of the harmonic

potential used in the experiment of Ref. [70]. For the 1D ran-
dom potentials, we consider blue-detuned speckle potentials
endowed with the same correlation length as in Ref. [4].

As it was first pointed out by Cheng and Adhikari in
Ref. [33], for attractive interactions the ground state of the
GPE is localized in space and its tails decay exponentially.
In finite quasi-1D systems, the left and the right tails do not
exhibit exactly the same decay, which means that the modulus
of the wave function can be approximated by

|ψ0(x)| ≈ ca

{
e

(x−x0 )
λL − L

2 � x < x0

e
−(x−x0 )

λR x0 � x � L
2

, (17)

where x0 is the localization center, and λL and λR denote the
left and the right localization length, respectively. Moreover,
in Eq. (17) ca represents the normalization coefficient.

We first numerically determine the spatial behavior of the
GS ψ0 for different values of the coefficient of the nonlinear

FIG. 2. Variable attractive interactions for Bose gases in two
realizations of the blue-detuned speckle potential with V0 = 0.02, as
in Ref. [4], in a domain of length L = 40 000�x, where �x = 0.01.
Panels (a) and (c): Total potential V (gray solid line) and effective
potential VLL (black solid line) along Ox. The blue arrows pinpoint
the position of the absolute minima of the effective potentials. Panels
(b) and (d): Moduli of the ground states of the one-dimensional
GPE (solid lines of different thicknesses) for five different values of
the coefficient of the nonlinear term and the disorder configurations
displayed in panels (a) and (c).

term g(N − 1), which vary from −0.1 to −100 by multiplica-
tive steps of 10. In addition, we compute the ground state for
vanishing interactions, using the parameters detailed at the
beginning of this section. As it can be inferred from Fig. 2,
where two realizations of a speckle potential with V0 = 0.02
are displayed, the wave functions are localized close to the
absolute minima xmin VLL of the effective potentials. The po-
sition of the localization center x0 in Eq. (17) can thus be
approximated as

x0 ≈ xmin VLL . (18)

The accuracy of this approximation is assessed by computing
the average of |x0 − xmin VLL | over 20 realizations of the ran-
dom potential. As shown in Table I, this deviation decreases
for increasing nonlinear coefficient when |g(N − 1)| > 1 and
does not exceed the correlation length of the speckle potential.
Besides, the mean localization length λ̄ := (λL + λR)/2 of the
wave functions also diminishes as |g(N − 1)| is increased,
as it can be also noticed from both Table I and Fig. 2. The
energy E0 and the chemical potential μ associated to the GS
of the GPE for attractive interactions are always lower than the
energy of the GS of the corresponding noninteracting problem
with the same potential.

Fixing the value of the nonlinear coefficient g(N − 1) =
−1, we compute the GS of the GPE for two different
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TABLE I. Properties of the GS of the GPE obtained for the same
values of V0 and g(N − 1) used in Figs. 2(a)–2(d). The modulus
of the deviations between the exact positions of the localization
centers and the absolute minima of the effective potentials are also
reported, averaged over 56 disorder configurations. E0 and μ denote
the disorder-averaged total energy and chemical potential associated
the wave functions respectively. Each quantity in the header row is
followed by its units in parentheses.

g(N − 1) |x0 − xmin VLL | λ E0 μ

(σEσ ) (σ ) (σ ) (Eσ ) (Eσ )

0.0 0.388 8.65 0.0193 0.0193
−0.1 0.404 6.49 0.0173 0.0150
−1 0.954 1.87 −0.0297 −0.116
−10 0.222 0.157 −4.15 −12.4
−100 0.033 0.020 −416 −1219

realizations of the random potential and three different values
of the disorder parameter V0 = {0.003, 0.03, 0.3}. All simula-
tions, whose effective potentials are displayed in Figs. 3(a)
and 3(c), confirm the conjecture in Eq. (18). In particu-
lar, in Fig. 3(a), the absolute minimum of VLL shifts from

FIG. 3. Variable disorder parameter for attractively interacting
Bose gases in two realizations of the blue-detuned speckle poten-
tial. The domains are of length L = 40 000�x, where �x = 0.04.
Panels (a) and (c): Effective potential VLL for V0 = 0.3 (green solid
lines), V0 = 0.03 (blue solid lines), V0 = 0.003 (black solid lines).
The thicknesses of these lines decreases for increasing value of V0.
The colored arrows pinpoint the positions of the absolute minima of
the effective potentials above mentioned. Panels (b) and (d): Ground
state ψ0 of the GPE with g(N − 1) = −1 computed for the same
values of V0 as in panels (a) and (c), represented by solid lines
whose colors and thicknesses vary according to those of the effective
potentials.

TABLE II. Properties of the GS of the GPE obtained for the same
values of V0 and g(N − 1) used in Figs. 3(a)–3(d). The table shares
the same structure as Table I, and the disorder-averaged quantities are
based on 56 configurations of the speckle potential. Each quantity in
the header row is followed by its units in parentheses.

V0 (Eσ ) |x0 − xmin VLL | (σ ) λ (σ ) E0 (Eσ ) μ (Eσ )

0.003 3.03 1.99 −0.0330 −0.117
0.03 0.979 1.82 −0.0299 −0.116
0.3 0.303 1.17 −0.0079 −0.111

x = −462 to x = −125, as signaled by the colored arrows,
as the mean value V0 of the speckle potential is increased
from 0.003 to 0.03. In Fig. 3(c) the absolute minima of the
effective potentials lie at the same positions on the x axis
instead. The localization lengths of the wave functions, whose
disorder-averaged values are reported in Table II, decrease as
V0 increases, in qualitative agreement with the SP case [55].

We also remark that, since the wave function on the trans-
verse directions is assumed to occupy the ground state of the
2D harmonic oscillator, the simulations on ψ0 do not predict
any collapse of the GS for strongly attractive interactions,
in accordance with the case of square-well potentials [71].
Indeed, for higher-dimensional configurations, we expect the
existence of a threshold in the nonlinear coefficient above
which no stationary solution exists, as it was predicted in
harmonic potentials [72]. Compared to the study presented
in Ref. [33], the ground state of the GPE is here computed
for a much wider range of nonlinear coefficients and disorder
parameters. While the localization landscape allows to predict
the position of the localization center of the wave functions,
it is not able to account for the behavior of the localization
length. An analytical description of the quantity last men-
tioned as a function of both the nonlinear coefficient and the
disorder parameter would be of interest but lies beyond the
scope of the paper.

IV. REPULSIVE INTERACTIONS

Let us now investigate the case of repulsive interactions,
considering a Bose gas with a s-wave scattering length as =
0.02 [73] and transverse-confinement length l⊥ = 5.0 in 1D
correlated speckle potentials, as in the experiment of Billy
et al. [4]. In this section we first investigate the behavior of
the ground state ψ0 of the GPE as the nonlinear coefficient is
varied, treating the regimes of weak interactions and interme-
diate or strong interactions separately. We later dwell on the
shape and the properties of ψ0 as the mean value V0 of the
random potential is varied, with a particular attention on the
Lifshitz glass phase.

A. Exploring the strength of the interactions

In order to provide an overview of the features of the
ground state for repulsive interactions, we first plot it in Fig. 4
for g(N − 1) = 0.202 × 100, 0.202 × 101, . . . , 0.202 × 104,
considering a single realization of the random potential, char-
acterized by a mean value V0 = 0.044, as in Ref. [4]. Starting
from these data, we represent the original potential V and the
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FIG. 4. Variable repulsive interactions. Panel (a): Speckle poten-
tial V (gray solid line) with V0 = 0.044 and effective potential VLL

(black solid line) in a domain of length L = 40 000�x, with grid
step �x = 0.0175. The thick orange arrow indicates the absolute
minimum of VLL, whereas the thin orange arrows pinpoint the three
next-to-lowest minima of VLL. Panel (b): Modulus of the ground
state |ψ0| computed for different values of the nonlinear coefficient
(solid lines): g(N − 1) = 0 (red), = 0.202 (orange), = 2.02 (green),
= 20.2 (turquoise), = 202 (blue), = 2, 020 (violet). The thicknesses
of these lines are decreased for increasing nonlinear coefficient. The
baselines of the wave functions are shifted in order to display more
clearly the curves.

effective potential VLL in Fig. 4(a) and the wave functions
obtained in the noninteracting case as well as for the afore-
mentioned five different values of g(N − 1) above mentioned
in Fig. 4(b).

As one increases the strength of the repulsive interaction,
ψ0 becomes significant in larger regions of the domain, even-
tually spreading over the whole interval [−L/2, L/2]. At the
same time, the oscillation amplitude of the wave function
decreases with increasing g(N − 1).

In the noninteracting case, ψ0 is exponentially localized, in
accordance with theoretical predictions [74] and experimental
results [4]. For the configuration displayed in Fig. 4(a), the
ground state [thick red line in Fig. 4(b)] is localized at x ≈ 85
which corresponds to the absolute minimum of the effective
potential VLL [thick orange arrow in Fig. 4(a)], in agreement
with the LL theory [66]. ψ0 decays exponentially in space and
its localization length λ := (λL + λR)/2 amounts to 4.2.

For g(N − 1) = 0.202, the ground state is significant only
in two disconnected regions, as displayed in Fig. 4(b). This
indicates that the bosons fall into three clusters around the
lowest minima of the effective potential, pinpointed by the
three orange arrows in Fig. 4(a). For g(N − 1) � 2, the Bose
gas is fragmented into multiple regions, but does not explore
the entire domain.

TABLE III. Properties of the GSs displayed in Fig. 4. In the first
two columns, the healing length ξ and the localization length λ of
the SP state with energy equal to the chemical potential of the GS
of the GPE are reported. In the two following columns, the average
distance Dm

V (resp. DM
V ) between the local minima (resp. maxima) of

ψ0 and the closest local maxima (resp. minima) of V is reported. The
last two columns contain the last mentioned quantities computed for
the effective potential VLL, and denoted Dm

VLL
and DM

VLL
. The average

distances are not computed for the GSs with g(N − 1) < 10 since
these states are not delocalized in the whole domain. Each quantity
in the header row is followed by its units in parentheses.

g(N − 1) ξ λ Dm
V DM

V Dm
VLL

DM
VLL

(σEσ ) (σ ) (σ ) (σ ) (σ ) (σ ) (σ )

0.0 14.02 4.2 – – – –
0.202 2.75 7.7 – – – –
2.02 2.6 7.3 – – – –
20.2 2.14 24 3.1 2.9 0.65 0.79
202 1.16 – 1.3 1.2 0.25 0.5
2,020 0.41 – 0.45 0.60 0.33 0.90

For g(N − 1) � 20, ψ0 spreads over all the space [see
Fig. 4(b)]. As pointed out in Table III, the healing length
of the solutions to the GPE is smaller than the localization
length λ of the SP states endowed with energy equal to the
chemical potential of ψ0, except for the noninteracting case.
For g(N − 1) � 102, the localization length of the SP states
is larger or comparable to L and the states are thus delocalized
in the entire domain in Table III.

In addition, for 20 � g(N − 1) � 103 the maxima and min-
ima of ψ0 occur closer to the minima and maxima respectively
of the effective potential VLL than to those of the original
potential V . This is illustrated in Table III, where the aver-
age distances Dm

VLL
(resp. DM

VLL
) between the minima (resp.

maxima) of the wave function and the nearest maxima (resp.
minima) of the VLL are compared to those computed starting
from V , denoted as Dm

V (resp. DM
V ).

For g(N − 1) � 103, the wave function follows more accu-
rately the modulations of the original potential V (x) instead
and is predicted by the Thomas-Fermi approximation [29],
as long as the healing length is smaller than the correlation
length σ . The overlap integral between the numerical wave
function and the one in Thomas-Fermi approximation for the
last-mentioned value of g(N − 1) amounts in fact to 1.000.

In the limit of infinite repulsive interactions the system is
ergodic [32] and |ψ0| is nearly constant in space, and thus
independent of the disorder realization. It is worth noting
that, in this limit, the Gross-Pitaevskii mean-field approch is
not valid anymore, since the constraint on the mean particle
density 〈ρ〉|as|3 � 1 is not satisfied. The GS of gas of hard-
core bosons is then described by the Tonks-Girardeau model,
according to which the gas behaves as a system of spinless
fermions in the random potential V [75].

1. Weak interactions

As it was pointed out in Ref. [59] where a pure harmonic
potential was studied, for weak repulsive interactions, the spa-
tial behavior of the ground state of the GPE can be understood
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through the lowest-lying eigenstates of the noninteracting
problem in Eq. (16). We will later show that these eigenstates
can be approximated using the LL theory.

For a low nonlinear coefficient, 0 < g(N − 1) � 1, the
ground state ψ0 of the GPE can be indeed expressed as a linear
combination of the Ns eigenstates of H sp whose energy does
not exceed E th. This energy threshold is defined as

E th := E sp
0 + g(N − 1)

2

∫ L/2

−L/2

∣∣ψ sp
0 (x)

∣∣4
dx. (19)

The number of SP states Ns contributing to the expression for
ψ0 thus satisfy

Ns = nsp(E th ), (20)

where nsp indicates the integrated density of SP states (IDoS)
evaluated at E th.

The ground state of the GPE can be then written as

ψ0(x) ≈
Ns−1∑
j=0

c jψ
sp
j (x), (21)

where the coefficients {c j} must satisfy
∑Ns−1

j=0 |c j |2 = 1.
While in the harmonic case the coefficients related to odd
eigenfunctions vanish due to the parity symmetry of the po-
tential, here, since the speckle potential lacks any spatial
symmetry, the {c j} of the lowest-energy states can be all
nonzero and are evaluated as detailed in Appendix A.

Labeling as ψ lcs
0 the state approximated using the linear

combination of SP states in Eq. (21), the total energy of the
gas E lcs

0 can be evaluated in this framework by inserting the
right-hand side of Eq. (21) into Eq. (9), thus obtaining

E lcs
0 :=

Ns−1∑
j=0

|c j |2E sp
j

+ g(N − 1)

2

∫ L/2

−L/2

∣∣∣∣∣
Ns−1∑
j=0

c jψ
sp
j (x)

∣∣∣∣∣
4

dx. (22)

By labeling the coefficients of the decomposition in SP states
as {cLL

i } and by plugging the right-hand side of Eq. (21) into
Eq. (10), the chemical potential can be analogously expressed
as

μlcs :=
Ns−1∑
j=0

|c j |2E sp
j

+g(N − 1)
∫ L/2

−L/2

∣∣∣∣∣
Ns−1∑
j=0

c jψ
sp
j (x)

∣∣∣∣∣
4

dx. (23)

The SP eigenstates, necessary for computing ψ lcs
0 , E lcs

0 , and
μlcs can also be efficiently computed by starting from the LL.

The correspondence between the position of the lowest
minima of the effective potential and the localization centers
of the lowest-lying SP states has been indeed illustrated in
Ref. [66,76]. In the former work, it is also proved that the
domain �i of the ith lowest-lying SP state can be identified as
the connected region where VLL(x) � E sp,LL

i , containing the
ith lowest minimum of VLL.

The energy E sp,LL
i of the lowest-lying SP states can be

estimated using an empirical formula introduced in Ref. [66]:

E sp,LL
i =

(
1 + d

4

)
VLLmin,i, (24)

where VLLmin,i now denotes the absolute minimum of the
effective potential in the domain �i. The SP wave function
of the ith excited state, whose support lies in �i, can be
expressed as

ψ
sp,LL
i (x) = u(x)(∫

�i
|u(x)|2 dx

)1/2 , (25)

where u is the localization landscape, defined in Eq. (12). The
soundness of Eq. (25), which was introduced in Ref. [66], is
also discussed in Appendix B.

Equations (24) and (25) are valid as long as the wells of
the effective potential are occupied by a single SP state. This
situation is by far the most common in blue-detuned speckle
potentials, owing to the particular form of the probability
distribution in Eq. (7), which takes its maximum value for
VR ≡ 0, at the lower bound of its domain.

By plugging Eqs. (24) and (25) into (19), one can also find
the energy threshold for the SP states within the LL approach:

E th,LL :=
(

1 + d

4

)
VLLmin,0 + g(N − 1)

2

J sp
4(

J sp
2

)2 , (26)

where J sp
l labels the integral:

J sp
l :=

∫
�0

|u(x)|l dx, l = 2, 4. (27)

Coherently with the analysis carried out so far, the same
quantities are also evaluated by using the LL. By taking ad-
vantage of Eq. (24), the total energy can be in fact expressed
as

E lcs,LL
0 :=

NLL
s −1∑
j=0

(
1 + d

4

)
VLLmin,j

∣∣cLL
j

∣∣2 + g(N − 1)

2
(
J sp

2

)2

NLL
s −1∑

i, j,k,l=0

cLL∗
i cLL∗

j cLL
k cLL

l

∫
�i∩� j∩�k∩�l

|u(x)|4 dx, (28)

where NLL
s is the number of SP states whose energy is lower than E th,LL, defined in Eq. (26). Similarly to Eq. (23), the chemical

potential in the LL approximation can be written as

μlcs,LL :=
NLL

s −1∑
j=0

(
1 + d

4

)
VLLmin,j

∣∣cLL
j

∣∣2 + g(N − 1)(
J sp

2

)2

NLL
s −1∑

i, j,k,l=0

cLL∗
i cLL∗

j cLL
k cLL

l

∫
�i∩� j∩�k∩�l

|u(x)|4 dx. (29)
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FIG. 5. Weakly repulsive interactions and SP states. Panel (a):
Original potential V and effective potential VLL computed using the
same values of V0, l⊥ and grid step �x as in Fig. 4, for a domain
of length L = 16 000�x. The arrows indicate the four lowest min-
ima of VLL where the lowest-lying SP states reach their absolute
maxima. Panel (b): Probability amplitudes associated to the four
lowest-energy states {ψ sp

i } of the noninteracting Hamiltonian H sp,
plotted as solid lines. The aforementioned states are found by ex-
act diagonalization of the SP Hamiltonian in Eq. (11). The black
dashed line represents the ground state ψ0 of the GPE, extracted for
g(N − 1) = 0.202.

In order to numerically test the validity of this approach,
we consider an ultracold Bose gas in a speckle potential with
the same values of parameters V0 and σ as in Fig. 4, but
a different disorder realization in a smaller domain, repre-
sented in Fig. 5(a). The ground state of the GPE is computed
for g(N − 1) = 0.202 and plotted in Fig. 5(b) by the black
dashed lines respectively. For the former value of the nonlin-
ear coefficient, the number of relevant SP eigenstates of H sp

contributing to the expansion (21) amounts to Ns = 4, a value
that is reckoned by using Eqs. (20) and (19). The four lowest-
lying SP eigenstates, computed by exact diagonalization of
the SP Hamiltonian, are plotted in Fig. 5(b) (solid lines).

One can also infer from Fig. 5 that the absolute maxima
of the SP eigenstates occur at the lowest minima of the effec-
tive potential VLL. In particular, the squared modulus of ψ

sp
0

reaches its maximum at the absolute minimum of the effective
potential VLL, as pinpointed by the red arrow in Fig. 5(a). The
other SP states possess their absolute maxima at the local min-
ima of VLL indicated by the other arrows in this figure. While
the eigenstate ψ

sp
2 is localized, with a localization length of

λ = 6.3, the ground state ψ0 of the GPE, whose chemical
potential is close to E sp

2 , is partially delocalized and possesses
a healing length ξ = 2.70.

For the situation in Fig. 5, we compute the coefficients
{ci} following a procedure detailed in Appendix A, that is, by
solving Eq. (A3) with m = 0, 1, . . . , Ns − 1, which involves

TABLE IV. Summary of the values of the energy and of the
coefficients of the expansion (21) related to the state ψ0 plotted in
Fig. 5(b). {E sp

i } and {|ci|} are computed by means of the eigen-
functions extracted by exact diagonalization of H sp. {E sp,LL

i } and
{|cLL

i |} are evaluated by using the SP eigenstates in the LL-based
approximation in Eq. (25), with the eigenenergies in Eq. (24). Each
quantity in the header row is followed by its units in parentheses.

i E sp
i (10−2Eσ ) E sp,LL

i (10−2Eσ ) |ci| |cLL
i |

0 6.412 6.937 0.766 0.674
1 6.555 7.279 0.587 0.578
2 6.848 7.124 0.248 0.460
3 6.917 7.600 0.0823 0.0

the SP states and energies computed by two different methods:
exact diagonalization of H sp and LL [in Eqs. (24) and (25)].
The moduli of the coefficients {ci} found with the former
method are presented in Table IV, together with the ones
computed using the latter method, {|cLL

i |}. While the number
of relevant SP states is not the same for the two approaches,
the agreement between the two sets of coefficients is quite
satisfactory, in particular for the main two contributions, |c0|
and |c1|, where the deviation is about 6% on average. The
discrepancy occurring for the most excited states follows from
the coarseness of the LL-based approximation in Eq. (25) in
the tail regions of the SP wave functions. As one can see in
Table IV, the values of the energies computed by Eq. (24) are
overestimated by 9% on average, an amount which is of the
same order of the one found in Ref. [66].

By using the two sets of coefficients in Table IV, the ground
state of the GPE in the approximation presented in Eq. (21) is
evaluated using the SP eigenstates extracted by means of the
two different approaches. The probability amplitude |ψ lcs

0 |2
computed with the coefficients {ci} is then represented in
Fig. 6 as the blue dashed line, whereas the one obtained with
the coefficients {cLL

i }, indicated as |ψ lcs,LL
0 |2, is plotted as the

thick red dotted line. In the same figure, both quantities are
compared against the exact numerical probability amplitude
|ψ0|2 (black solid line). The very good agreement between
the squared moduli of ψ0 and ψ

lcsp
0 also ascertains the va-

lidity of the approach here used, based on the lowest-lying
SP eigenstates. Moreover, the approximation in Eq. (21) is
also accurate in the description of ψ0 in the tail regions. In
these spatial intervals, the nonlinear term of the GPE becomes
negligible compared to the one-particle terms, so that the
solutions to the GPE decay exponentially as the SP states.

The overlap integral between the wave functions ψ0 and
ψ

lcsp
0 ,

∫
ψ∗

0 (x)ψ lcs
0 (x) dx, is equal to 0.996, while the overlap

integral between ψ0 and ψ lcs,LL
0 amounts then to 0.901. This

smaller value reflects a larger deviation between the states. On
the other hand, ψ lcs,LL

0 is able to capture well the positions of
the highest local maxima, but fails to account for the region
where ψ

sp
0 and ψ

sp
2 overlap between each other. Nevertheless,

the landscape-based approximation becomes convenient for
larger systems or for higher dimension, due to its much lower
computational cost [66] compared to the diagonalization of
the SP Hamiltonian. Furthermore, the total energy and the
chemical potential associated to the ground state of the GPE
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FIG. 6. Probability density associated to the ground state of the
GPE for g(N − 1) = 0.202 and the disorder configuration displayed
in Fig. 5(a), computed by means of three different methods. Probabil-
ity amplitude |ψ0|2 determined by imaginary-time evolution (black
solid line). |ψ lcs

0 |2 (blue dashed line), referring to the approximation
in Eq. (21), based on the SP eigenstates computed by exact diagonal-
ization. |ψ lcs,LL

0 |2 (thick red dotted line), found in the approximation
in Eq. (21), based on the SP eigenfunctions estimated using the LL
in Eq. (25).

in the SP-state expansion of Eq. (21) are computed by means
of Eqs. (22) and (23), respectively. The values of the energy
and the chemical potential thus found are compared with those
obtained using the LL in Eqs. (28) and (29) in the second and
the third columns of Table V, respectively.

In particular, the energy and the chemical potential ob-
tained by using the exact ψ0 [see Eqs. (9) and (10)] appear
to be in excellent agreement with those found within the
approximation based on the expansion in SP states extracted
by exact diagonalization of H sp, the deviation between the two
estimates being of 3‰ at most. The discrepancies with the
estimates based on the LL, E lcs,LL

0 and μlcs,LL, both amount to
10% instead and mirrors the overestimates noticed in the SP
energies (in Table IV).

Finally, it is worth noticing that the GSs of the GPE ex-
plainable as superpositions of SP states are not necessarily

TABLE V. Comparison between the values of the energy and the
chemical potential of the ground state of the GPE for g(N − 1) =
0.202 in Fig. 6, obtained by three different procedures. First column:
quantities computed by means of the Crank-Nicolson imaginary-time
evolution algorithm. Second column: energy and chemical potential
evaluated by using Eqs. (22) and (23), respectively. Third column:
same quantities estimated by making use of Eqs. (28) and (29),
respectively. Each quantity in the header rows is followed by its units
in parentheses.

Exact solution SP-mode decomposition

E0 (Eσ ) E lcs
0 (Eσ ) E lcs,LL

0 (Eσ )

6.685 × 10−2 6.689 × 10−2 7.328 × 10−2

μ (Eσ ) μlcs (Eσ ) μlcs,LL (Eσ )
6.872 × 10−2 6.888 × 10−2 7.564 × 10−2

in the Lifshitz glass regime [46], where the spatial overlap
between the states is negligible, unlike the case in Fig. 5.

We have seen that, for weak repulsive interactions, the
delocalization effect can be understood by introducing a de-
composition in the lowest-lying SP states [see Eq. (21)]. This
applies to any type of random potential, spatial distribution,
and correlation profile. Besides, the LL, which is able to pre-
dict the location of each SP state, allows one to quite precisely
estimate the ground state of the GPE, as well as its energy
and chemical potential, with a reduced computational cost.
A more accurate description of the long-distance behavior of
the SP states, and hence of the GS of the GPE, would be
possible by taking advantage of the notion of Agmon’s dis-
tance [61,77,78], which is also based on the effective potential
VLL. This approach would be particularly relevant to assess
the transport properties of ψ0, which however lie outside the
scope of the paper. The evaluation of the SP ground state
by exact diagonalization of H sp has further allowed us to
prove the consistency with the stationary state computed by
the imaginary-time evolution algorithm for vanishing interac-
tions. In the following subsection we focus on the shape of
the wave function ψ0 for intermediate and strong repulsive
interactions.

2. Intermediate and strong interactions

As proved in Ref. [29], when ξ � 1, the length of the
spatial modulations of the particle density can be only larger
than the correlation length of the random potential VR. The
wave function of the ground state ψ0 is then sensitive to the
modulations of a potential Vs which is smoother [29] than the
original one, V :

Vs(x) =
∫ L/2

−L/2
G(x′)VR(x − x′) dx′, (30)

where

G(x) = 1√
2ξ ′ e

−
√

2|x|
ξ ′ (31)

is the Green’s function related to the disorder-free problem
(− ξ ′2

2 ∇2 + l−2
⊥ )G(x) = δ(x), in which ξ ′ := ξ

√
μ

μ−l−2
⊥

. The

macroscopical wave function in this approximation, where the
smoothed potential is treated as a perturbation with respect to
the homogeneous case, ψ s

0 is given by [29]

ψ s
0(x) =

√
μ − l−2

⊥
g(N − 1)

[
1 − 1

2(μ − l−2
⊥ )

Vs(x)

]
. (32)

In addition, the validity of Eq. (32) is guaranteed as long as
ξ � L and Vs(x) � μ − l−2

⊥ .
Within the smoothing regime thus defined, we introduce

another approximation scheme, based on the effective poten-
tial VLL(x) and much less computationally expensive:

∣∣ψTF,LL
0 (x)

∣∣ =
{√

μ−VLL (x)
g(N−1) μ � VLL(x)

0 μ < VLL(x)
. (33)

This scheme is accurate as long as 1 < ξ < σLL, where σLL

is the correlation length of the effective potential. When
ξ < 1, the kinetic energy of the gas becomes negligible and
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FIG. 7. Intermediate and strongly repulsive interactions. Panel (a): Ground state of the GPE with the potential shown in Fig. 4(a) and for
a nonlinear coefficient g(N − 1) = 2, 020. Wave function ψ0 computed by imaginary-time evolution (black solid line), by the Thomas-Fermi
approximation ψTF

0 (blue dashed line) in Eq. (34), by the landscape-based approximation ψTF,LL
0 (green dashed line) and by the perturbative

method in Eq. (32) ψ s
0 (magenta dotted line). For the sake of readability, the thicknesses of these curves are different. Panel (b): The same

quantities as in panel (a), restricted to the interval [−12.5, 12.5]. Panel (c): The same quantities as in panel (a), but related to the ground state
of the GPE for g(N − 1) = 101. Panel (d): The same quantities as in panel (c), restricted to the interval [−100, −62.5]. Panel (e): The same
quantities as in panel (a), but related to the ground state of the GPE for g(N − 1) = 5.04. Unlike in panel (a), ψTF

0 is here omitted, since the
conditions of the Thomas-Fermi approximation are by far not satisfied. Panel (f): The same quantities as in panel (e), restricted to the interval
[−125, −62.5].

the modulations of the original potential govern the spatial
behavior of the wave function ψ0, as noticed at the beginning
of this section. Under this condition, the most appropriate
description is the one provided by the usual Thomas-Fermi
approximation [29]:

∣∣ψTF
0 (x)

∣∣ =
{√

μ−V (x)
g(N−1) μ � V (x)

0 μ < V (x)
. (34)

By considering the same disorder configuration as in
Fig. 4(a), we compute the ground state of the GPE
for three values of the nonlinear coefficient: g(N − 1) =
2, 020, 101, 5.04. The SP states lying at energies equal to
the chemical potentials associated to the interacting states
are localized for g(N − 1) = 5.04 and g(N − 1) = 101, and
extended for g(N − 1) = 2, 020 in the random potential dis-
played in Fig. 4(a), due to the finiteness of the domain. In
particular, for g(N − 1) = 5.04 [resp. g(N − 1) = 101], the
localization length amounts to λ = 12 (resp. λ = 123), which
is larger than the healing length ξ = 2.47 (resp. ξ = 1.48).

The estimate of ψ0 based on Eq. (33) is shown in Fig. 7,
where the GS is compared to the usual Thomas-Fermi approx-
imation in Eq. (34) and to the smoothing approximation in
Eq. (32) in Figs. 7(a)–7(d), and only to the latter scheme in
Figs. 7(e) and 7(f). In Figs. 7(a) and 7(b) we show that, for
strong interactions [as g(N − 1) = 2020], when also both the
conditions ξ < 1 and V0 � μ are fulfilled, the Thomas-Fermi
approximation proves to be an excellent approximation, since

the overlap integral with ψ0 reaches 0.9997. The same value is
found also for the overlap integral between ψ0 and ψ s

0, since
in that case G(x) ≈ δ(x), thus Vs ≈ VR. Unlike ψTF

0 , ψTF,LL
0

here appears to be far from the GS ψ0 of the Gross-Pitaevskii
equation, whose behavior is ruled by the original potential V
rather than the effective one, VLL.

Figures 7(c) and 7(d) represent the case in which g(N −
1) = 101, where the healing length satisfies ξ � 1 while
the chemical potential μ � V0. Under these conditions,
the Thomas-Fermi approach becomes inadequate, whereas
ψTF,LL

0 approaches satisfactorily the wave function ψ0, with
an overlap integral with ψ0 which amounts to 0.9994. At
the same time, ψ s

0 still represents a reliable approximation,
since the overlap integral with ψ0 is equal to 0.9983. Fig-
ures 7(e) and 7(f) refer to the case in which g(N − 1) = 5.04,
characterized by μ ∼ V0 and still by ξ > 1. Here, the pertur-
bative approach introduced with the smoothing approximation
is rather coarse, as well as—to a slightly lesser extent—the
ansatz in Eq. (33).

To summarize, while for strong repulsive interactions, such
that ξ � 1, we have recovered that the stationary state fol-
lows the Thomas-Fermi approximation [29], an analogous
scheme based on the effective potential provides an efficient
way to compute ψ0 for 1 < ξ < σLL, which holds as long
as the gas is not fragmented. It is worthwhile to remark that
the delocalizing effect on ψ0 in the presence of increasingly
strong repulsive interactions also qualitatively agrees with a
previous result obtained in the context of the (many-particle)
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FIG. 8. Repulsively interacting Bose gases with g(N − 1) =
30.7 in speckle potentials with different values of V0 and confinement
length l⊥ = 5.0 in a domain of length L = 40 000�x, where �x =
0.0175. Panel (a): Effective potentials VLL (solid lines) for different
mean values V0 of the speckle potential: V0 = 0.013 (black lines),
V0 = 0.13 (red lines), V0 = 1.3 (blue lines). Panel (b): The same
quantities as in panel (a), restricted to the spatial interval [0, 100].
Original potentials V (dashed lines with the same colors of the
corresponding effective potentials). Panel (c): Ground states of the
1D GPE in Eq. (5) for the three mean values V0 last mentioned (solid
lines). Panel (d): The same quantities as in panel (c), but plotted in
the same spatial interval as in panel (b). The thicknesses of all curves
are increased for decreasing values of V0.

Lieb-Liniger model [79] with scatterers following the Poisson
distribution and Dirichlet boundary conditions on ψ0.

B. Exploring the mean disorder strength

While in the previous section we have investigated the
effect of repulsive interactions on the GS of the GPE, here
we assess the effect of disorder on the spatial behavior of ψ0.
Before introducing an efficient scheme to evaluate the particle
density in the Lifshitz glass regime, we compute the GS for
different values of the parameter V0 of the random potential,
keeping the correlation length and the transverse-confinement
length constant and equal to those set in Ref. [4]. We begin
considering the case of a repulsively interacting gas, using
the same parameters as in Fig. 4, except for g(N − 1) = 30.7
and V0, which is varied from 0.013 to 1.3 by factors of 10. In
Fig. 8(a) we plot the effective potentials VLL with solid lines
for three different values of V0, whereas in Fig. 8(c) we show
the corresponding moduli of the wave functions ψ0. For the
sake of readability, the total potentials V are only plotted in
Fig. 8(b) with dashed lines with different thicknesses, using
the same colors of the corresponding effective potentials. As
it can be noticed from Fig. 8, the modulus of the wave function
at the maxima of the effective potential VLL gets lower as V0 is

TABLE VI. Properties of the GSs displayed in Figs. 8(c) and
8(d). Healing length ξ and localization length λ of the SP state with
energy equal to the chemical potential of the GS of the GPE.

V0 (units of Eσ ) ξ (units of σ ) λ (units of σ )

0.013 2.26 −
0.13 1.64 9.3
1.3 0.956 1.2

increased from V0 = 0.013 to V0 = 1.3. This reflects the fact
that the energy E0 becomes progressively smaller than V0 as
the latter quantity is raised. As a result, the condensate gets
more tightly trapped by the potential and ultimately multifrag-
mented [33,46], i.e., roughly describable as a superposition of
localized states.

As this confining effect becomes more pronounced, the
effective potential VLL gets closer to the original potential, as
can be seen in Fig. 8(b). This effect can be traced back to a
crossover between the quantum and the semiclassical regimes.
The former regime, occurring for V0 < 1, is characterized by
the competition between quantum interference and tunneling,
whereas the latter takes places for V0 > 1 and is dominated by
the suppression of tunneling and the onset of localization due
to the barriers of potential. Furthermore, in the region of the
parameter space explored, the effective potential still allows
one to well predict the position of the maxima of the ground
state ψ0, since ξ � 1, as seen in Sec. IV A 2. For V0 = 0.013,
in the deeply quantum regime, the SP eigenstate lying at the
energy closest to the chemical potential of the state ψ0 is
also a delocalized state in the domain in Fig. 8(a), unlike the
states associated to the other two GSs, whose healing length
is compared to the localization length in Table VI.

As noticed in this analysis, for very strong disorder, the
ground state ψ0 of the Gross-Pitaevskii equation tends to be a
superposition of localized SP states which do not exhibit any
overlap between each other, unlike those shown in Fig. 5(b).
Since these states belong to the Lifshitz tails of the SP spec-
trum, the Bose gas becomes a Lifshitz glass, where the gas
splits into minicondensates that occupy the lowest-lying SP
states, satisfying the condition E sp

i � μ [46].
According to the landscape theory, these states are ex-

pected to occur at the deepest wells of the effective potential
VLL, whose occupation number increases as the SP local-
ization length gets larger. The number of particles N sp,LL

i

associated to each one-particle wave function ψ
sp,LL
i can be

thus evaluated, using the LL, as follows:

N sp,LL
i =

{
μLL−E sp,LL

i

U LL
i

for μLL < E sp,LL
i

0 for μLL � E sp,LL
i

, (35)

where NLL
s denotes the number of SP states, μLL the chemical

potential, and U LL
i := g

∫ L/2
−L/2 dx|ψ sp,LL

i (x)|4. In the relation
last mentioned, the SP state is approximated by means of
Eq. (25), while its energy is estimated by exploiting Eq. (24).
The numbers of particles in each SP state satisfy

NLL
s −1∑
i=0

N sp,LL
i = N , (36)
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FIG. 9. Lifshitz glass phase. A repulsively interacting gas with
g(N − 1) = 2.71 and N = 1, 500 atoms of 87Rb in a 1D speckle
potential with typical amplitude V0 = 3.0 in a domain of length
L = 40 000�x with �x = 0.0175. Panel (a): Original potential V
(magenta solid line) and effective potential VLL (green dashed line).
Panel (b): The particle densities {N |ψ sp

i |2} associated to the 10
lowest-lying SP eigenstates of H sp (solid lines), determined by exact
diagonalization. Particle density N |ψ0|2 related to the ground state
of the GPE computed by imaginary-time evolution (black solid line),
and the one evaluated by approximating the SP eigenstates using
Eq. (25), denoted as N |ψLL

0 |2 (black dashed line).

and the chemical potential associated to the many-particle
state can be written as

μLL =
N + ∑NLL

s −1
i=0

E sp,LL
i

U LL
i∑NLL

s −1
i=0 U LL−1

i

. (37)

Reminding the relation (10), the energy of the ground state ψ0

of the GPE now can be expressed as

ELL
0 = 1

2N

NLL
s −1∑
i=0

(
μLL2 − E sp,LL2

i

)
U LL

i

. (38)

To this purpose, we consider a realization of the random
potential with a mean value V0 increased by almost 70 times
compared to the one represented in Fig. 5(a) and a nonlinear
coefficient g(N − 1) = 2.71, fixing the number of particles
to N = 1500. Despite the high value of V0, the spacing be-
tween the single-particle energy levels is still lower than l−1

⊥ ,
thus justifying again the factorization of ψ0(r) in Eq. (3).
The ground state computed by imaginary-time evolution, por-
trayed as the black curve in Fig. 9(b), is nonvanishing along
the support of the first Ns = 10 lowest-lying eigenstates of
the single-particle problem (11), computed by exact diago-
nalization and represented by the solid lines (from brown to

TABLE VII. Lifshitz glass phase. (a) Summary of the ten lowest-
lying SP energy values {E sp

i } and the numbers of particles in each
SP state (estimated by using three different methods), related to the
system in Fig. 8. From column 1 to 2: SP state labels and SP state
eigenenergies, computed by exact diagonalization. From column 3
to column 5: the numbers of bosons in each SP state computed
by integration around the peaks of the ground state of the GPE
(N sp,GPE

i ), the ones evaluated by using Eq. (35) with SP states by exact
diagonalization (N sp

i ), and the ones estimated by means of Eq. (35)
with SP states by LL (N sp,LL

i ). (b) The total energy of the Bose gas
and its chemical potential, estimated starting from the data found by
the three methods above mentioned. Each quantity in the header rows
is followed by its units in parentheses.

i E sp
i (10−1Eσ ) N sp,GPE

i N sp
i N sp,LL

i

0 3.443 316 310 262
1 3.931 230 226 200
2 4.039 180 178 152
3 4.040 218 214 194
4 4.071 160 160 148
5 4.156 154 155 148
6 4.506 105 107 125
7 4.583 87 88 105
8 4.757 41 44 64
9 4.957 9 13 55
10 5.186 0 0 13
11 5.317 0 0 9
12 5.425 0 0 19

(a)

Ground-state energy
E0 (Eσ ) EGPE

0 (Eσ ) ELL
0 (Eσ )

4.526 × 10−1 4.515 × 10−1 4.732 × 10−1

Chemical potential
μ (Eσ ) μGPE (Eσ ) μLL (Eσ )

5.041 × 10−1 5.016 × 10−1 5.349 × 10−1

(b)

violet). The SP eigenstate ψ
sp
9 located at the energy closest

to the chemical potential is localized and characterized by a
localization length λ = 0.57, which is here smaller than both
the correlation length σ and the healing length ξ = 0.998.

Compared to the case examined in Sec. IV A 1, NLL
s here

is no longer predicted by Eq. (26), which, in the case of
Fig. 9, would lead to an overestimate of that number, thus
yielding an upper energy limit for the SP states E th,LL = 0.869
because the interaction is not small enough. Since the exact
lowest-lying SP states do not occupy the lowest minima of
the effective potential in rigorous ascending order of energy,
the LL-based predictions concern a slightly different set of
SP eigenstates, as shown in the fifth column of Table VIIa.
Hence, both the total energy and the chemical potential in the
third column of Table VIIb appear to differ from the estimates
above mentioned, by about 5% and 7%, respectively. Besides,
the exact diagonalization allows one to determine values of
the energy and the chemical potential [in Eqs. (38) and (37),
respectively] which are in excellent agreement with those
associated to the exact numerical GS ψ0, as witnessed by the
values exposed in columns 1 and 2 in Table VIIb.
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The occupation numbers {N sp,LL
i } are compared to those

evaluated by exact diagonalization, denoted as {N sp
i } in Ta-

ble VIIa. In the same table, the occupation numbers {N sp,GPE
i },

extracted by integrating the GS of the GPE along the support
of each SP wave function, are also reported. The boundaries
of each support are numerically estimated by identifying the
points where ψ

sp
i (x) decreases to values lower than 0.05. As

it can be inferred, the three estimates agree quite well for the
eight lowest-energy states, for which the discrepancy with re-
spect to {N sp,GPE

i } amounts to 13% on average for the {N sp,LL
i },

and to the 1.3% for the {N sp
i }. The evaluation of {N sp,LL

i } then
permits one to obtain the GS ψLL

0 , represented as the black
dashed curve in Fig. 9(b). As one can also infer from Fig. 9(b),
the LL is able to capture all main peaks of the numerical
GS ψ0, but it also predicts nonzero occupancy of the states
ψ

sp
10, ψ sp

11, and ψ
sp
12. The overlap integral

∫ L/2
−L/2 ψ∗

0 (x)ψLL
0 (x) dx

between the collective wave functions amounts to 0.853. This
result suggests a quite good accuracy of the landscape-based
scheme in the Lifshitz glass phase.

The results of this subsection show that, for increasing
disorder mean amplitude and fixed repulsive interaction, the
delocalized ground state becomes increasingly fragmented.
This ultimately gives rise to the appearance of the Lifshitz
glass phase, where the Bose gas splits into minicondensates
localized on SP states which do not spatially overlap and
belong to the Lifshitz tails of the SP IDoS. Here the GS of
the GPE can be effectively approximated by exploiting the
estimates of the SP states obtained by using the LL. We also
point out that finiteness of the number of wells occupied by
the wave function ψ0 under those conditions was also proved
by Seiringer et al. [79] within the Lieb-Liniger model with
randomly distributed potential barriers.

V. CONCLUSIONS AND PERSPECTIVES

We have presented here the numerical computation of
the GS ψ0 of the quasi-1D Gross-Pitaevskii equation with
Gaussian-correlated speckle potentials for a broad range of
disorder parameters and nonlinear couplings. The spatial be-
havior of ψ0 has been analyzed in relation with the original
potential V and the effective potential VLL, which is given by
the reciprocal of the LL function. New approaches, based on
the LL have been introduced for ψ0 in the different phases
(shaded areas in the quantum-state diagram in Fig. 10), in
the regions of the interaction-disorder plane pinpointed by the
violet signs.

For attractive interactions, which strengthen the exponen-
tial localization of the atoms, we have shown that the LL
allows us to accurately predict the localization center of the
GS of the GPE. The behavior of the localization length as
a function of both the nonlinear coefficient and the disorder
parameter would be worth investigating beyond the weak-
disorder regime [80,81], in which the Born approximation
holds.

For weak repulsive interactions g(N − 1) � 1, we have
proved that the ground state of the Gross-Pitaevskii equation is
well approximated by an expansion in terms of a finite num-
ber of single-particle states {ψ sp

i }. For intermediate repulsive
interactions, when 1 < ξ < σLL, we have assessed an approxi-

FIG. 10. Schematic quantum-state diagram in the interaction-
disorder plane in which the abbreviations denote the approximations
used for ψ0 throughout the paper: the linear combination of states
(LCS) for weakly repulsive interactions, the LL-based approximation
in the Lifshitz glass phase, the Thomas-Fermi-like approximation
(TF-LL) for intermediate repulsive interactions (σLL < ξ < 1), and
the Thomas-Fermi approach for strongly repulsive interactions (ξ �
1). The dashed lines refer to the crossovers between each phase.

mation of ψ0, based on a Thomas-Fermi-like ansatz using the
effective potential, showing that, in this regime, ψ0 follows
the modulations of the effective potential rather than those
of the original one. Nevertheless, when this approximation
breaks down, the expansion in SP states is not convenient
anymore, since g(N − 1) can be much larger than 1 and a
suitable theoretical approach is still missing.

The LL has also opened the possibility to reckon the oc-
cupation number of each SP state when the Bose gas is in
the Lifshitz glass regime. In order to pinpoint the crossover
region between this regime and the Bose glass one, it would
be of particular prominence to compute the disorder-averaged
atomic population and domain size of the SP states as a
function of the interaction strength and the mean value of the
random potential, starting from the effective potential.

The approaches here introduced have managed to increase
our knowledge of the solutions of the time-independent GPE.
These schemes can also be applied for positive-valued ran-
dom potentials endowed with any spatial distribution, on the
condition that the correlation profile has a finite range. For
long-range correlations in the disorder, the above methods
might be not suitable since they can hinder localization,
leading to the occurrence of mobility edges even in the
noninteracting case [82] and they inhibit the fragmentation
occurring for defocusing GPEs [32].

Furthermore, the results presented in this work can help to
structure systems with higher-dimensional random potentials,
whose phase diagram is more partially known [47,48,83] and
where the features of the wave functions have been estimated
only for superpositions of Gaussian and harmonic potentials
[32], between the latter and the speckle ones [29], as well as
for Bernoulli potentials [84]. For instance, the application of
the LL theory to the density of states [67] may be helpful
in accounting for the numerical phase boundary between the
normal and the superfluid phase [48,83] which occurs in 2D
random potentials.
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Moreover, it would be of interest to understand how our
results would be modified in the presence of corrections to
the GPE, like those accounting for beyond-mean-field effects
such as quantum fluctuations [85], and those due to finite-
range interactions [86,87], modeling van der Waals potentials.
Another possible application of our methods can be sought in
the Bogoliubov excitations on top of the GS, whose dispersion
relation has been found also in random potentials [88] in
arbitrary dimensions.
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APPENDIX A: EVALUATION OF THE COEFFICIENTS OF
THE EXPANSION FOR WEAK REPULSIVE

INTERACTIONS

In this Appendix we outline the analytical approximation
followed to efficiently evaluate the coefficients {ci} of the
expansion in Eq. (21) for Ns SP states. By plugging Eq. (21)

into the Gross-Pitaevskii equation (5) and multiplying both
members on the left by the eigenstate ψ

sp
m of H sp, the follow-

ing relation among the coefficients {ci} is found:

cm
(
E sp

m − μ
) = g(N − 1)

Ns−1∑
j,k,n=0

c∗
j ckcnIm jkn, (A1)

where the sum of the squared moduli of the coefficients is
normalized to unity and

Im jkn :=
∫ −L/2

−L/2
ψ sp∗

m (x)ψ sp∗
j (x)ψ sp

k (x)ψ sp
n (x) dx. (A2)

Reminding the definition of the chemical potential in Eq. (10),
that equation can be rewritten as

cm

(
E sp

m −
Ns−1∑
j=0

|c j |2E sp
j

)

= ḡ(N − 1)
Ns−1∑

i, j,k,n=0

(δim − c∗
i )c∗

j ckcnIi jkn, (A3)

where δim is the Kronecker’s delta between the SP eigenstates
ψ

sp
i and ψ

sp
m . By finding the equation (A3) for each coefficient

ci with i = 0, 1, . . . , Ns − 1, one obtains a system of nonlinear
coupled equations. Among the N4

s overlap integrals involved
in Eq. (A3), the most important contributions are those of the
N3

s integrals containing at least two identical wave functions.
Moreover, assuming real-valued eigenfunctions, the number
of relevant integrals reduces to Ns + 3

2 Ns!( 1
Ns−2! + 1

Ns−3! ) and
the summations on the right-hand side of Eq. (A3) become

Ns−1∑
i, j,k,n=0

(δim − c∗
i )c∗

j ckcnIi jkn ≈
Ns−1∑
i=0

(
c4

i − δim
)
c3

mIiiii +
Ns−1∑
i �= j

(
4c3

i c j − c3
i δ jm − 3c jc

2
mδim

)
Iiii j

+ 3
Ns−1∑
i> j

(
2c2

i c2
j − c2

i cmδ jm
)
Iii j j + 6

Ns−1∑
i> j
j>k

(
2c2

i c jck − δim
)
Iii jk

+ 3
Ns−1∑
i> j
j>k

(
4cic

2
j ck − c2

j ckδim
)
Ii j jk + 3

Ns−1∑
i> j
j>k

(
4cic jc

2
k − c jc

2
kδim

)
Ii jkk . (A4)

Under the same assumptions, the following contributions to
the left-hand side of Eq. (A4) are therefore neglected:

6
Ns−1∑
i> j
j>k
k>l

(4cic jckcl − c jckclδim)Ii jkl , (A5)

since they involve integrals over four different one-particle
eigenfunctions. As Eqs. (A4) for m = 0, 1, . . . , Ns are poly-
nomial relations up to the fourth order in the coefficients,
manifold solutions are possible, all occurring in couples with
opposite signs and satisfying the normalization condition, ex-
cept for the trivial (and unphysical) one, characterized by all
vanishing {ci}. The most appropriate solution for the ground

state of the GPE (5) is then identified as the one which mini-
mizes the total energy E0.

APPENDIX B: JUSTIFICATION OF THE
APPROXIMATION OF THE SINGLE-PARTICLE STATES

BASED ON THE LOCALIZATION LANDSCAPE

In this Appendix we provide a mathematical explanation in
support of Eq. (25), which has been exploited in Secs. IV A1
and IV B. Considering the linear decomposition of the lo-
calization landscape on the orthonormal basis {ψ sp

i } of SP
eigenstates, in Dirac’s notation it reads

|u〉 =
∑

i

ui

∣∣ψ sp
i

〉
, (B1)

043306-14



LOCALIZATION LANDSCAPE FOR INTERACTING BOSE … PHYSICAL REVIEW A 107, 043306 (2023)

where ui := 〈u|ψ sp
i 〉. Using the same notation, the definition

of the localization landscape in Eq. (12) becomes

H sp|u〉 = |1〉. (B2)

By plugging the right-hand side of Eq. (B1) into the left-hand
side of Eq. (B2) and multiplying both sides by 〈x| on the left,
one finds∑

i

〈x|H sp
∣∣ψ sp

i

〉
ui =

∑
i

E sp
i ψ

sp
i (x)ui = 〈x|1〉, (B3)

where we have used Eq. (16) as well as the definition
ψ

sp
i (x) := 〈x|ψ sp

i 〉. By multiplying both sides of Eq. (B3) by
ψ

sp∗
j (x) and performing integrations over the coordinate x one

obtains∑
i

∫
ψ

sp∗
j (x)ψ sp

i (x)E sp
i ui dx =

∫
ψ

sp∗
j (x) dx = 〈

ψ
sp
j

∣∣1〉
.

(B4)
Since

∫
ψ

sp∗
j (x)ψ sp

i (x) dx = δi j ,
∫ |x〉〈x| dx = 1, and the

speckle potential is always positive-valued [see Eq. (7)], one

can deduce the following relation from Eq. (B4):

uj =
〈
ψ

sp
j

∣∣1〉
E sp

j

. (B5)

By plugging the right-hand side of Eq. (B5) into the right-
hand side of Eq. (B1) and multiplying by 〈x| on the left, the
decomposition becomes

u(x) =
∑

i

〈
ψ

sp
i

∣∣1〉
E sp

i

ψi(x). (B6)

Within the effective domain �i associated to the eigenstate
ψ

sp
i one thus finds that the leading contribution to the local-

ization landscape is the one associated to the ith lowest-lying
SP state. As a result one can approximate the state last men-
tioned as the localization landscape in �i, multiplied by a
dimensional coefficient, as in Eq. (25), which is determined
by imposing the normalization condition to the SP eigenstate.
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