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Quantum kinetics of quenched two-dimensional Bose superfluids
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We study theoretically the nonequilibrium dynamics of a two-dimensional (2D) uniform Bose superfluid
following a quantum quench, from its short-time (prethermal) coherent dynamics to its long-time thermalization.
Using a quantum hydrodynamic description combined with a Keldysh field formalism, we derive quantum
kinetic equations for the low-energy phononic excitations of the system and characterize both their normal and
anomalous momentum distributions. We apply this formalism to the interaction quench of a 2D Bose gas and
study the ensuing dynamics of its quantum structure factor and coherence function, both recently measured
experimentally. Our results indicate that, in two dimensions, a description in terms of independent quasipar-
ticles becomes quickly inaccurate and should be systematically questioned when dealing with nonequilibrium
scenarios.
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I. INTRODUCTION

The out-of-equilibrium dynamics of isolated quantum
many-body systems revealed a rich panel of scenarios in the
recent years. In the generic case of ergodic systems, the Eigen-
state Thermalization Hypothesis is expected to hold, such
that at sufficiently long time any local observable acquires a
value taken from a Gibbs ensemble [1,2]. In the context of
experiments on cold-atomic gases, the relaxation dynamics
following a quantum quench has been especially explored in
one dimension, both in the weakly [3,4] and strongly [5,6]
interacting regimes. In the latter case, interesting theoretical
predictions were also made using nonquadratic Luttinger-
liquid models [7–10], such as an algebraic relaxation toward
equilibrium [9,11]. In parallel, the peculiar case of systems es-
caping thermalization attracted much attention in connection
with integrability [12,13] or many-body localization [14–16].

In higher dimensions, a new generation of experiments
has recently appeared, exploring, e.g., the relaxation dy-
namics of cold-atomic gases in the strong-interaction limit
[17,18] or the emergence of universal scaling laws in the
vicinity of the condensation transition in three dimensions
[19,20]. Concomitantly, theoretical developments based on
quantum kinetic approaches were proposed to describe the
nonequilibrium evolution of three-dimensional (3D) isolated
quantum gases toward thermalization [21–24]. In compari-
son, on the other hand, two-dimensional (2D) nonequilibrium
Bose gases have so far received less attention. Different from
3D Bose gases, only superfluid quasicondensates with al-
gebraic long-range order exist for ultracold bosons in two
dimensions, which requires a special treatment of phase
fluctuations [25–27]. Two-dimensional Bose gases also ex-
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perience an interaction-driven Kosterlitz-Thouless transition,
around which the dynamics exhibits specific temporal fea-
tures [28–30]. Generally speaking, the ability to restrict the
atomic motion to two dimensions using confining optical po-
tentials has allowed for more and more accurate experiments
of nonequilibrium physics with quantum fluids [30–32]. In
the context of optics, finally, a number of experiments in-
volving “fluids of light” [33,34] have emerged, in particular
in cavity-less, nonlinear materials where the propagation of a
laser mimics the out-of-equilibrium dynamics of 2D dilute ul-
tracold Bose gases undergoing an interaction quench [35–39].

In this paper, we present a theoretical description of the
nonequilibrium quantum evolution of 2D, isolated uniform
Bose superfluids following a quantum quench, which captures
both the short timescales, where the dynamics is fully coher-
ent, and the long timescales, where thermalization occurs. To
this aim, we develop a quantum kinetic formalism describing
interactions between the low-lying phononic excitations of the
superfluid, combining a quantum hydrodynamic representa-
tion with a Keldysh field formalism. This allows us to go
beyond recent theoretical developments based on indepen-
dent quasiparticles and therefore restricted to short evolution
times after the quench [40–45]. Within our approach, we
derive kinetic equations for both the normal and anomalous
momentum distributions of the phonons, which, unlike the
equilibrium Bose gases, are both needed to faithfully capture
the nonequilibrium evolution [9,22]. Close to equilibrium, in
particular, we recover the Landau and Beliaev scattering rates
associated with three-phonon interaction processes [46–49].
We finally apply this formalism to a concrete example, a
quench of the interaction strength in a 2D superfluid, and
analyze the subsequent time evolution of the structure factor
and of the spatial coherence function, recently measured in
cold-atom [31] and optical-fluid [38,39] experiments. Our
approach, in particular, includes recent developments [42]
allowing for a proper treatment of the finite quench duration,
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crucial to avoid the unphysical divergences of the postquench
superfluid’s energy.

The article is organized as follows. In Sec. II, we introduce
the quantum hydrodynamic description of 2D superfluids and
construct the nonequilibrium interacting Keldysh action in
the basis of independent quasiparticles. Section III presents
the technical details on the field and perturbation theories, as
well as a derivation of kinetic equations for the normal and
anomalous phonon distributions. The kinetic equations and
their near-equilibrium properties are discussed in Sec. IV.
In Sec. V, we apply our formalism to the calculation of the
time evolution of the nonequilibrium structure factor and the
coherence function of a 2D Bose gas following an interaction
quench. Section VI finally concludes the article.

II. HYDRODYNAMIC FORMULATION

A. Hydrodynamic Hamiltonian

Our starting point is the many-body Hamiltonian of a
uniform, low-temperature, 2D gas of bosons with repulsive
contact interactions:

Ĥ =
∫

d2r
(

− 1

2m
ψ̂†�rψ̂ + g

2
ψ̂†ψ̂†ψ̂ψ̂

)
, (1)

where the field operators ψ̂ satisfy the bosonic canonical
commutation rule [ψ̂ (r), ψ̂†(r′)] = δ(r − r′) and we set h̄ =
1. In low dimensions, collective excitations of the Bose gas
are most conveniently described within a quantum hydrody-
namic formalism, where the field operator is expressed in the
density-phase representation [27,50]:

ψ̂ (r) = eiθ̂ (r)
√

ρ̂(r), (2)

with the commutation rule [ρ̂(r), θ̂ (r′)] = iδ(r − r′). At low
temperature, phase fluctuations of the 2D Bose gas are gen-
erally not small, in contrast to density fluctuations and phase
gradients [25–27]. By writing ρ̂(r) = ρ0 + δρ̂(r) with ρ0 the
mean gas density, we can then expand the Hamiltonian (1)
with respect to δρ̂ and ∇rθ̂ . This leads to [26,51,52]

Ĥ =
∫

dr
[

ρ0

2m
(∇rθ̂ )2 + g

2
(δρ̂ )2 + 1

8mρ0
(∇rδρ̂ )2

+ 1

2m
(∇rθ̂ )δρ̂(∇rθ̂ )

]
, (3)

where we redefined the energy scale Ĥ → Ĥ − gρ0/2 and
dropped a cubic term ∝ (∇rδρ̂ )2δρ̂, negligible at low energy
[26,51].

B. Bogoliubov transformation

The Hamiltonian (3) is the sum of a quadratic part Ĥ0 and a
cubic interaction term Ĥint. The quadratic part is nondiagonal,
but is customarily diagonalized by means of a Bogoliubov
transformation [53]. To proceed, we first rewrite Eq. (3) in
momentum space, introducing the Fourier variables

θ̂q ≡ ρ0

∫
dre−iq·rθ̂ (r), δρ̂q ≡

∫
dre−iq·rδρ̂(r). (4)

The quadratic part of the Hamiltonian becomes

Ĥ0 =
∫

q

[
q2

2m
θ̂qθ̂−q +

(
gρ0

2
+ q2

8m

)
δρ̂qδρ̂−q

]
, (5)

where we introduced the short-hand notation∫
q ≡ ∫

d2q/[(2π )2ρ0]. To diagonalize Ĥ0, we introduce
new operators âq and â†

q, defined through the Bogoliubov
transformation

δρ̂q = −
√

Eq

εq
(â†

q + â−q), (6)

θ̂q = i

2

√
εq

Eq
(â†

q − â−q), (7)

where Eq ≡ q2/(2m) and εq ≡ √
Eq(Eq + 2gρ0) is the well-

known Bogoliubov dispersion relation. Inserting this basis
change into Eq. (5), we obtain

Ĥ0 =
∫

q
εq

(
â†

qâq + 1

2

)
, (8)

which describes a gas of free quasiparticles with energy dis-
persion εq. At momenta |q| � 1/ξ , where ξ ≡ √

1/4gρ0m is
the healing length, the dispersion relation becomes phononic

εq 	 c|q|, (9)

where c = √
gρ0/m is the speed of sound. Unless stated oth-

erwise, in the rest of the paper we will mainly focus on the
low-energy regime where Eq. (9) holds.

In terms of the Bogoliubov operators âq and â†
q, the inter-

action term in the hydrodynamic Hamiltonian (3) reads

Ĥint =
∫

p,q

p,q(âpâqâ†

p+q + H.c.), (10)

where, in the phononic regime |q| � 1/ξ , the vertex function

p,q is given by


p,q 	 3

4m

√
gρ0

2c

√
|p| |q| |p + q|. (11)

The cubic interaction (10) describes a three-phonon scattering
process with momentum conservation. In two dimensions it
can also be resonant, i.e., there exists a range of p, q val-
ues satisfying εp + εq = εp+q [9,54]. As will be shown in
Sec. III C, this property leads to a divergence of the self-
energy, which makes this process the dominant one for the
dynamics. For this reason, when writing Eq. (10) we dropped
the interaction terms of the type âpâqâ−p−q, which cannot be
resonant and are therefore subdominant.

C. Nonequilibrium action

In this work, we consider a 2D Bose gas initially de-
scribed by an equilibrium density matrix ρ̂0, and we examine
its subsequent dynamics following a quantum quench per-
formed at t = 0. To this aim, from now on we work in the
Heisenberg representation for operators (with, for instance,
âq,t = eiĤt âq,t=0e−iĤt ), and consider the time evolution of
the phonon normal and anomalous momentum distributions,
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defined as

nq,t ≡ 〈â†
q,t âq,t 〉, (12)

mq,t ≡ |〈âq,t â−q,t 〉|, (13)

where the quantum-mechanical average is performed over the
initial density matrix: 〈. . .〉 = Tr(ρ̂0 . . .).

When the interaction term (10) in the Hamiltonian is ne-
glected, the Heisenberg equations of motion following from
Eq. (8) lead to a purely harmonic evolution of the Bogoliubov
operators, âq,t = âq,0e−iεqt , so that

nq,t = nq,0 mq,t = mq,0. (14)

The normal and anomalous phonon momentum distributions
thus remain stuck to their initial value (more precisely, to their
postquench value, see Sec. V), as expected from a free-field
theory.

To capture the time dependence of nq,t and mq,t pertained to
the cubic interaction (10), we use the Keldysh field formalism
[55,56], i.e., we replace the quantum mechanical averages
(12) and (13) by path integrals on the closed-time contour
C = {C+, C−} with the forward path C+ ranging from t = 0
to ∞ and the reversed path from ∞ to 0. This amounts to
doubling the degrees the freedom, i.e., we work with two sets
of scalar fields a+, a∗

+ and a−, a− and the partition function

Z =
∫

D[a+, a∗
+, a−, a∗

−]eiS(a+,a∗
+ )−iS(a−,a∗

− ), (15)

where the hydrodynamic action in the coherent-state represen-
tation follows from Eqs. (8) and (10):

S(a, a∗) = S0 + Sint =
∫

q,t
a∗

q,t (i∂t − εq)aq,t

+
∫

p,q,t

p,q(ap,t aq,t a

∗
p+q,t + c.c.), (16)

with the shorthand notation
∫

t = ∫
C±

dt for a = a±. Both
time integrals over C+ and C− are conveniently reduced to a
single integral over t > 0 by introducing the “classical” and
“quantum” field variables α = (a+ + a−)/

√
2 and α̃ = (a+ −

a−)/
√

2 [53,57]. Under this transformation, the quadratic ac-
tion becomes

S0 =
∫

q,t>0

(
α∗

q,t α̃∗
q,t

)
[G0]−1

q,t,t

(
αq,t

α̃q,t

)
, (17)

where

[G0]−1
q,t,t =

(
0 i∂t − εq − i0+

i∂t − εq + i0+ 2i0+(2nq,0 + 1)

)
, (18)

while the interaction part is expressed as

Sint = 1√
2

∫
p,q,t>0


p,q(2α∗
p+q,t α̃p,tαq,t

+ α̃∗
p+q,tαp,tαq,t + α̃∗

p+q,t α̃p,t α̃q,t + c.c.). (19)

The Keldysh actions (17) and (19) constitute the starting point
of the nonequilibrium perturbation theory that is presented in
the next section.

III. PERTUBATION THEORY

A. Quantum kinetic equation

To construct the perturbation theory, we introduce three
fundamental correlators, the retarded GR, advanced GA, and
Keldysh GK Green’s functions

GR
q,t,t ′ ≡ −i(t − t ′)〈[âq,t , â†

q,t ′ ]〉 = −i〈αq,t α̃
∗
q,t ′ 〉, (20)

GA
q,t,t ′ ≡ i(t ′ − t )〈[âq,t , â†

q,t ′ ]〉 = −i〈α̃q,tα
∗
q,t ′ 〉, (21)

GK
q,t,t ′ ≡ −i〈{âq,t , â†

q,t ′ }〉 = −i〈αq,tα
∗
q,t ′ 〉. (22)

While GR and GA correspond to response functions to an
external excitation, the Keldysh Green’s function contains
information on the system’s correlations. In particular, it gives
access to the quasiparticle momentum distribution via the
relation

iGK
q,t,t = 2nq,t + 1, (23)

deduced from Eq. (12). The description of the anomalous
distribution mq,t requires to introduce a corresponding anoma-
lous Keldysh Green’s function and is postponed to Sec. III D
for clarity.

In the absence of phonon interactions, the Green’s func-
tions reduce to their bare values G0,R, G0,A, G0,K and follow
from Gaussian integrations on the quadratic action (17). This
allows us to identify the elements of the matrix kernel (18) as

[G0]−1 =
(

0 [G0,A]−1

[G0,R]−1 −[G0,R]−1 ◦ G0,K ◦ [G0,A]−1

)
, (24)

and, correspondingly,

G0 =
(

G0,K G0,R

G0,A 0

)
. (25)

In Eq. (24), the symbol ◦ denotes a convolution in the time
coordinates. In momentum-time representation, the bare re-
tarded, advanced, and Keldysh Green’s functions take the
explicit expressions

G0,R
q,t,t ′ = −i(t − t ′)e−iεq(t−t ′ ), (26)

G0,A
q,t,t ′ = i(t ′ − t )e−iεq(t−t ′ ), (27)

G0,K
q,t,t ′ = −i(2nq,0 + 1)e−iεq(t−t ′ ). (28)

In the presence of phonon interactions, the inverse of the
Green’s matrix takes the form

[G]−1
q,t,t ′ =

(
0 [G0,A]−1 − �A

[G0,R]−1 − �R −�K

)
q,t,t ′

. (29)

This structure generalizes Eq. (24) by including finite self-
energies �R,A,K that encapsulate the effect of interactions.
The self-energies can be computed from perturbation theory
with the action (19), a task that will be undertaken in the next
section. Comparing Eq. (29) with the definition of G, of the
same triangular form as (25), we infer the following Dyson
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equations:

[GR]−1 = [G0,R]−1 − �R, (30)

[GA]−1 = [G0,A]−1 − �A, (31)

GK = GR ◦ �K ◦ GA. (32)

Within this formalism, the computation of response and cor-
relation functions thus essentially amounts to evaluating the
self-energies �R,A,K at a certain level of approximation.

While the retarded and advanced Green’s functions are
both Hermitian, (GR)† = GR and (GA)† = GA, the Keldysh
Green’s function is anti-Hermitian, (GK )† = −GK (with the
Hermitian conjugate obtained by taking the complex conju-
gate and reversing time indices). This allows us to parametrize
GK as

GK = GR ◦ F − F ◦ GA, (33)

where the Hermitian distribution function F will be related
to the phonon momentum distribution below. Combining
Eqs. (32) and (33), we infer

�K = F ◦ [GA]−1 − [GR]−1 ◦ F, (34)

which, by virtue of the Dyson equations (30) and (31), be-
comes

F ◦ [G0,A]−1 − [G0,R]−1 ◦ F = �K − (�R ◦ F − F ◦ �A).

Direct evaluation of the left-hand side leads to the following
quantum kinetic equation for the distribution function in real-
time representation:

i(∂t + ∂t ′ )Fq,t,t ′ = −�K
q,t,t ′ + (�R ◦ F − F ◦ �A)q,t,t ′ . (35)

An evaluation of this evolution equation requires the knowl-
edge of the Keldysh and retarded self-energies, which will
be both computed in Sec. III C. Before that, we introduce an
important assumption that will bring about a first important
simplification of Eq. (35).

B. Separation of timescales and on-shell approximation

Two-time nonequilibrium functions such as Fq,t,t ′ are
most conveniently expressed using the Wigner coordi-
nates τ ≡ (t + t ′)/2 and �t ≡ t − t ′. The Wigner transform
of a given two-time function Xt,t ′ is defined as Xω,τ =∫

d�t ei�tωXτ+�t/2,τ−�t/2. In the present context, the central
time τ is associated with the slow relaxation of the phonons,
while the time difference �t is related to their fast, coherent
dynamics [58].

In the presence of interactions, Bogoliubov quasiparticles
acquire a finite lifetime τq ∼ −1/Im�R

q . As long as interac-
tions are weak, this lifetime is typically very long compared
to the coherent timescale 1/εq:

τq ∼ −1/Im�R
q � 1/εq. (36)

This condition, which we will verify a posteriori below, also
implies that quasiparticles remain well defined during of the
out-of-equilibrium evolution. In the limit (36), it can be shown
that the Wigner transform of a time convolution reduces [at
leading order in 1/(εqτq) � 1] to the product of Wigner trans-
forms [57]. The Wigner transform of Eq. (35) thus simplifies

to

i∂τ Fq,ω,τ 	 −�K
q,ω,τ + 2iFq,ω,τ Im

(
�R

q,ω,τ

)
. (37)

Within the separation of timescales (36), application of the
Wigner transform to Eq. (33) also yields

iGK
q,ω,τ 	 Fq,τ,ωAq,ω,τ , (38)

where

Aq,ω,τ ≡ −2 Im
(
GR

q,ω,τ

) = −2 Im
(
�R

q,ω,τ

)
|ω − εq − �R

q,ω,τ |2
. (39)

Aq,τ,ω is the spectral function, which gives the probability
density that a quasiparticle with energy ω has the dispersion
εq at a time τ after the quench. Under the condition (36) of
well-defined quasiparticles, the spectral function is strongly
peaked around ω = εq [with Aq,τ,ω → 2πδ(ω − εq) in the
noninteracting limit]. Integrating Eq. (38) over ω then leads
to ∫

dω

2π
iGK

q,ω,τ 	 Fq,εq,τ = 2nq,τ + 1, (40)

where we used Eq. (23) in the last equality. This relation
shows that, as long as the separation of timescales (36) holds,
the phonon momentum distribution coincides with the distri-
bution function Fq,ω,τ evaluated at ω = εq, a property known
as the on-shell approximation. To evaluate nq,τ , it is thus
sufficient to solve the on-shell version of the kinetic equa-
tion (37). This is achieved by multiplying the latter by the
spectral function and integrating over ω, similarly to Eq. (40).
The kinetic equation simplifies to

∂τ Fq,τ 	 i�K
q,τ + 2Fq,τ Im

(
�R

q,τ

)
, (41)

where we introduced the simpler notations Fq,τ ≡ Fq,εq,τ and
�q,τ ≡ �q,εq,τ . Together with Eq. (40), Eq. (41) constitutes a
quantum kinetic equation for the momentum distribution of
the interacting phonons, which can be directly solved once an
approximation for the self-energies is provided.

C. Born approximation

We now evaluate the retarded and Keldysh self-energies
�R

q,τ and �K
q,τ for a 2D, weakly interacting Bose gas using

perturbation theory. In practice, this is achieved by expanding
eiSint and truncating the corresponding series at leading order.
For a dilute Bose gas, eiSint can be expanded at first order in
the interaction parameter gρ0 (Born approximation), such that
the retarded Green’s function is approximated as

GR
q,t,t ′ = −i〈αq,t α̃

∗
q,t ′ 〉 = −i

∫
D[α, α̃]αq,t α̃

∗
q,t ′ei(S0+Sint )

	 −i
∫

D[α, α̃]αq,t α̃
∗
q,t ′eiS0

(
1 − S2

int/2
)
. (42)

Comparison with Eq. (30) then provides an explicit expression
for the self-energy. The Gaussian integral in Eq. (42) yields
three contributions to �R, each appearing with a multiplicity
of 8 and represented by the one-loop diagrams in Fig. 1(b)
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(a)

(b)

(c)

8

(d)

8 8

8

8 8

4 8

4 4

4

FIG. 1. (a) Diagrammatic conventions for the Green’s functions.
Dashed (solid) lines refer to a quantum α̃ (classical α) field variable.
Arrows are directed from a conjugated field variable to a noncon-
jugated one. (b) Diagrams contributing to the retarded self-energy
�R [Eq. (43)]. Each diagram has multiplicity 8. (c,d) The diagrams
contributing to the normal �K and anomalous S K Keldysh self-
energies, with the corresponding multiplicities indicated.

[see Fig. 1(a) for the diagrammatic conventions]:

�R
q,t,t ′ = 2i

∫
p

[

2

p,qGK
p+q,t,t ′G0,A

p,t ′,t

+ 
2
p,q−pGK

q−p,t,t ′G0,R
p,t,t ′ + 
2

p,qGK
p,t ′,t G

0,R
p+q,t,t ′

]
.

(43)

In the Wigner representation, this reads

�R
q,ω,τ = 2i

∫
p,ν

{

2

p,q−pGK
p,ν,τ G0,R

q−p,ω−ν

+ 
2
p,q

[
GK

p,νG0,R
p+q,ω+ν + GK

p+q,ν+ω,τ G0,A
p,ν

]}
. (44)

Next, we use that G0,R
p,ν = −iπδ(ν − εp), G0,A

p,ν = iπδ(ν − εp),
and GK

p,τ,ν 	 −2iπFp,ν,τ δ(ν − εp) [cf. Eqs. (26), (27), and
(28)], multiply Eq. (44) by the spectral function Aq,ω,τ and
integrate over ω and ν using that Aq,ω,τ is peaked around
ω 	 εq. This yields the on-shell self-energy

�R
q,τ 	 −2iπ

∫
p

[

2

p,q(Fp,τ − Fp+q,τ )δ(εq + εp − εp+q)

+ 
2
p,q−pFp,τ δ(εq − εp − εq−p)

]
. (45)

For a purely phononic dispersion (9), the angular integra-
tion in Eq. (45) is divergent, which is a consequence of the
resonant character of the cubic interaction (10). In two and
three dimensions, this divergence is customarily regularized
by taking into account the first nonlinear correction to the

Bogoliubov dispersion, εq 	 c|q| + (cξ 2/2)|q|3 [47,51]. Note
that in strongly interacting gases in one dimension, it was
suggested that the divergence should be instead resolved via
a self-consistent Born approximation [9]. In the present case
of a dilute Bose gas, however, such an approach would lead
to subleading contributions and is therefore a priori not ad-
equate. Including the leading-order corrections to the linear
dispersion and performing the angular integrations in Eq. (45),
we finally obtain

�R
q,τ = − i

2

∫ ∞

0
d pKL

p,q(Fp,τ − Fp+q,τ ) − i
∫ q

0
d pKB

p,qFq,τ ,

(46)
where

KL
p,q = 3

√
3c

8πρ0
p(p + q), KB

p,q = 3
√

3c

16πρ0
p(q − p). (47)

We now come to the Keldysh self-energy �K , which is
calculated perturbatively from the Dyson equation (32). At
the Born approximation, this is achieved by approximating the
left-hand side by

GK
q,t,t ′ 	 −i

∫
D[α] αq,tα

∗
q,t ′eiS0 (1 − S2

int/2). (48)

Evaluation of the Gaussian integral involves the six one-loop
diagrams represented in Fig. 1(c), which lead to

�K
q,t,t ′ = i

∫
p

[
2
2

p,q

(
GK

p+q,t,t ′GK
p,t ′,t + G0,A

p,t ′,t G
0,R
p+q,t,t ′

+ G0,R
p,t ′,t G

0,A
p+q,t,t ′

) + 
2
p,q−p

(
GK

q−p,t,t ′GK
p,t,t ′

+ G0,A
q−p,t,t ′G

0,A
p,t,t ′ + G0,R

q−p,t,t ′G
0,R
p,t,t ′

)]
. (49)

To evaluate this expression, we proceed as for �R, namely,
we move to Wigner representation, multiply Eq. (49) by the
spectral function, and integrate over Wigner frequencies. This
leads to the on-shell value

�K
q,τ = −2iπ

∫
p

[
2
2

p,q (Fp+qFp − 1)δ(εq + εp − εp+q)

+ 
2
p,q−p (Fq−pFp + 1)δ(εq − εp − εq−p)

]
. (50)

By finally computing the angular integration using the regu-
larization procedure explained above, we find

�K
q,τ = −i

∫ ∞

0
d pKL

p,q(Fp+q,τ Fp,τ − 1)

− i
∫ q

0
d pKB

p,q(Fq−p,τ Fp,τ + 1). (51)

Equations (46) and (51) constitute the final expressions for
the normal self-energies, which once inserted in Eq. (41),
provide a kinetic equation for the momentum distribution nq,τ .
Before coming to that point, however, we now discuss the
perturbation theory for the anomalous distribution.

D. Anomalous momentum distribution

To derive a quantum kinetic equation for the anoma-
lous phonon distribution mq,τ , one is naturally led to define
a Keldysh Green’s function from the anomalous anticom-
mutator 〈{âq,t , â−q,t ′ }〉, in analogy with Eq. (22). Such a
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definition, however, gives rise to fast temporal oscillations at
the scale of 1/εq, which are incompatible with the require-
ment of the timescales separation discussed in Sec. III B.
This can be seen at the level of the free-field theory, which
yields 〈{âq,t , â−q,t ′ }〉 = 2〈âq,0â−q,0〉 exp(−2iεqτ ), where τ =
(t + t ′)/2. To get rid of these fast variations, we move to the
rotating time frame by employing the transformation αq,t →
αq,t exp(iεqt ), following [9,10]. In this rotating frame, we can
safely define the anomalous Keldysh Green’s function as

iG K
q,t,t ′ = 〈{âq,t , â−q,t ′ }〉 = 〈αq,tα−q,t ′ 〉. (52)

From its definition (13), the anomalous momentum distri-
bution follows from 2mq,t = iG K

q,t,t [59]. In the presence of
phonon interactions, G K acquires a finite (anomalous) self-
energy S K , defined through a Dyson equation similar to
Eq. (32):

GK = GR ◦ S K ◦ GA. (53)

In the rotating frame, G K is also anti-Hermitian, and can there-
fore be parametrized in a similar way as GK [see Eq. (33)]:

G K = GR ◦ F − F ◦ GA. (54)

Combining the four relations (30), (31), (53), and (54) and
making use of the condition of timescales separation, as ex-
plained in Sec. III B, we infer the anomalous version of the
on-shell kinetic equation (41) as

∂τFq,τ 	 iS K
q,τ + 2Fq,τ Im

(
�R

q,τ

)
. (55)

As compared to Eq. (41), the difference lies in the anoma-
lous Keldysh self-energy S K

q,τ , which can be computed by
perturbation theory from Eq. (53). Similarly to the normal
correlator, this is done by approximating the left-hand side of
Eq. (53) by

GK
q,t,t ′ 	 −i

∫
D[α] αq,tα−q,t ′eiS0

(
1 − S2

int/2
)
. (56)

Note that, different from the calculation of �K , here the Wick
decomposition following from the Gaussian integral (56) is
performed by only considering pairings of anomalous cor-
relators, which is a consequence of the resonant character
of the interaction, see [9] for details. This leads to the two
self-energy diagrams displayed in Fig. 1(d), which explicitly
read as

S K
q,t,t ′ = i

∫
p

[
2
2

p,q G K
p+q,t,t ′G K

p,t ′,t + 
2
p,q−p G K

p,t,t ′G K
q−p,t,t ′

]
.

We then proceed as in Sec. III C, i.e., we compute the Wigner
transform of S K

q,t,t ′ , multiply by the spectral function, and
integrate over Wigner frequencies. It eventually yields

S K
q,τ = −i

∫ ∞

0
d pKL

p,qFp+q,τFp,τ

− i
∫ q

0
d pKB

p,qFq−p,τFp,τ . (57)

Once inserted in Eq. (55), this provides an explicit expression
for the kinetic equation for mq,τ .

IV. PHONON QUANTUM KINETICS

A. Kinetic equations

Inserting the expressions (46) and (51) of the normal self-
energies into Eq. (41) and using Eq. (40), we obtain the
final form of the kinetic equation for the phonon momentum
distribution nq,τ at the Born approximation:

∂τ nq,τ = 2
∫ ∞

0
d pKL

p,q[np+q(np + nq + 1) − npnq]

+ 2
∫ q

0
d pKB

p,q[npnq−p − nq(np + nq−p + 1)],

(58)

where, for notation simplicity, we dropped the τ indices in the
collision integrals and we recall that the kernels KL

p,q and KB
p,q

are given by Eq. (47). Note that, alternatively to the present
Keldysh approach, such a kinetic equation can also be derived
from detailed-balance arguments combined with the Fermi
golden rule [50,60,61], or from cumulant theories [22,49].

The only quantity conserved during the time evolution gov-
erned by Eq. (58) is the (phononic) energy: ∂τ

∫
q c|q|nq,τ = 0

for all τ . The kinetic equation includes two collision inte-
grals, which correspond to the well-known Beliaev (B) and
Landau (L) three-particle scattering processes. The Beliaev
process describes the splitting q → (p, q − p) of the probe
phonon of momentum q into two phonons of momenta p and
q − p, while the Landau process describes the recombination
(q, p) → p + q of the probe phonon with another one, each
process coming together with its reversed version. Both the
Landau and Beliaev processes lead to a relaxation of the
momentum distribution toward a thermal equilibrium at long
time,

nq,τ→∞ ≡ nth
q = 1

exp(εq/T ) − 1
, (59)

a solution which cancels both collision integrals in Eq. (58).
In the present nonequilibrium scenario, the temperature T
characterizes the effective thermal equilibrium reached by the
phonon gas a long time after the quench. In practice, this tem-
perature is determined from the law of energy conservation
mentioned above. A concrete example of this will be given in
Sec. V.

The kinetic equation for the anomalous phonon distribu-
tion is similarly derived by inserting Eqs. (46) and (57) into
Eq. (55). This gives:

∂τ mq,τ = 2
∫ ∞

0
d pKL

p,q(np+qmq + mpmp+q − npmq)

+ 2
∫ q

0
d pKB

p,q[mpmq−p − mq(np + nq−p + 1)].

(60)

Notice that the dynamics of the anomalous distribution is
coupled to the evolution of nq,τ . Furthermore, unlike nq,τ , the
anomalous distribution vanishes at long time,

mq,τ→∞ = 0, (61)

a result expected for a quantum gas at thermal equilibrium.
At any finite time, however, mq,τ is, in general, nonzero and
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may significantly impact the intermediate-time dynamics of
physical observables.

B. Near-equilibrium solutions

Before examining the consequences of the phonon re-
laxation on a concrete scenario, it is useful to discuss
the near-equilibrium case, which, for a quench experiment,
typically corresponds to the long-time regime where the distri-
butions mq,τ and nq,τ become close to their equilibrium values
(59) and (61). To this aim, we substitute nq,τ = nth

q + δnq,τ

with δnq,τ � nth
q in the kinetic equation (58) and linearize. If

only the Beliaev collision integral is kept, this leads to

∂τ δnq,τ 	 −2γ B
q δnq,τ , γ B

q =
√

3c

32πρ0
q3. (62)

This describes an exponential relaxation governed by the Be-
liaev damping rate γ B

q . Note that, alternatively, the latter could
have been directly derived from the self-energy (46) evaluated
at equilibrium, γ B

q = −Im�R
q (nth

q ). In two dimensions, the Be-
liaev damping rate (62) was previously derived in [51] using
the Matsubara formalism.

If, on the other hand, only the Landau collision integral in
Eq. (58) is considered, the linearization procedure provides

∂τ δnq,τ 	 −2γ L
q δnq,τ , γ L

q =
√

3π

8ρ0c
qT 2, (63)

which now involves the Landau damping rate γ L
q [51]. A

comparison of Eqs. (62) and (63) shows that Beliaev processes
are mostly effective when the long-time equilibrium temper-
ature vanishes. Landau processes, on the contrary, typically
dominate at finite temperature. In the relaxation following a
quantum quench, this is the most common situation since the
quench inevitably injects a certain amount of energy into the
system, eventually leading to a finite-temperature state at long
time.

A near-equilibrium expansion, finally, can also be applied
to the anomalous momentum distribution, using that mq,τ � 1
at long time. Expanding Eq. (60) for small δnq,τ and small
mq,τ then yields

∂τ mq,τ 	 −2γ L,B
q mq,τ , (64)

depending on which of the Beliaev or Landau processes dom-
inates.

V. APPLICATION: NONEQUILIBRIUM STRUCTURE
FACTOR AND COHERENCE

A. Quench protocol

We now apply the above formalism to a concrete scenario.
Consider a uniform 2D Bose gas, initially at equilibrium at
temperature T0 in a superfluid state with interaction strength
g0. The initial (prequench) quasiparticle distributions are thus
given by

n0
q = 1

exp(ε0
q/T0) − 1

, m0
q = 0, (65)

where ε0
q = √

Eq(Eq + 2g0ρ0), with Eq = q2/2m. As a
quench protocol, we suppose that around the time τ = 0 the

interaction strength is changed from g0 > 0 to another posi-
tive value g �= g0. The simplest description of this problem,
studied, e.g., in [42,62], consists in assuming that the inter-
action change occurs instantaneously at τ = 0. In that case,
applying the Bogoliubov transformation (6) at both τ = 0−
and τ = 0+ and using the continuity of the field operator
(2), we obtain the following relation between the postquench
(âps

q , âps†
q ) and prequench (â0

q, â0†
q ) Bogoliubov operators:(

âps†
q

âps
−q

)
= 1

2
√

εqε
0
q

(
εq + ε0

q εq − ε0
q

εq − ε0
q εq + ε0

q

)(
â0†

q

â0
−q

)
.

where εq = √
Eq(Eq + 2gρ0). The postquench normal and

anomalous momentum distributions then take the form

nps
q = n0

q

(
2d2

q + 1
) + d2

q , (66)

mps
q =

√
d2

q + d4
q

(
2n0

q + 1
)
, (67)

with dq ≡ (εq − ε0
q )/(2

√
εqε0

q ). At this stage, it is instructive

to examine the large-q asymptotics of this postquench solu-
tion: for qξ � 1, Eq. (66) leads to nps

q 	 [mρ0(g − g0)]2/q4.
An instantaneous interaction quench thus turns the prequench
exponential decay (65) into an algebraic one, provoking a log-
arithmic divergence of the total energy

∫
q εqnps

q of the system
after the quench. This underlines the somewhat pathological
character of the instantaneous quench for a quantum gas,
which needs to be regularized by taking into account the
finite duration τs of the interaction change. Note that a similar
divergence occurs in the problem of Tan’s contact in Bose
gases, originating from the zero-range character of the contact
interaction [50,63].

To overcome the ultraviolet divergence resulting from
an instantaneous interaction quench, we rather consider
the smooth Wood-Saxon quench g(τ ) = g + (g0 − g)/(1 +
eτ/τs ), which was revisited recently in [42] and is sketched
in the inset of Fig. 2. For this model, Eqs. (66) and (67) still
hold, but n0

q (m0
q) and nps

q (mps
q ) should now be understood as

the normal (anomalous) momentum distributions a long time
|τ | � τs before and after the interaction jump, respectively,
and d2

q is now given by [42]

d2
q = sinh2

[
π

(
εq − ε0

q

)
τs

]
sinh(2πε0

qτs) sinh(2πεqτs)
. (68)

At low momentum, the postquench momentum distribution
obeys the asymptotic law

nps
q 	 T0

q

c2 + c2
0

2cc2
0

, (69)

that involves the prequench c0 = √
g0ρ0/m and postquench

c = √
gρ0/m speeds of sound. At large momentum, on the

other hand, we have

nps
q ∝ exp(−2πτsq2/m). (70)

This asymptotic law is similar to that to the prequench thermal
distribution, n0

q ∼ exp[−q2/(2mT0)], except that the inverse of
the quench duration 1/τs now plays the role of the prequench
equilibrium temperature.
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FIG. 2. Inset: Sketch of the Wood-Saxon function modeling an
interaction quench of finite duration, with the asymptotic limits
g(−∞) = g0 and g(∞) = g. Main panel: Effective equilibrium tem-
perature reached by the Bose gas a long time after the quench
as a function of the quench duration τs [expressed in units of
τg ≡ 1/(gρ0 )]. The dotted and dashed curves show the asymptotic
limits of the temperature for fast and slow quenches, Eqs. (74)
and (75), respectively. Parameters are set to g0ρ0 = 0.1, gρ0 =
0.5, T0/(g0ρ0) = 0.01, ρ0ξ

2 = 0.5.

B. Momentum distributions and thermalization

Using the postquench distributions (66) and (67) as initial
conditions, we performed numerical simulations of the kinetic
equations (58) and (60). The resulting distributions nq,τ and
mq,τ are shown in Fig. 3 for different times. As expected, we
find that nq,τ slowly evolves toward a thermal distribution of
the form (59) at long time. Similarly, mq,τ converges to zero,
with the region where mq,τ is nonzero shrinking to smaller and
smaller q values as time grows. For these simulations, we use
as the unit time the Landau relaxation time (63) evaluated at
the healing length ξ = √

1/(4gρ0m):

τγ ≡ 1

2γ L
q=1/ξ

= 8√
3π

ρ0ξ
2 gρ0

T 2
. (71)

In order for the kinetic approach presented in Sec. III to be
valid, the separation of timescales (36) should be verified,
namely, τγ should be large compared to the fast timescale τg ∼
1/(c|q|) that governs the coherent dynamics of the Bogoli-
ubov phonons. Evaluated at q = 1/ξ , τg defines a “nonlinear
time” that is sometimes used as a timescale in experiments:

τg ∼ ξ

c
∼ 1

gρ0
� τγ . (72)

From the definition (71) of τγ , we find that, in practice,
this inequality holds as long as the long-time equilibrium
temperature is low enough, precisely when the product
(ρ0ξ

2)(gρ0/T )2 � 1.

C. Equilibrium temperature

The thermal distribution (59) reached at long time τ � τγ

is represented by the dashed curve in Fig. 3(a). The associated
equilibrium temperature T is entirely determined from energy

10-110-310-5

10-110-310-5

10-2

10-1

100

101

102

103

10-2

10-1

100

101

102

103

pre-quenchini�al (post-quench)

thermal

(b)

(a)

FIG. 3. Time evolution of the phonon (a) normal nq,τ and
(b) anomalous mq,τ momentum distributions following an interac-
tion quench g0 → g near τ = 0. Here we set g0ρ0 = 0.1, gρ0 =
0.5, ρ0ξ

2 = 0.5, τs/τg = 10, and T0/gρ0 = 0.01. The dashed-dotted
curve shows the prequench thermal law (65), while dotted curves
are the postquench distributions computed from Eqs. (66) and (67),
used as initial conditions for the kinetic equations. At long time, nq,τ

converges to the thermal distribution (59) (dashed curve), with an
equilibrium temperature well approximated by Eq. (75).

conservation during the time evolution:∫
q

c|q|
exp(c|q|/T ) − 1

= ζ (3)T 3

πρ0c2
=

∫
q

εqnps
q . (73)

The temperature T , computed from this relation using
Eqs. (66) and (68), is displayed in Fig. 2 as a function of the
quench duration τs. As intuition suggests, T decreases when
τs increases, i.e., as the quench is more and more adiabatic.
The temperature admits a simple expression in the asymptotic
regimes τs � τg (slow quench) and τs � τg (fast quench). For
the fast quench we find

T ∼
√

3(g − g0)2ρ2
0

π2
ln

[√
τg

4πτs

]
, τs/τg � 1, (74)

while, for the slow quench,

T 	
[(

cT0

c0

)3

+ π (c − c0)2

29ζ (3)c0cτ 3
s

]1/3

, τs/τg � 1. (75)

Both Eqs. (74) and (75) are shown in Fig. 2, together with the
exact result. The temperature is minimal for infinitely slow
quenches τs/τg → ∞, reaching T → (c/c0)T0. As a remark,

043305-8



QUANTUM KINETICS OF QUENCHED TWO-DIMENSIONAL … PHYSICAL REVIEW A 107, 043305 (2023)

the curve in Fig. 2 also indicates that when τs is of the order
of τg or larger, the equilibrium temperature is such that T �
gρ0. In this limit, the quasiparticles typically belong to the
phononic branch of the dispersion and, at the same time, the
condition of separation of timescales is well satisfied. For this
reason, in all subsequent numerical simulations, we choose
τs = 10τg.

D. Nonequilibrium structure factor

To illustrate the concrete impact of the phonon relaxation
dynamics in a 2D quenched superfluid, we now study a spe-
cific observable, the nonequilibrium quantum structure factor
Sq,τ ≡ 〈δρ̂q,τ δρ̂−q,τ 〉. The structure factor is the Fourier trans-
form of the spatial density-density correlator of the superfluid.
This quantity was recently measured experimentally, in an
ultracold Bose gas in two dimensions [31] and in a quantum
fluid of light produced in a hot atomic vapor [39], both ex-
periments involving a quench of the interaction strength. In
practice, the nonequilibrium structure factor provides a simple
observable to characterize the dynamical emergence of inter-
ference between quasiparticles emitted at the quench, which
manifest themselves as oscillations of Sq,τ in space and time.
Such oscillations, observed in laboratory superfluids, spark
interest because they are analogous to the famous Sakharov
oscillations, a characteristic feature in the anisotropy of the
cosmic microwave background radiation related to the emis-
sion of acoustic waves in the early universe [64]. Employing
the Bogoliubov transformations (6) and (7), we can rewrite
the structure factor as

Sq,τ = Eq

εq
[2〈â†

q,τ âq,τ 〉 + 1 + 2 Re 〈âq,τ â−q,τ 〉]

= Eq

εq
[2nq,τ + 1 + 2 cos(2εqτ )mq,τ ], (76)

where, in the second equality, we introduced the normal and
anomalous phonon distributions. The structure factor primar-
ily exhibits a fast, coherent dynamics described by the term
∝ cos (2εqτ ). These oscillations stem from the interference
between Bogoliubov quasiparticles with momenta q and −q
emitted at the quench. On top of these oscillations, Sq,τ is
characterized by a slow relaxation dynamics due to the quasi-
particle interactions that make nq,τ and mq,τ slowly vary in
time.

The structure factor is shown in Fig. 4(a) for increasing
times, from its postquench to its long-time (thermal) value.
Shortly after the quench, Sq,τ exhibits sizable oscillations of
period π/(cτ ) in momentum space. In this regime [up to
∼102τγ in Fig. 4(a)], the dynamics is almost purely coher-
ent, mq,τ and nq,τ remaining close to their initial, postquench
values. Within this short-time window, which was the main
focus of previous experiments [31,39], we can therefore ap-
proximate mq,τ 	 mps

q and nq,τ 	 nps
q in Eq. (76), so that

Sq,τ 	 Eq

εq
coth

(
ε0

q

2T0

)[
2d2

q + 1 + 2
√

d2
q + d4

q cos(2εqτ )
]
,

(77)

which is nothing but the prediction of Bogoliubov perturba-
tion theory. The approximation (77) is shown in Fig. 4(a) at

ini�al (post-quench)

thermal
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10-210-4
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(a)

(b)

(Bogoliubov)

FIG. 4. Nonequilibrium structure factor Sq,τ , Eq. (76), versus
(a) momentum at different times and (b) time at different momenta.
For a better readability, in panel (a) the curves are shifted downward
as time increases (except Sq,τ=0, black dotted curve). In both panels,
the thin black curves are the Bogoliubov prediction (77), while the
dashed curves are the long-time approximation (78). Observe that
the Bogoliubov result becomes clearly inaccurate as time increases.
Parameters have the same values as in Fig. 3: g0ρ0 = 0.1, gρ0 = 0.5,
ρ0ξ

2 = 5 × 10−4, τs/τg = 10, and T0/gρ0 = 0.01.

both times τ = 102τγ and 103τγ . While in the first case it well
captures the dynamics, in the second case it is clearly inaccu-
rate. Indeed, at long time quasiparticle interactions become
prominent and lead to a damping of the coherent oscillations.
Eventually, the latter completely disappear when the system
has thermalized, with Sq,∞ 	 (Eq/εq)coth(εq/2T ). While a
quantitative description of Sq,τ at an arbitrary time requires
a numerical resolution of the kinetic equations, at long time
the phonon distributions can be approximated by their near-
equilibrium expressions, obtained from Eqs. (63) and (64).
Inserting these solutions into Eq. (77), we find

Sq,τ 	 Eq

εq
coth

(
εq

2T

)
(1 − e−γqτ )

+ Eq

εq
coth

(
ε0

q

2T0

)[
2d2

q +1+2
√

d2
q +d4

q cos(2εqτ )
]
e−γqτ ,

(78)
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where γq coincides with either the Beliaev (62) or Landau (63)
scattering rates depending on the range of momenta probed.
In Fig. 4(a), Eq. (78) is superimposed onto the exact result for
τ = 104τγ , using γq = γ L

q . The agreement is very good in the
entire range of q (for the chosen parameters, we have typically
cq � T , such that γ L

q is always much larger than γ B
q ).

The impact of the relaxation dynamics of the phonons is
seen even more dramatically in Fig. 4(b), which shows the
structure factor at fixed momentum as a function of time. In
the absence of phonon interactions (Bogoliubov approxima-
tion), Sq,τ oscillates harmonically. Compared with the exact
behavior for qξ = 10−3.5 shows how poor the Bogoliubov
approximation becomes as time grows.

E. Nonequilibrium coherence function

As a second illustration, we study the time evolution of
the coherence function of the Bose gas consecutive to an
interaction quench g0 → g:

G1(r, τ ) ≡ 〈ψ̂†(0, τ )ψ̂ (r, τ )〉. (79)

In the density-phase representation (2), the coherence function
can be expressed in terms of the variance of phase and density
fluctuations [27]:

G1(r, τ ) = ρ0 exp

{
−1

2
〈: [θ̂ (0, τ ) − θ̂ (r, τ )]2 :〉

− 1

8ρ0
〈: [δρ̂(0, τ ) − δρ̂(r, τ )]2 :〉

}
, (80)

where the : symbol refers to the normal ordering of operators
in position representation. Notice that G1 only depends r =
|r| due to rotation invariance. In 2D Bose gases, the spatial
dependence of this function is typically dominated by the
spatial growth of phase fluctuations, eventually leading to an
algebraic decay of G1. This behavior is noticeably different
from the one of 3D Bose gases whose phase fluctuations are
very small at low temperature. Using the Bogoliubov transfor-
mations (6) and (7) and definitions (12) and (13), we find that
Eq. (80) can be rewritten as

G1(r, τ )/ρ0 = G1(r)g1(r, τ ). (81)

Here

g1(r, τ ) = exp

{
−

∫
q

1

2
[1 − cos(q · �r)]

[(
εq

Eq
+ Eq

εq

)
nq,τ

+
(

Eq

εq
− εq

Eq

)
mq,τ cos(2εqτ )

]}
(82)

encodes the time evolution of the coherence following the
quench. The function G1(r) is, in contrast, independent of
time. It satisfies G1(0) = 1 and quickly decays to G1(r �
ξ ) 	 1 − 1/(16πρ0ξ

2) at distances larger than the healing
length, a value that coincides with the quantum depletion of
zero-temperature Bose gases in two dimensions. Note that G1

purely originates from the noncommutation of the Bogoliubov
operators involved in Eq. (80) and, as such, would be absent
within a classical-field description.

From now on we focus our attention on g1(r, τ ), which we
computed from Eq. (82), using the numerical solutions of the
quantum kinetic equations (58) and (60) for nq,τ and mq,τ .

therm
al

101 103 105 107

1

0.998

0.996

0.994

0.992

FIG. 5. Nonequilibrium coherence function g1(r, τ ) versus posi-
tion r at different times, computed from Eq. (82) together with the
numerical solution of quantum kinetic equations for nq,τ and mq,τ .
The three thin black curves are the Bogoliubov prediction at times
τ = τγ , 10τγ , and 100τγ . Observe that at τ = 100τγ the Bogoliubov
prediction is no longer accurate. The dashed curve shows the long-
time, thermal asymptotic value. Parameters are set to g0ρ0 = 0.1,
gρ0 = 0.5, ρ0ξ

2 = 0.5, τs/τg = 10, and T0/gρ0 = 0.01.

The full time evolution of this function is shown in Fig. 5
for g > g0, and reveals the successive emergence of three
characteristic regimes of algebraic decay. At very short times,
first, g1 mainly exhibits the algebraic decay of the prequench
equilibrium state:

g1(r, τ ) ∼
(

λ0

r

) 1
ρ0 λ2

0
, (83)

with λ0 = √
2π/(mT0) the thermal de Broglie wavelength at

the (prequench) temperature T0. Shortly after the quench, then,
a second algebraic law emerges at intermediate scales, typi-
cally within a light cone of radius r = 2ct . This characteristic
decay can be described at the level of the Bogoliubov approx-
imation, namely, by simply replacing nq,τ and mq,τ by their
postquench values in Eq. (82). This leads to the “prethermal”
algebraic law

g1(r, τ ) =
(

λ0

r

) 1+g/g0
2ρ0 λ2

0
. (84)

At long time, finally, a third thermal algebraic scaling arises
from short scales and eventually extends to all scales as the
system fully thermalizes with nq,τ → [exp(cq/T ) − 1]−1 and
mq,τ → 0:

g1(r, τ → ∞) =
(

λ

r

) 1
ρ0λ2

, (85)

with the algebraic exponent now controlled by the thermal
wavelength λ = √

2π/(mT ). Note that, in the case g > g0

considered here, the three algebraic exponents satisfy the in-
equalities

1

ρ0λ
2
0

� 1 + g/g0

2ρ0λ
2
0

� 1

ρ0λ2
, (86)
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with the two bounds being inverted in the case of a down-
quench g < g0. It is instructive, additionally, to compare the
exact shape of the coherence function with its Bogoliubov
approximation, shown in Fig. 5 for the three shortest times
τ = τγ , 10τγ and 100τγ . Again, while this approximation is
acceptable at short times, it becomes clearly inaccurate start-
ing from τ ∼ 100τγ . This confirms that in 2D Bose gases, a
description in terms of independent quasiparticles should be
systematically questioned when dealing with nonequilibrium
scenarios.

It is worthwhile to note that, as a low-energy framework,
our approach requires the Bose gas to remain in a superfluid
state during the dynamical evolution. In particular, the final
equilibrium temperature should be well below the critical
Kosterlitz-Thouless temperature or, equivalently, the algebraic
exponent in Eq. (85) should be much smaller that the critical
value 1/4 [66]. This leads to the condition (T/gρ0) � ρ0ξ

2,
which, in practice, is achieved for a not too strong quench.

VI. CONCLUSION

We presented a general theoretical framework for the
many-body, nonequilibrium dynamics of 2D Bose superfluids
following a quantum quench. The approach is based on a low-
energy quantum hydrodynamic framework and assumes that
the timescales respectively associated with the coherent dy-
namics of the phonons and with the three-phonon interaction
processes are well separated. Under this condition, we were
able to describe the full time evolution of the phonon normal
and anomalous momentum distributions from the coherent
prethermal regime to the final thermalization. As an illustra-
tion, we applied this framework to a quantitative calculation of

two commonly measured observables, the quantum structure
factor and the coherence function of the superfluid following
an interaction quench.

More generally, the present framework can be used to eval-
uate any observable, provided that it can be expressed in terms
of phonon distributions. While being a many-body quantum
description, it can also be used to describe the classical-field
limit, to which recent optical-fluid experiments typically be-
long [38,39,65]. To this aim, one needs to take the limit of
large occupation numbers in the kinetic equations (58) and
(60) and replace the Bogoliubov operators by commuting
scalar fields when expressing observables in terms of phonon
momentum distributions. At the level of the field theory, the
classical-field regime is described by dropping the interaction
processes involving quantum field variables only [67].

As a low-energy framework, our approach requires the
quench to leave the Bose gas in the superfluid phase.
While the quench dynamics of 2D Bose gases across the
Kosterlitz-Thouless transition was recently studied numer-
ically [28,68,69], a general many-body description of this
problem is, to our knowledge, still lacking. In practice, this
would require to include the dynamics of transverse exci-
tations (vortices) within a nonequilibrium two-fluid model.
Finally, exploring the strong-interaction regime in two dimen-
sions, where corrections to the Beliaev and Landau relaxation
rates are expected [70,71], would be another interesting chal-
lenge for future work.
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