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Tunable boson-assisted finite-range interaction and engineering
Majorana corner modes in optical lattices
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Nonlocal interaction between ultracold atoms trapped in optical lattices can give rise to interesting quantum
many-body phenomena. However, its realization usually demands unconventional techniques, for example, the
artificial gauge fields or higher-orbit Feshbach resonances, and is not highly controllable. Here, we propose a
valid and feasible scheme for realizing a tunable finite-range interaction for spinless fermions immersed into the
bath of bosons. The strength of the effective interaction for the fermionic subsystem is artificially tunable by
manipulating bosons, ranging from the repulsive to the attractive regime. In addition, the interaction distance is
locked to the hopping of bosons, making the finite-range interaction perfectly clean for the fermionic subsystem.
Specifically, we find that, by introducing an additional staggered hopping of bosons, the proposal is readily
applied to search the Majorana corner modes in such a spinless system, without the implementation of complex
artificial gauge fields, which is totally distinct from existing results reported in spinful systems. Therefore,
this scheme provides a potential platform for exploring the unconventional topological superfluids and other
nontrivial phases induced by long-range interactions in ultracold atoms.

DOI: 10.1103/PhysRevA.107.043304

I. INTRODUCTION

Recent progress of ultracold atoms in optical lattices offers
a remarkable platform for the simulations and discoveries of
many-body phenomena [1–3], e.g., the superfluid-Mott in-
sulator transition for a Bose-Hubbard model [4]. Extensive
studies were made based on ultracold atoms that are locally
interacted [5]. While in the presence of the nonlocal atomic
interaction, it can lead to exotic quantum many-body behav-
iors, including the supersolids, density waves, and topological
phases [6–30], and hence deserves more investigations. In-
tuitively in cold atoms, the nonlocal interaction may be
introduced via the higher-orbit Feshbach resonance, but usu-
ally faces technical shortcomings such as the heating effect
or three-body loss [31–33]. Therefore, alternative ways for
synthesizing effective nonlocal interaction are rather expected
in current atomic physics.

*zhenzhen@m.scnu.edu.cn
†stszhl@mail.sysu.edu.cn
‡xbz@ustc.edu.cn

A series of proposals were reported to generate effective
nonlocal interaction based on the nontrivial interplays or con-
figurations, including the Rashba spin-orbit coupling [34–39],
optical lattices with additional designs [40–43], and higher-
orbital band physics [44,45]. However, in these proposals, the
resulting effective interaction cannot be generalized to arbi-
trary distance because of the limits of constructions. Another
way to engineer effective long-range interaction is through the
exchange of mediating particles such as the cavity photons
[16,46–50]. Successful examples include the highly magnetic
atoms [15,51–55], dipolar moments [56–59], and Rydberg
atoms [60–63]. Unfortunately, such photon-mediated interac-
tions are unavoidably accompanied by dissipation, moreover
the short- and long-range interactions are simultaneously
present and cannot be individually controlled. On the other
hand, in the Bose-Fermi mixture [64–69], due to the high
manipulations of bosons, the induced boson-assisted interac-
tion is possible to be artificially controllable for the fermionic
system.

In this paper, we follow this line and propose a scheme for
realizing an effective finite-range interaction in systems com-
posed of atomic mixtures. The main features of the proposal
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FIG. 1. Illustration of the underlying Bose-Fermi mixture sys-
tem. The red and blue spheres represent fermions and bosons,
respectively. Fermions are confined in a 2D square lattice with hop-
ping matrix element tc, which is immersed in a bosonic bath with
the same lattice constant. The bosonic bath is prepared in the Mott
insulator regime with large on-site interaction U and a spatially mod-
ulated potential � is later added. The fermions and bosons interact
through the contact interaction V at the corresponding site positions.
The effective fermionic interaction Ueff originates from the adiabatic
approximation of atomic energy levels, with the distance locked to
the hopping of bosons tb.

are as follows. (i) An alternative mechanism for superfluids
stemming from the repulsive interactions is introduced. In our
proposal, the boson-boson and boson-fermion interactions are
both repulsive [64,70,71], the engineered effective interaction
for the fermionic subsystem is artificially controllable and can
range from the repulsive regime to the attractive one mainly by
an introduced staggered bosonic potential. (ii) The engineered
effective interaction is nonlocal, with a long-range interaction
distance that is locked to the hopping distance of bosons. This
makes it possible for obtaining various patterns of atomic
interactions beyond the s-wave one since the hopping is artifi-
cially controllable. Therefore it can provide a perfectly clean
platform to control and investigate the quantum systems with
long-range interactions, compared with those schemes based
on the dipolar moments or Rydberg atoms [56–63]. (iii) In the
presence of a staggered hopping for bosons, the effective in-
teraction takes the staggered modulation and the extra degree
of freedom contributes to supporting higher-order topological
superfluids phase accompanied by Majorana corner modes
even in such a spinless system without implementation of
complex artificial gauge fields, which is not reported in ex-
isting results that focus on spinful systems.

II. EFFECTIVE FINITE-RANGE INTERACTION

We consider the fermionic atoms immersed into a
quantum degenerate gas of bosonic atoms, resulting in a
Bose-Fermi mixture as shown in Fig. 1. They are re-
spectively confined in two-dimensional (2D) optical lattice
potentials VB(r) = VB[cos2(kLx) + cos2(kLy)] and VF (r) =
VF [cos2(kLx) + cos2(kLy)]. Here kL = π/a with the lattice
constant a. VB and VF are the potential depths and can be
controlled individually. To capture a clear physics picture, we
first consider a simple case of the model Hamiltonian written

in the following form:

H = HB + HF + HBF . (1)

The first part describes the bosonic part

HB =
∫

dr ψ∗
b (r)

[
− h̄2

2mb
∇2 + VB(r) − μb + �(r)

]
ψb(r)

+ gB

∫
dr ψ∗

b (r)ψ∗
b (r)ψb(r)ψb(r). (2)

Here ψb is the bosonic operator. mb is the mass of bosons.
gB is the bare boson-boson interaction strength in free space.
The on-site potential of bosons is composed of the chemi-
cal potential μb and a spatially modulated potential �(r) =
� sin(kLx) sin(kLy). The staggered potential will play a crucial
role in a tunable effective interaction and we will discuss it
later. The second part describes the fermionic subsystem

HF =
∫

dr ψ∗
c (r)

[
− h̄2

2mc
∇2 + VF (r) − μc

]
ψc(r). (3)

Here ψc is the fermionic operator. mc is the mass of fermions.
μc is the fermionic chemical potential. The last part describes
the boson-fermion interaction

HBF = gBF

∫
dr ψ∗

b (r)ψ∗
c (r)ψb(r)ψc(r), (4)

with the bare boson-fermion interaction strength gBF . We use
the tight-binding approximation to study the system. The field
operators ψb and ψc can be expanded in terms of Wannier
wave functions WB(r) and WF (r), which are centered at lattice
sites, describing the fields operators as ψb(r) = ∑

j WB(r −
r j )b j and ψc(r) = ∑

j WF (r − r j )c j . Here r j = ja denotes
the coordinate of the jth site, and bj and c j denote the an-
nihilation operators for bosons and fermions on the jth site,
respectively. Then the total lattice Hamiltonian takes the final
form

H = −
∑
i �= j

tbb†
i b j +

∑
j

[−μb + (−1) j�]nb
j +

∑
j

Unb
jn

b
j

−
∑
i �= j

tcc†
i c j −

∑
j

μcnc
j +

∑
j

V nb
jn

c
j . (5)

Here nλ
j = λ

†
jλ j (λ = b, c) denotes the density oper-

ator, and tλ is the corresponding hopping magnitude.
The on-site modulated potential � exhibits a checker-
board pattern. The boson-boson interaction strength U =
gB

∫
dr |WB(r)|4 and boson-fermion interaction strength V =

gBF
∫

dr |WB(r)WF (r)|2. We assume the strengths U and V
are both positive, yielding the repulsive interaction.

It is known that Bose gases invoke a transition from a
superfluid to a Mott insulator phase by means of a tunable
boson-boson interaction [4,72,73]. Specifically, in the strong
interaction regime, the system reduces to a hard-core bosonic
model that shares similar properties to a Fermi gas. Further-
more, bosons are tightly bounded in lattice sites, thus each site
is singly occupied which resembles a Mott insulator behavior,
as shown in Fig. 1. This opens the way for quantum simulation
and engineering using ultracold atoms [64,74], particularly
in the studies on quantum magnetism [75,76]. In this work,
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FIG. 2. (a) Schematic representations of the atomic states. En-
ergy levels represented by Fock state |nb

jn
b
j+1; nc

jn
c
j+1〉 are split

by boson-boson interaction U , boson-fermion interaction V , and
bosonic staggered potential �. The hopping of bosons tb leads to
the perturbation effect. (b) The effective interaction Ueff is controlled
by the staggered potential � for bosons. The resonance points are
marked by gray dashed lines. Other parameters are set as U = 8tb

and V = 6tb.

we follow this trick and apply it to generate an effective
finite-range interaction. For simplicity, we first investigate the
engineering of the nearest-neighbor (NN) one. It can invoke
topological nontrivial properties that are absent in systems
with only the on-site one.

In the strong interaction regime of U , the hopping mag-
nitudes tb and tc are sufficiently less compared to U . In
this way, we can suppose the bosonic bath is prepared into
the Mott insulator phase, in which each site is filled with
only one boson. Furthermore, we assume tb � tc, μc, which
yields the approximation that the fermionic subsystem does
not affect the bosonic bath. In other words, the bosonic
bath provides a background for the fermionic subsystem to
generate effective interaction. At this time, we extract the non-
perturbative Hamiltonian as H0 = ∑

j[−μb + (−1) j�]nb
j +

Unb
jn

b
j + V nb

jn
c
j and denote the Fock state of H0 as |ψ j〉 =

|nb
jn

b
j+1; nc

jn
c
j+1〉. With respective to H0, we regard the hopping

of bosons as the perturbative term Hp = −∑
〈i, j〉 tbb†

i b j , here
the summation

∑
〈i, j〉 takes over all NN sites. As discussed

before, we supposed the single occupation of bosons in each
site. We remark that, if the hopping of fermions is isotropic,
the number density of fermions is approximately uniform and
constant. It indicates that the V term in H0 acts as an on-site
energy shift of bosons. Then we can see that the subsystem
described by the bosonic part of Hamiltonian (5) will reduce
to the Bose-Hubbard model and can still form a Mott insu-
lating state in the weak regime of tb/U [72,73]. Therefore,
one can first prepare the bosonic subsystem into the Mott
insulator phase with a single occupation in each site and then
adiabatically load in the staggered potential � by employing
the additional Stark shift or superlattice structure [77]. In this
way, we can finally obtain the desired bosonic background
with single occupation.

By taking the Pauli exclusion into considerations, the en-
ergy of |ψ j〉 is split into 12 levels, which is shown in Fig. 2(a).
When U is large, the level transitions generated by Hp are
regarded as being fully far-detuned. The states |11; nc

jn
c
j+1〉

with the initial occupation are macroscopically occupied,
by contrast, the excited states |02; nc

jn
c
j+1〉 and |20; nc

jn
c
j+1〉

(nc
j, nc

j+1 = 0, 1) are extremely less occupied. The adiabatic
elimination of the |02; nc

jn
c
j+1〉 and |20; nc

jn
c
j+1〉 manifolds

gives rise to a second-order perturbation to the system. It is
easily seen that μc does not affect the energy detuning of tran-
sitions in Fig. 2(a) because of the number conservation of the
fermionic atoms and tc does not contribute to the transitions
from the initial states to the excited state manifolds. We then
treat the bosonic bath as the reservoir of no further interest
and concentrate on the fermionic subsystem. After performing
detailed derivations in Appendix A, the effective Hamiltonian
of the fermionic subsystem can be written as

Heff = −
∑
〈i, j〉

tcc†
i c j −

∑
j

μnc
j +

∑
j

Ueff n
c
jn

c
j+1. (6)

Here the effective interaction strength is expressed as

Ueff =
∑

α1,α2=±

t2
b

U − α1V/2 − α2�
− 4t2

bU

U 2 − �2
, (7)

and the chemical potential is given by μ = μc + Ueff +
2t2

bU/(U 2 − �2).
The effective interaction Ueff has the following features.

(i) In the simple case with � = 0, the interaction strength
reduces to Ueff = t2

bV 2/[U (U 2 − V 2/4)]. This reveals that
the sign of the effective interaction is solely determined by
the boson-boson interaction U when U dominantly governs
the physics. Particularly, the effective interaction is repulsive
(Ueff > 0) since we assumed U > 0 in Fig. 2(b). (ii) In addi-
tion to the bare interaction strength, it provides an alternative
way to tune Ueff utilizing �. In Fig. 2(b) we show the depen-
dence of Ueff on �. We can see the sign of Ueff is ambiguous
and independent of U when � �= 0. From Eq. (7), the effective
interaction can be demonstrated to be resonant at � = U and
� = ±U ± V/2. Across the resonance points, the sign of Ueff

is changed and a breakdown of the continuous controllabil-
ity will be encountered between its attractive and repulsive
interaction regimes. It shows that � is the key to generating at-
tractive effective interaction. (iii) The emergence of resonance
points is because several occupied states of the |11; nc

jn
c
j+1〉

manifold degenerate to the excited states of the |20; nc
jn

c
j+1〉 or

|02; nc
jn

c
j+1〉 manifolds. It tells the excited states are no longer

isolated from the macroscopically occupied states, which can
be revealed in Fig. 2(a). For this case, the results based on
adiabatic elimination of excited states will be invalid near the
resonance. As the consequence, in this work we only focus on
the physics out of the resonance condition.

In the above discussions, we studied the simple case of
the NN interaction. From Fig. 2 and the relevant formulas in
Appendix A, we can see the interaction distance of fermions
depends precisely on the hopping of bosons on arbitrary sites.
It reveals that this proposal of the engineered effective inter-
action is readily extended to the longer-range ones, as long
as the hopping of bosons is introduced between beyond-NN
sites (e.g., finite-range hopping driven via Raman transitions
[78,79]). This can give rise to interesting competing phases
of superfluids as well as charge density waves [16,80–82]. In
this case, since additional optical fields are introduced, it is
necessary to reduce the extra heating effect, such as preparing
the laser fields far-detuned during the Raman transitions. We
remark that different from these works [16,46–50] based on
the atom-cavity coupling, the effective long-range interaction
is clean because the interaction distance is locked to the
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hopping distance of bosons. This paves the way for realizing
the interaction within a particular range for the fermionic
subsystem.

For the sake of the anticommutation relation of the c op-
erator, the effective interaction is known to support p-wave
Cooper pairing of an odd parity if it is attractive. For the
spinless Fermi gas, the attractive p-wave pairing can bring
rich physics associated with interesting topological properties
[83,84]. As aforementioned in the Introduction, the engineer-
ing of p-wave pairing usually faces practical difficulties. The
proposal provides such a desirable routine to achieve the aim
because the proposal basically relies on the contact interaction
that is attainable in current experimental techniques using
the Bose-Fermi mixture. Furthermore, the proposal provides
various methods for independently tuning the effective finite-
range interaction Ueff by U , V (via the conventional Feshbach
resonance technique) and � (via the external optical field),
both in terms of strength and spatial structure. Taking full
advantage of our proposal, it indicates that the application
in searching higher-order topological superfluids transitions
is readily expected even in a spinless Fermi system, which
motivates us forward and is studied next.

III. MAJORANA CORNER MODES

Higher-order topological superfluids can host Majorana
zero modes (MZMs) whose dimensions are always lower
than the traditional ones, providing that they have the same
bulk dimensions. Particularly for the 2D case, the second-
order topological superfluids support zero-dimensional (0D)
Majorana zero modes localized at the corners instead of
one-dimensional (1D) edges, known as the Majorana corners
modes (MCMs). A variety of schemes based on solid-state
systems [85–110] and ultracold atoms [111–113] were pro-
posed for realizing the interesting MCMs, which mainly rely
on complex lattice structures or artificial gauge fields, how-
ever, spinless systems have not been involved. Since complex
artificial gauge fields, e.g. spin-orbit coupling, cannot be ap-
plied in spinless systems, alternative approaches should be
considered for the realization of higher-order topological su-
perfluids.

To search the potential higher-order topological phases,
we introduce a spatial modulation to the hopping of bosons,
which provides an extra degree of freedom in the spinless
system. In particular, we assume the hopping magnitude
of bosons is staggered along the y direction, while it re-
mains uniform along the x direction. For simplicity, we
introduce a dimensionless quantity η to characterize the stag-
gered structure. The perturbative term is then transformed
as Hp → ∑

jx, jy
− tb(b†

jx, jy
b jx+1, jy + √

ηb†
jx,2 jy

b jx,2 jy−1 +
b†

jx,2 jy
b jx,2 jy+1) + H.c., here H.c. is the abbreviation for the

Hermitian conjugate. Under the staggered hopping, the
fermionic system will be dimerized into an A-B sublattice
structure. Since Ueff directly depends on tb in Eq. (7), the ef-
fective NN interaction in Eq. (6) will simultaneously respond
to the staggered pattern and is rewritten as

∑
j Ueffnc

jn
c
j+1 →∑

jx, jy
Ueff (nc

jx, jy n
c
jx+1, jy

+ ηnc
jx,2 jy

nc
jx,2 jy−1 + nc

jx,2 jy
nc

jx,2 jy+1).
We exploit the mean-field Bogoliubov de Gennes (BdG)

approach to study the superfluid phases of Fermi gases,

which can capture the qualitative features and particularly
the topological features of our interest. In the BdG approach,
the order parameter of the superfluid phase is introduced
as �α, j = −Ueff〈c jc j+êα

〉 (êα=x,y denotes the unit vector).
Specifically, in this work, we introduce three order parameters
�x, �y1, and �y2, of which the last two can characterize the
staggered pattern induced by η. For the 2D fermionic
system, it is known that the chiral p-wave pairing is the
ground state that hosts lower energy in comparison with
the trivial p-wave one. For this sake, the order parameters
�x and �y1,y2 host a relative π/2 phase. We treat the A-B
sublattice structure by using the operator representation
c jx,2 jy−1 → cA, jx, jy and c jx,2 jy → cB, jx, jy . In the momentum
k space, the BdG Hamiltonian is expressed as HBdG(k) =
(−2tc cos kx − μ)τz + 2�x sin(kx )τy − tc(1 + cos ky)τzσx − tc
sin(ky)τzσy + (�y1 − �y2 cos ky)τxσy + �y2 sin(ky)τxσx,

where we chose the basis Ĉk = (cA,k, cB,k, c†
A,−k, c†

B,−k )T .
τx,y,z and σx,y,z are Pauli matrices defined on the particle-hole
and sublattice basis. The order parameters �x, �y1, and
�y2 can be obtained by self-consistently minimizing the
thermodynamic potential � = 1

2�k,νEν (k)�[−Eν (k)] + E0,
where �(·) is the Heaviside function that describes
the Fermi-Dirac distribution at zero temperature. The
energy constant E0 = �k(−tc cos kx − μ/2) − [|�x|2 +
|�y1|2/(2η) + |�y2|2/2]/Ueff . When �x, �y1, and �y2 are
nonzero, it outlines the superfluid phase.

The phase diagram is shown in Fig. 3(a). By intro-
ducing the staggered effective interaction (i.e., η �= 1), we
find two types of topological superfluid phases, first-order
topological superfluids phase and second-order topological
superfluids phase in addition to the trivial one. Specifically,
first-order topological superfluids phase is characterized by
a nonzero Chern number C = ±1 [113,114]. By contrast,
C = 0 for second-order topological superfluids phase, but
its higher-order topological invariant, quadrupole moment, is
half-quantized [113,115]. The detailed numerical results for
three order parameters and calculated topological invariants at
η = 0.8 are depicted in Fig. 3(c). The higher-order topologi-
cal phase supports zero-energy MCMs in the square lattice,
which is shown in Fig. 3(b). Moreover, we find the MCMs are
four-fold degenerate because the effective BdG Hamiltonian
preserves the particle-hole symmetry and the space-inversion
symmetry. The phase transition conditions can be further ana-
lytically verified by means of Majorana representation and the
edge theory whose details are analyzed in Appendix B.

IV. DISCUSSION

The model Hamiltonian based on the proposal can be read-
ily realized using the existing techniques of ultracold atoms.
Notice that, in previous investigations, we assumed that the
hopping magnitude of the bosons needs to be larger than
fermions. Intuitively, one can choose the bosonic atoms (e.g.,
7Li) and the other fermionic atoms with the heavier mass (e.g.,
171Yb) [116,117]. We load the two species of atoms into opti-
cal lattices with the identical wavelength λL = 1064 nm but of
different trap depths, e.g., VB = 12ER and VF = 5 × ηmER ≈
0.2ER. Here we take the recoil energy of the bosonic lattice
ER = h2/(2mbλ

2
L ) ≈ 25.1 kHz as the energy unit to sim-

plify the discussion and ηm = 7/171 denotes the mass ratio
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FIG. 3. (a) Phase diagram of superfluid phases with the depen-
dence of fermionic chemical potential μ and interaction modulation
factor η. It contains trivial superfluids (trivial SF) phase, first-order
topological superfluids (FOTSF) phase, and second-order topologi-
cal superfluids (SOTSF) phase. We show the Chern number C = ±1
in the FOTSF regions. (b) The spatial distribution of Majorana corner
modes in the 2D square lattice at (μ, η) = (−1.0tc, 0.6) in (a). We
set Ueff = −8.7tc and the edge size L = 40. The inset shows ener-
gies near zero, indicating one Majorana zero mode at each corner.
(c) The order parameters �x (green dashed line), �y1 (blue dash-dot
line), �y2 (red dotted line), Chern number C (purple solid line), and
quadrupole moment qxy (gray star scatter plot) as functions of μ at
η = 0.8 in (a).

between the two atomic species. After the above setups, the
NN hopping strengths can be determined as tb ≈ 0.0123ER ≈
0.31 kHz and tc ≈ 0.0658 × ηmER ≈ 0.22tb. By preparing the
staggered bosonic potential � = 5.8tb ≈ 0.071ER ≈ 1.8 kHz,
the effective interaction strength Ueff = −1.9tb ≈ −8.7tc, at
which it is also known to support the superfluid phase in con-
ventional Fermi gases [42]. The parameter setup used in Fig. 3
is therefore attainable. After obtaining the effective interaction
to realize the higher-order topological superfluids, we can
synthesize the staggered hopping by applying a double-well
structure to the optical lattice potential or using optical fields,
which was also widely applied in searching nontrivial phases
in ultracold atoms [118–123].

In summary, we proposed the scheme for engineering the
finite-range interaction from the contact one using a fermionic
optical lattice immersed into a bosonic bath. We demonstrate
that the strength and distance of the effective fermionic in-
teraction assisted with bosons are both highly tunable, which
sharply differ from previous schemes based on Bose-Fermi
mixtures [64–69]. Particularly by introducing staggered hop-
ping of bosons, we find the fermionic subsystem undergoes
a second-order topological transition and supports Majorana
corner modes within experimental reach, yet to be reported
in such a spinless system. Although further applications are
required, especially with respect to the effects of longer-range

interactions in the extended Hubbard model which are still
currently under active investigations [124–127], our results
show a promising quantum simulation tool to investigate
unconventional topological superfluids and other nontrivial
phases induced by tunable finite-range interaction in ultracold
atomic mixtures.
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APPENDIX A: DETAILED DERIVATIONS
FOR THE EFFECTIVE HAMILTONIAN

We start with the unperturbed Hamiltonian that is also
given in the main text

H0 =
∑

j

[−μb + (−1) j�]nb
j + Unb

jn
b
j + V nb

jn
c
j, (A1)

and its eigenstates can be expressed as |ψ j〉 ≡ |ψkl〉 =
|nb

knb
l ; nc

knc
l 〉 = |m1m2; n1n2〉, where k, l are the correspond-

ing two sites of the bosonic hopping terms with the density
operators abbreviated as m1,2, n1,2 in the following. The
Schrödinger equation for H0 is written as

H0|ψ j〉 = En1n2
m1m2

|ψ j〉. (A2)

The projection operator is defined as

Pn1n2
m1m2

= |m1m2; n1n2〉〈m1m2; n1n2|. (A3)

It obeys the normalized condition∑
m1m2

∑
n1n2

Pn1n2
m1m2

= 1, (A4)

and is orthogonally defined

Pn1n2
m1m2

Pn′
1n′

2
m′

1m′
2
= δm1m′

1
δm2m′

2
δn1n′

1
δn2n′

2
Pn1n2

m1m2
. (A5)

From Eq. (A3), we define the following two projection opera-
tors:

P̂ =
∑
n1n2

Pn1n2
11 , Q̂ = 1 − P̂. (A6)

From Fig. 2(a) of the main text, it can be known that P̂
characterizes the macroscopically occupied states |11; n1n2〉,
while Q̂ characterizes the empty excited states |02; n1n2〉 and
|20; n1n2〉 (n1 = 0, 1 and n2 = 0, 1).

As shown in Fig. 4, we adiabatically eliminate |02; n1n2〉
and |20; n1n2〉 by projecting the original Hamiltonian H
[Eq. (1) of the main text] into the P̂ subspace. Under the
projection P̂, the effective Hamiltonian is given as [128]

Heff = HPP + H ′
PP, (A7)
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FIG. 4. Schematic diagram for the adiabatic elimination of the fermionic subsystem in the Bose-Fermi mixture system. The states |11; nc
knc

l 〉
(initial state) are initially prepared and macroscopically occupied. The excited states |02; nc

knc
l 〉 and |20; nc

knc
l 〉 (intermediate virtual state) are

extremely less occupied, which can be adiabatically eliminated. The on-site boson-fermion interaction V , boson-boson interaction U as well as
bosonic staggered potential � lead to the energy levels splitting. The bosonic hopping tb as the perturbation term gives rise to the final effective
interaction Ueff for the fermionic subsystem (final state).

where (δ stands for an infinitesimal quantity)

HPP = P̂HP̂, HPQ = P̂HQ̂,

H ′
PP = HPQ(EPP − HQQ + iδ)−1HQP. (A8)

To explicitly express the Hamiltonians in Eq. (A8), we intro-
duce the following denotation:

H
n1n2;n′

1n′
2

m1m2;m′
1m′

2
= Pn1n2

m1m2
HPn′

1n′
2

m′
1m′

2
. (A9)

HPP is obtained by the nonzero terms of Eq. (A9) that only
describe the P̂ subspace. If we only focus on the fermionic
subsystem and discard terms that do not contain fermionic
operators, its form is identical to HF [Eq. (3) of the main text].
H ′

PP is obtained by the nonzero terms of Eq. (A9) that describe
the interplay between the P̂ and Q̂ subspaces. It only includes
the following sample:

Hn1n2;n1n2
11;02 = −

√
2tbb†

kbl . (A10)

Other nonzero off-diagonal terms can be obtained via
the relations H

n1n2;n′
1n′

2
m1m2;m′

1m′
2
= (Hn′

1n′
2;n1n2

m′
1m′

2;m1m2
)† and H

n1n2;n′
1n′

2
m1m2;m′

1m′
2
=

(m1 ↔ m2)† = (m′
1 ↔ m′

2)† = (n1 ↔ n2)† = (n′
1 ↔ n′

2)†.
Since there are four states for the P̂ subspace, we analyze them
one by one. For |11; 00〉, we get

H ′(00)
PP =

∑
(m1m2 )�=(11)

∑
n1n2

H00;n1n2
11;m1m2

(
E00

11 − Hn1n2;n1n2
m1m2;m1m2

)−1
Hn1n2;00

m1m2;11

= −
(

2t2
b

2U − 2�
+ 2t2

b

2U + 2�

)
|11; 00〉〈11; 00|

= −
(

t2
b

U − �
+ t2

b

U + �

)(
1 − nc

j

)(
1 − nc

j+1

)
. (A11)

Likewise for |11; 11〉, we get

H ′(11)
PP = −

(
t2
b

U − �
+ t2

b

U + �

)
|11; 11〉〈11; 11|

= −
(

t2
b

U − �
+ t2

b

U + �

)
nc

jn
c
j+1. (A12)

For |11; 01〉, we get

H ′(01)
PP = −

(
2t2

b

2U − V − 2�
+ 2t2

b

2U + V + 2�

)
|11; 01〉〈11; 01|

= −
(

t2
b

U − V/2 − �
+ t2

b

U + V/2 + �

)(
1 − nc

j

)
nc

j+1.

(A13)

For |11; 10〉, we get

H ′(10)
PP = −

(
2t2

b

2U − V + 2�
+ 2t2

b

2U + V − 2�

)
|11; 10〉〈11; 10|

= −
(

t2
b

U − V/2 + �
+ t2

b

U + V/2 − �

)
nc

j

(
1 − nc

j+1

)
.

(A14)

After combining the above results, the final form of the effec-
tive Hamiltonian for the fermionic subsystem is expressed as

Heff = −
∑
i �= j

tcc†
i c j −

∑
j

μnc
j +

∑
k<l

Ueffn
c
knc

l . (A15)

Here the distance of effective interaction is locked to the
bosonic hopping distance, i.e., site k and site l , revealing a
locking-to-distance behavior. In addition, sites i, j represent
the hopping sites of the fermions themselves. The effective
interaction strength and the renormalized chemical potential
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are given as

Ueff = − 4t2
bU

U 2 − �2
+

(
t2
b

U − V/2 − �
+ t2

b

U + V/2 + �

+ t2
b

U − V/2 + �
+ t2

b

U + V/2 − �

)
, (A16)

μ = μc + Ueff + 2t2
bU

U 2 − �2
. (A17)

When we consider the hopping of atoms in nearest-neighbor
sites, the effective Hamiltonian (A15) is reduced to that ex-
pressed in Eq. (6) of the main text.

APPENDIX B: ANALYTICAL DESCRIPTIONS
FOR THE GENERATED MAJORANA CORNER MODES

1. Majorana representation

According to the generated higher-order topological super-
fluids and Majorana corner modes described in the main text,
we start from the corresponding real-space Hamiltonian as the
following form:

H =
∑

j

[
−tx

∑
σ=A,B

c†
σ, j+êx

cσ, j − ty
(
c†

B, jcA, j + c†
A, j+êy

cB, j
)

+
∑

σ

(
− μ

2
c†
σ, jcσ, j + �xc†

σ, jc
†
σ, j+êx

)

+ i
(
�y1c†

B, jc
†
A, j + �y2c†

A, j+êy
c†

B, j

)] + H.c. (B1)

Here tx(y) is the hopping strength of fermions along the x(y)
direction, respectively. We neglect the y-directional hopping
and represent the fermionic operators in terms of the Majorana
operators γ

(1)
σ, j and γ

(2)
σ, j , which satisfy the following relations:

cσ, j = (
γ

(1)
σ, j + iγ (2)

σ, j

)
/2, c†

σ, j = (
γ

(1)
σ, j − iγ (2)

σ, j

)
/2. (B2)

The effective Hamiltonian is transformed as

H = i

2

∑
j

{ ∑
σ

[
(�x + tc)γ (2)

σ, jγ
(1)
σ, j+êx

+ (�x − tc)γ (1)
σ, jγ

(2)
σ, j+êx

− μγ
(1)
σ, jγ

(2)
σ, j

] + �y1
(
γ

(1)
A, jγ

(1)
B, j − γ

(2)
A, jγ

(2)
B, j

)
+ �y2

(
γ

(1)
B, jγ

(1)
A, j+êy

− γ
(2)

B, jγ
(2)

A, j+êy

)}
, (B3)

whose form reduces to the Benalcazar-Bernevig-Hughes
(BBH) model [115] when �x = tc. It reveals that the second-
order topological phase exists when |μ| < 2tx and �y1 < �y2

(i.e., η < 1), which is consistent with the numeric results in
Fig. 3(a) of the main text.

2. Edge theory for Majorana corner modes

To understand the emergent higher-order topological su-
perfluids and Majorana corner modes, here we perform the
edge theory [86]. We take ty = 0 first which can provide a
simple picture. The continuum Hamiltonian at the low-energy
limit can be obtained by expanding the wave vector k to the

A

B B B B B B

x

y

ty

tx

Ueff

ηUeff Ueff

Ueff

Ⅰ

Ⅱ

Ⅲ

Ⅳ

B B B

A

B

A

B B

B B B B B B

A A A

A A AA A A

A A AA A A

FIG. 5. Schematic diagram for the lattice model of the fermionic
subsystem. The lattice model is dimerized into A-B sublattices. tx and
ty define the hopping strengths along x and y directions, respectively.
The nearest-neighbor interaction strength Ueff along x direction is
uniform, while that along y direction displays a staggered pattern,
i.e., {η, 1, η, 1, . . .}. Symbols I, II, III, and IV mark the four edges
for use in the edge theory.

second order around the gapless point of k = (0, 0),

H (k) = (
txk2

x − 2tx − μ
)
τz + 2�xkxτy

+
(

�y1 − �y2 + �y2

2
k2

y

)
τxσy + �y2kyτxσx. (B4)

We label the four edges of the square lattice as I, II, III,
and IV in Fig. 5. On the edge I, by expressing kx as −i∂x, we
decompose Hamiltonian (B4) as H = H0 + Hp, where

H0(−i∂x, ky) = (−tx∂
2
x − 2tx − μ

)
τz − 2i�x∂xτy, (B5)

Hp(−i∂x, ky) = �y2kyτxσx + (�y1 − �y2)τxσy. (B6)

Here the insignificant k2
y term was neglected due to the low-

energy limit. By solving the eigenvalue equation H I
0φ

I
α (x) =

EφI
α (x) with E = 0 under the boundary condition φI

α (0) =
φI

α (+∞) = 0, we obtain the solution in the following form:

φI
α (x) = Nx sin(λ1x) exp(−λ2x) exp(ikyy)χ I

α. (B7)

Here Nx =
√

|λ2(λ2
1 + λ2

2)/λ2
1, λ1 =√|(2tx + μ)/tx| − (�2

x/t2
x ), and λ2 = �x/tx. χ I

α denotes
the eigenvector of τx that satisfies τxχ

I
α = χ I

α . By expanding
Hp in terms of φI

α (x), we obtain its matrix form with the
elements expressed as

HI
αβ (ky) =

∫ +∞

0
dxφI∗

α (y)Hp(−i∂x, ky)φI
β (y). (B8)

Then the final form of the effective Hamiltonian is

HI(ky) = �y2kyσx + (�y1 − �y2)σy. (B9)
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Likewise, the low-energy effective Hamiltonians for edges II,
III, and IV can be obtained as

HII(kx ) = 2�xkxτy + (−2tx − μ)τz, (B10)

HIII(ky) = −�y2kyσx − (�y1 − �y2)σy, (B11)

HIV(kx ) = −2�xkxτy + (2tx + μ)τz. (B12)

To facilitate the discussion, we assume that tx, �x, �y1, and
�y2 are all positive hereafter. For edge I, the Hamiltonian HI

has the Dirac mass �y1 − �y2. While for edge II, the Dirac
mass is 2tx + μ if accounting for the unified anticlockwise
direction. It reveals that when μ > −2tx and �y1 < �y2, the
Dirac mass changes its sign at the intersection of edges I and
II, leading to the emergence of Majorana corner modes, which
are analogous to the Jackiw-Rebbi zero modes [129,130].
By repeating the same treatment at other gapless points like
k = (π, 0), we finally conclude that Majorana corner modes
appear as long as |μ| < 2tx, which is consistent with Fig. 3(a)
of the main text.

APPENDIX C: EDGE-CORNER CORRESPONDENCE OF
SECOND-ORDER TOPOLOGICAL SUPERFLUIDS

The topological transitions process the different bulk-edge
correspondences from the trivial to topological superfluids. In
Fig. 6(a) and 6(c), we can see the gap of bulk bands closes and
reopens across the first-order topological superfluids phase
boundaries, associated with changed Chern numbers. By con-
trast in Figs. 6(c) to 6(e), the bulk bands keep open and C = 0
when the system transits from the trivial phase to second-order
topological superfluids phase. At this stage, the edge modes
play the role of the bulk and its gap exhibits the closing and
reopening, known as the edge-corner correspondence [131].
This is the manifest feature of the higher-order topological
phase transition.

FIG. 6. Quasiparticle spectrum with cylindrical geometry for dif-
ferent (μ, η) = (−3tc,0.8) in (a), (−3tc,0.68) in (b), (−3tc,0.6) in
(c), (−2tc,0.6) in (d), and (−tc,0.6) in (e). The blue lines mark the
edge or corner states in each topological phase. (a),(c),(e) represent
the first-order topological superfluids (FOTSF) phase, trivial super-
fluids (trivial SF) phase and second-order topological superfluids
(SOTSF) phase, respectively. We set the open boundary condition
with L = 200 in x for the left column and y for the right column.
All the figures are plotted under the self-consistent calculations of
superfluids with Ueff = −8.7tc.
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