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We extend the theory of nonthermal fixed points to the case of anomalously slow universal scaling dynamics
according to the sine-Gordon model. This entails the derivation of a kinetic equation for the momentum
occupancy of the scalar field from a nonperturbative two-particle irreducible effective action, which resums a
series of closed loop chains akin to a large-N expansion at next-to-leading order. The resulting kinetic equation is
analyzed for possible scaling solutions in space and time that are characterized by a set of universal scaling
exponents and encode self-similar transport to low momenta. Assuming the momentum occupancy distribution
to exhibit a scaling form we can determine the exponents by identifying the dominating contributions to the
scattering integral and power counting. If the field exhibits strong variations across many wells of the cosine
potential, the scattering integral is dominated by the scattering of many quasiparticles such that the momentum of
each single participating mode is only weakly constrained. Remarkably, in this case, in contrast to wave turbulent
cascades, which correspond to local transport in momentum space, our results suggest that kinetic scattering
here is dominated by rather nonlocal processes corresponding to a spatial containment in position space. The
corresponding universal correlation functions in momentum and position space corroborate this conclusion.
Numerical simulations performed in accompanying work yield scaling properties close to the ones predicted
here.
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I. INTRODUCTION

Among the most challenging questions in classical and
quantum field theory to date concerns the possible ways how
interacting systems with many degrees of freedom evolve far
out of equilibrium. Nonthermal fixed points have been pro-
posed to characterize universal forms of far-from-equilibrium
dynamics akin to renormalization-group fixed points that rep-
resent phase transitions in equilibrium [1,2]. During recent
years, studies of universal phenomena far from equilibrium
have intensified, in experiment [3–11] and theory [1,2,12–39],
many of them in the field of ultracold gases.

These works have been performed in very different sys-
tems, while most of them have focused on the form and
evolution of basic correlation functions such as distributions
of particle momenta, structure factors, or phase coherence
functions, which contain information about both spatial and
temporal variations in the system. Universal properties such
as power-law exponents characterising these variations have
been extracted with the aim to distinguish different universal-
ity classes.

Putting this recent activity into a broader perspective,
studies of universal scaling far from equilibrium have been
performed for more than a century. These include driven
stationary systems such as turbulence in classical [40,41]
and quantum fluids [42,43] and wave turbulence [44,45], as
well as phase-ordering kinetics and coarsening phenomena
following a quench into a phase with different possible or-
der [46–48]. Turbulence phenomena are typically analyzed
with respect to their scaling properties on the grounds of
hydrodynamic and kinetic equations. In contrast, the standard

classification of phase-ordering kinetics builds on that of dy-
namical critical scaling in the linear response of systems close
to equilibrium [49,50] and of nonlinear critical relaxation
[51–54].

Phase-ordering kinetics and coarsening, though, as many
transient turbulent motions, typically result from a quench
far out of equilibrium and exhibit self-similar evolution.
Take, e.g., spin domains formed in a shock-cooled magnet,
which on long timescales grow according to a power law in
time, �d (t ) ∼ t β , with a universal scaling exponent β. As
in stationary situations like fully developed turbulence, the
momentanous spatial distribution of the order parameter field
is often characterized by a so-called Porod tail in momentum
space, f (t, p) ∼ p−κ , with universal exponent κ . Universality
here means that the spatiotemporal form of this distribution
as well as of more general statistical correlations is indepen-
dent of the particular physical realization but rather reflects
characteristic symmetries and related conservation laws.

Since far from equilibrium, a system is subject to less
constraints and thus can show distinctly different scaling
phenomena, a unified description of such phenomena is desir-
able, but lacking so far for most practically relevant cases of
coarsening [48]. Nonthermal fixed points offer such a unified
description provided it is possible to apply the relevant tech-
niques to the strongly correlated excitations governing such
phenomena.

Here we follow the strategy to make use of techniques, that
have been developed for weak wave turbulence [44,45] and
which have been extended to characterise nonthermal fixed
points and capture strong wave turbulence [1,2,12,18,27].
We further extend these analytical methods for describing
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scaling phenomena driven by strongly nonlinear interactions,
of nonpolynomial form. As an example, we consider a non-
linear wave equation with sinusoidal interactions governing
a scalar field, which constitutes the so-called sine-Gordon
model. The sine-Gordon model is highly relevant in many
different contexts, e.g., through its mapping to the Thirring
model [55] and its soliton and kink solutions [56–58], its
mapping to a Coulomb gas [59–63], which is useful in
describing the Berezinskii-Kosterlitz-Thouless transition in
two-dimensional Bose systems [64–68], also in one spatial
dimension at finite temperature [69] and out of equilibrium
[70–72], for structure formation and growth in the universe
[73–77] and quark confinement [78] as well as for false
vacuum decay [79,80]. Numerical simulations of coarsening
within this model, as presented in [81], exhibit anomalously
slow scaling in space and time, corroborating the analytical
results reported here.

This opens a perspective on analytically capturing coarsen-
ing phenomena, which so far have been beyond the reach of
ab initio methods as used here. We expect our methods to be
applicable to more general types of models, which could lead
to a classification of the universal properties that characterize
domain coarsening and phase-ordering kinetics. We derive
kinetic equations on the grounds of functional quantum field
theory and analyze their scaling solutions within a classical
statistical approximation that is valid for large occupancies,
when effects arising from fluctuations at the single-particle
level can be neglected. The chosen approach allows us taking
into account the self-interactions of the field in a nonpertur-
bative manner, which means that the kinetic equation remains
applicable to arbitrarily large occupancies of long-wavelength
modes that characterize ordering phenomena. Distinctly dif-
ferent from stationary (wave) turbulent transport, we find the
scattering processes that drive the evolution at the nonthermal
fixed point to be strongly nonlocal in momentum space. As
a result, the corresponding correlations are rather localized in
position space, which appears to be a prerequisite for the type
of pattern formation seen in the simulations of the system [81].

Our paper is organized as follows: In Sec. II we introduce
the kinetic description of the sine-Gordon model on the basis
of functional field theoretic techniques, derive dynamic equa-
tions in a nonperturbative approximation scheme, and reduce
these to a wave-Boltzmann-type equation for the momentum
distribution of the system. In Sec. III we perform a scaling
analysis of the resulting kinetic equation in space and time and
derive scaling exponents at a new type of infrared nonthermal
fixed point and discuss its properties in view of coarsening of
nonhomogeneous field patterns in position space. A summary
and outlook is given in Sec. IV.

II. KINETIC THEORY OF THE SINE-GORDON MODEL

In this first chapter, we derive the kinetic equation for the
momentum distribution function f (t, p) of the sine-Gordon
model within a nonperturbative approximation. The procedure
developed here extends the standard procedures [82–85] by
including the nonpolynomial, cosine interaction potential of
the model. Our further goal is to determine possible self-
similar evolution of correlation functions of the sine-Gordon
model, in which kinetic equations describing transport in mo-

mentum space are analyzed for possible scaling solutions in
space and time, close to a nonthermal fixed point; see, e.g.,
Refs. [1,12,18,27,82,86].

In Sec. II A we introduce the model, then start from the
Kadanoff-Baym dynamic equations for two-point correlators
(Sec. II B), from which we derive the wave-Boltzmann type
equation within a first-order gradient expansion (Sec. II C).
The scattering integral of the resulting kinetic equation is
nonperturbative and can be obtained from a two-particle irre-
ducible (2PI) effective action or �-functional (Sec. II D). For
the description of an infrared nonthermal fixed point, we will
use, as successfully explored for standard λφ4 field models
[1,12,18,27,82,86], a nonperturbative approximation of the
self-energies entering the dynamic equations. This includes,
beyond the standard approach, the resummation of propagator
lines for the sine-Gordon interactions, which involve arbi-
trary orders n in the field interactions ϕn (Sec. II E), and an
s-channel resummation of a set of 2PI loop-chain diagrams
involving the corresponding high-order vertices (Secs. II F–
II H). This eventually leads to the wave-Boltzmann scattering
integral and T matrix involving arbitrary powers of the distri-
bution function f (Sec. II I). Specifically, in the limit of large
occupancies, as they are anticipated, in the scaling limit, for
low-momentum modes, the T matrix becomes independent of
the bare coupling constant of the model but rather depends in
a transcendental manner on the distribution function only.

A. Sine-Gordon model

The “sine-Gordon” equation, which is a nonlinear Klein-
Gordon equation with a sine-function nonlinearity,

�ϕ + m2 sin ϕ = 0, (1)

can be derived as an Euler-Lagrange equation from the La-
grangian density

LsG = 1

2η
∂μϕ ∂ μϕ + λ(cos ϕ − 1), (2)

which is typically written in terms of the real coupling pa-
rameters λ and η, with ηλ = m2. The parameter η has the
mass dimension [η] = 1 − d in d spatial dimensions, which
is chosen such that the real scalar field ϕ is dimensionless.
From the above Lagrangian one can readily derive the inverse
of the free propagator,

iG−1
0 (x, y) ≡ δ2S[ϕ]

δϕ(x)δϕ(y)

∣∣∣∣
φ0

= −η−1[�x + m2]δC(x − y).

(3)

The coupling λ, with [λ] = 1 + d , sets the strength of the
interactions. Writing the cosine potential as its Taylor series, it
follows that the coupling constants of all vertices, from second
to arbitrarily high order, are fixed by a single parameter, m2.
Note that one may also rescale the dimensionless field ϕ

as ϕ = φ
√

η, such that φ carries the same dimension as in
the Klein-Gordon model. The sine-Gordon Lagrangian then
reads L = (∂φ)2/2 + η−1m2[cos(

√
η φ) − 1], which shows

that η controls the relative weight of the higher-order vertices,
e.g., of the standard λ4φ

4/4! vertex with coupling constant
λ4 = −ηm2 = −η2λ, as compared with m2φ2/2.

043303-2



ANOMALOUS SCALING AT NONTHERMAL FIXED POINTS … PHYSICAL REVIEW A 107, 043303 (2023)

The sine-Gordon model plays an important role in equi-
librium, in providing an effective description of topological
defects such as vortices [59,64,72,87–90]. For the nonequi-
librium case, such a connection has not been established so
far (cf., however, the discussion in Sec. IV). Nonetheless, the
sine-Gordon model finds application also in numerous out-of-
equilibrium settings, such as in the dynamics of axions [75] or
two coupled Bose-Einstein condensates [91]. The dynamics
of the sine-Gordon model after quenches has been studied in,
e.g., [92–94].

We finally remark that we are here mainly interested in the
universal far-from-equilibrium dynamics of the sine-Gordon
model in the form of transport towards the infrared. Hence,
we consider the sine-Gordon model as a low-energy effective
field theory. This does not exclude, however, that issues of
renormalizability [95,96] could give rise to corrections to
the approximate results obtained in the following, which are,
however, beyond the scope of the present work.

B. Nonequilibrium evolution equations for two-point
correlation functions

The sine-Gordon model is invariant under translations of
the field ϕ(x) → ϕ(x) + 2πn by integer multiples of 2π , such
that also the field expectation value 〈ϕ〉 is defined only up
to these integer multiples. In the following, we assume that,
in the statistical average over many configurations, the field
expectation value is and stays zero at every spatial position in
the system. This assumption is justified as long as there is no
explicit symmetry breaking nor any nonvanishing mean field
in the initial condition. And it does not exclude spontaneous or
any other dynamical symmetry breaking as long as the average
is taken over all different possible solutions according to the
right probability distribution; cf., e.g., [18,24]. This means
that topologically nontrivial objects such as kinks can be cap-
tured by the description in terms of two-point and higher-order
correlation functions only. Notwithstanding this, one needs to
keep in mind that kinks, e.g., are not necessarily accounted for
within the approximations made in the following. As we will
point out at the end, however, numerical results are remark-
ably close to the scaling exponents predicted here.

In consequence, we will restrict our analysis to two-
point correlators the evolution of which is governed by the
Kadanoff-Baym equations of motion [82],

η−1[�x + M2(x)]F (x, y) = −
∫ x0

t0

dz
 ρ (x, z)F (z, y)

+
∫ y0

t0

dz
F (x, z)ρ(z, y), (4a)

η−1[�x + M2(x)]ρ(x, y) = −
∫ x0

y0
dz
 ρ (x, z)ρ(z, y), (4b)

for the statistical, F (x, y) = 〈{ϕ̂(x), ϕ̂(y)}〉/2, and spectral
functions, ρ = i〈[ϕ̂(x), ϕ̂(y)]〉, where the renormalized mass
M is defined in Eq. (7) below, and we chose the notation∫ t2

t1
dz ≡ ∫ t2

t1
dz0
∫

dd z. F and ρ derive from the time-ordered

connected Green’s function

G(x, y) = 〈TCϕ̂(x)ϕ̂(y)〉=F (x, y)− i

2
ρ(x, y)sgnC(x0 − y0),

(5)

where C denotes the Schwinger-Keldysh closed-time path.
The self-energy 
, which contains all information about the
structure of correlations induced by the nonlinear interactions
and will be discussed further below, has been decomposed into
a local and a nonlocal part,


(x, y) ≡ −i
(0)(x) δC(x − y) + 
(x, y), (6)

where the local part, together with the bare mass, defines the
dynamic mass squared

M2(x) ≡ m2 + 
(0)(x) (7)

on the left-hand side of Eqs. (4). The nonlocal part has been
decomposed, in analogy to G, into a statistical and a spectral
part,


(x, y) ≡ 
F (x, y) − (i/2)
 ρ (x, y)sgnC(x0 − y0). (8)

C. Kinetic equation

For the later scaling analysis, we consider a uniform, trans-
lationally invariant system and go over to a description in
momentum space. The scaling limit is reached at late times
and low wave numbers, implying an algebraic slow-down
of the evolution of G(x, y) along the central-time direction
∼x0 + y0. This suggests an approximate description that takes
into account only low orders in an expansion in both, temporal
and spatial derivatives with respect to the central coordinates
X ∼ x + y. Along the standard line of arguments, a transport
equation that governs the late-time dynamics is obtained by
applying such a gradient expansion to the dynamic equa-
tions (4), with the initial time sent to t0 → −∞ [82,83,97].
At leading order of the gradient expansion, one obtains

2ipμ

η

∂F (X, p)

∂X μ
= 
 ρ (X, p)F (X, p) − 
F (X, p)ρ(X, p),

(9a)

2ipμ

η

∂ρ(X, p)

∂X μ
= 0 (9b)

governing the center-time evolution of the Fourier transforms
in the relative coordinate,

F (X, p) =
∫

dd+1seip·sF
(

X + s

2
, X − s

2

)
, (10a)

ρ(X, p) =
∫

dd+1seip·sρ
(

X + s

2
, X − s

2

)
, (10b)

with p, s, and X ∈ R1+d such that p · s = p0s0 − p · s. The
self-energies 
F (X, p) and 
 ρ (X, p) are defined analogously.

To describe transport by means of kinetic theory, it is
convenient to introduce the concept of quasiparticles. In the
simplest quasiparticle approximation, one takes into account
only the linear part of the Kadanoff-Baym equation (4b) for
the spectral function, the solution of which is the free spectral
function of the sine-Gordon model,

ρ (0)(p) = 2π iηsgn(p0) δ
(
[p0]2 − ω2

p

)
= iπη

ωp
[δ(p0 − ωp) − δ(p0 + ωp)], (11)
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with dispersion depending on the mass squared (7),

ωp = ω(0)
p = (p2 + M2)1/2. (12)

This spectral function is then used to solve the fully nonlinear
equation (9a) for the statistical function F . Without loss of
generality, one may express F in terms of ρ by

F (X, p) = −i
[

f (X, p) + 1
2

]
ρ(X, p), (13)

and note that, for a real scalar theory, one has

F (X,−p) = F (X, p), ρ(X,−p) = −ρ(X, p), (14)

which implies that f (X,−p) = −[ f (X, p) + 1]. For our spa-
tially homogeneous system, the spectral function is constant
in central time t ≡ X 0 [cf. Eq. (9b)], while the statistical
function F is not, and both functions are independent of
X. Integrating Eq. (9a) over the frequency p0 and using the
parametrization (13) we obtain the wave-Boltzmann-type ki-
netic equation

∂t f (t, p) = C[ f ](t, p), (15)

for the quasiparticle distribution function

f (t, p) ≡ −i
∫ ∞

0

d p0

2π
2p0η−1ρ(p) f (t, p) (16)

with the scattering integral

C[ f ](t, p)=−i
∫ ∞

0

d p0

2π
[
 ρ (t, p)F (t, p)−
F (t, p)ρ(t, p)].

(17)

For the free spectral function (12) the integral (16) implies,
with (11), that the function f (t, p) is evaluated on-energy-
shell, f (t, p) = f (t, p0 = ωp, p). This function describes the
distribution of stable quasiparticles over the momenta p, with
the momentum-dependent energy ωp being determined by the
quadratic part of the Lagrangian.

D. Approximation scheme for the self-energies

In order to close the set of equations (4), we specify the
self-energy 
 self-consistently within an expansion of the
effective action in terms of two-particle irreducible (2PI) dia-
grams [82]. The relevant part of the effective action is defined
as

�2[G] = −i ln〈eiSint [ϕ]〉2PI, (18)

where

Sint[ϕ] = −
∫
C

dzV(ϕ) (19)

represents the interaction part of the action, in our case in
terms of the field potential V(ϕ) = λ(cos ϕ − 1). The dou-
ble Legendre transform giving the 2PI effective action or
Luttinger-Ward � functional [98–100] as a functional of
G can be formulated as the logarithm of a (time-ordered)
expectation value of the exponentiated Sint, where only two-
particle irreducible contributions (with full propagators and
bare vertices) are kept. The beyond-1-loop part �2 defines the
self-energy,


(x, y; G) ≡ 2i
δ�2[G]

δG(x, y)
. (20)

The spatial scaling properties at an infrared nonthermal
fixed point [1,12] as well as the corresponding dynamical

scaling evolution [18,27], have been predicted, for scalar field
theories, on the grounds of a large-N expansion of the 2PI
effective action, which corresponds to an s-channel bubble
resummation of �2 akin to the random-phase and GW approx-
imations [101–104].

A system described by a relativisticO(N )-symmetric scalar
model with quartic interactions ∼λ(φaφa)2 is naturally dom-
inated by the fluctuations of the N − 1 Goldstone degrees
of freedom while fluctuations of the single radial, “Higgs”
mode are energetically suppressed by the quartic interaction
term. A similar situation prevails in the case of a nonrela-
tivistic U(N )-symmetric Schrödinger model with a quartic
nonlinearity ∼g(ψ†

a ψa)2. Its dynamics is dominated by the
N − 1 independent Goldstone modes with free, i.e., quadratic
dispersion, which are characterized by equal-magnitude ex-
citations of the relative phases and amplitudes between the
different components. At the same time, the long-wave-length
excitations of the total density ρ = ψ†

a ψa are energetically
suppressed. They form another Goldstone excitation with a
sound-like dispersion, dominated by strong phase variations,
while there is no massive Higgs mode.

For both types of systems, in the large-N limit, the dynam-
ics of the strongly occupied low-momentum modes, building
up as a result of the transport of particles towards the infrared
when the system is close to a nonthermal fixed point, are
thus anticipated to be dominated by the interactions of the
N − 1 Goldstone excitations with free dispersion. The above
mentioned large-N expansions at next-to-leading order cap-
ture this dynamics while they take into account the suppressed
massive Higgs or soundlike total-density degrees of freedom
in a static manner only. This picture has been confirmed by
an analysis within a low-energy effective theory approach, in
which, after integrating out the subdominant radial density
fluctuations, the same universal scaling behavior emerged as
in the fundamental field theory [28].

Here we choose a similar approach and consider an s-
channel type resummation scheme, while still applying it to
a model with a single scalar field only. In the following, we
work out this resummation scheme and show that a closed-
form expression results for the 2PI effective action and thus
for the self-energies and the ensuing dynamic and kinetic
equations.

E. Resummed propagator lines for the sine-Gordon model

For deducing the above mentioned closed-form expression
of an approximated 2PI effective action, we need to discuss
in some more detail possibilities for resumming 2PI diagrams
for the sine-Gordon model. It is known from the discussion of
higher-order terms in the BKT flow equations how to resum
the infinite number of vertices from the cosine potential at a
fixed order in the coupling λ [61,62,105]. On this basis we will
introduce in Sec. II F a resummation of a class of diagrams to
all orders in λ.

To start with, we Taylor expand the cosine potential,

V(ϕ) = λ(cos ϕ − 1) =
∑

m

[
V(m)(φ)

m!

]
ϕm ≡

∑
m

vmϕm,

(21)
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FIG. 1. (a) A single m-vertex at space-time point x is connected,
by l1 of its legs, via full propagators G(x, x1), to a neighboring
vertex ∼ϕ(x1)m1 , which we label by 1, by l2 legs to a different
vertex 2, and so on to lL legs linked to vertex L. In addition to this,
l0 = 2l legs of each vertex are connected in a pair-wise manner to
each other by local propagators G(x, x). The multiplicities sum up
to
∑L

ν=0 lν = m. (b) Resummation of the diagrammatic series over
powers [G(x, xν )]lν , within the otherwise identical 2PI diagrams.
Such a resummed link Gnl(x, xν ) is denoted by a thick line. The
combinatorial factors indicate the nonlocal line (26), which consists
of even and odd contributions of opposite sign. There are no vertex
couplings included in this resummation.

with vm = (−1)m/2λ/m! for m = 2n, n ∈ N, while vm = 0 for
all other integers m. Now let us consider a single m-vertex
at space-time point x and assume that l1 of its legs are con-
nected, via full propagators G(x, x1), to a neighboring vertex
∼ϕ(x1)m1 , which we label by 1, l2 legs to a different vertex
2, and so on to lL legs linked to vertex L. In addition to this,
l0 = 2l legs be connected in a pairwise manner to each other
by local propagators G(x, x); see Fig. 1(a). The multiplicities
sum up to

∑L
ν=0 lν = m.

Since all the propagators G(x, xν ), ν = 0, . . . , L, x0 ≡ x,
within a lν-multiple link are identical, our aim is to be able to
resum the series over powers [G(x, xν )]lν , within the otherwise
identical 2PI diagrams. We denote such a resummed link
G(x, xν ) by a thick line; see Fig. 1(b). Such resummations
are in principle possible since each link G(x, xν ) can be as-
sociated with a specific vertex, say that one at x. Moreover,
the summation over the powers [G(x, xν )]lν of lines can be
included in the summation over the number of legs m. To
show this, let us first consider the combinatorics: There are
m!/[(2l )!(l1 + · · · + lL )!] indistinguishable ways to pick out
the 2l from the m legs that are locally pairwise connected by
G(x, x). Then there are (l1 + · · · + lL )!/(l1! . . . lL!) ways how
to connect the remaining lines via [G(x, xν )]lν to the neigh-
boring vertices ν = 1, . . . , L. Finally, there are (2l )!/(2l l!)
and lν! ways to permute the local and the nonlocal lines con-
necting to vertex ν, respectively. For each vertex, the Taylor
coefficient is thus replaced by

V(m)(φ)

m!

m!

(2l )!(l1 + · · · + lL )!

(l1 + · · · + lL )!

l1! · · · lL!

(2l )!

2l l!

L∏
ν=1

√
lν!

= V(2l+l1+···+lL )

l!2l (l1! · · · lL!)1/2
. (22)

Here the multiplicity of the nonlocal connections between
vertices 0 and ν has been included as the square root of lν
to avoid squared counting. Hence, to be able to sum over
the multiplicities l, l1, . . . , lL, the numeratorV(2l+l1+...+lL )(φ)
needs to factorize, up to some constant λ, into components

depending in a specific fashion on the lν ,

V(2l+l1+···+lL )(φ) = λ gl (l )
L∏

ν=1

√
gnl(lν ), (23)

where the (squared) factors gl and gnl form the coefficients of
the resummed local and nonlocal lines, respectively,

Gl (x, x) =
∞∑

l=0

gl (l )

l!

(
G(x, x)

2

)l

, (24a)

Gnl(x, xν ) =
∞∑

lν=0

gnl(lν )

lν!
[G(x, xν )]lν . (24b)

Note that the factors depending on the indices lν>0 need to be
squared because an identical such factor arises from each of
the linked vertices at x and xν . SinceV(m)(φ) = (−1)m/2λ for
m = 2n, n ∈ N, andV(m)(φ) = 0 for all other m, the factoriza-
tion condition (23) is fulfilled by the sine-Gordon model, and
both, gl (l ) = (−1)l and gnl(lν ) = (−1)lν , result as the same
pure, real phase, giving

Gl (x, x) = exp [−G(x, x)/2], (25a)

Gnl(x, xν ) = exp [−G(x, xν )]. (25b)

Note however, that these results for the sine-Gordon model
require that, in a given diagram, an even number of propagator
lines G(x, y) is attached to each vertex ∼ϕm. Hence, one needs
to distinguish the partial sums over even and odd powers of
G(x, xν ),

Gnl(x, xν ) ≡ Ge(x, xν ) − Go(x, xν )

= cosh [G(x, xν )] − sinh [G(x, xν )]; (26)

cf. Fig. 1(b) for an illustration.

F. s-channel resummed 2PI effective action

In the following, we use the resummed lines Gl (x, x),
Ge(x, xν ), and Go(x, xν ) obtained in the previous subsection
to construct the 2PI effective action summing up all ring and
chain diagrams including local tadpole loops. As noted above,
the sine-Gordon model, for vanishing mean field φ = 0, is
invariant under ϕ → −ϕ and thus gives rise to even-power
ϕ2n vertices with n ∈ N. Hence, in the ring diagrams, each
vertex is connected by either an even or an odd number of
propagators G to both its two neighbor vertices. Moreover, if
there is an even (odd) number of propagator lines connecting
one pair of vertices, all vertex pairs in the ring are connected
by an even (odd) number of lines. The different possible
diagrams are depicted in Fig. 2. Note that in the rings with
an odd number of lines linking each vertex pair, there can be
only one link with a single line only. In that case all other links
have a minimum number of three propagators in order for the
overall ring diagram to be two-particle irreducible. Rings with
an even number of lines between the vertices are not subject
to such a limit.

To be more consistent one could include also open chains
with an arbitrary number of vertices connected to either one or
two neighboring vertices. These can contribute in contrast to
the case of φ4 theory because, if all vertices are linked by three
or more lines, also chains are two-particle-irreducible. We will
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FIG. 2. Exemplary diagrams contributing to the s-channel
bubble-resummed two-particle irreducible effective action �2[G],
Eqs. (27) and (29), of the sine-Gordon model. Lines represent fully
dressed Green’s functions G(x, y), dots represent m-point vertices
vmϕm, Eq. (21). Diagrams with an even (odd) number of lines linking
neighboring vertices contribute to �2,e[G] (�2,o[G]); cf. Eqs. (27) and
(29), respectively.

not include open chains, however, as one can eventually show
that, because there is no momentum flowing through them,
their effect can be accommodated into a renormalization of
the coupling λ. As we are interested in scaling only, neglecting
this will not affect our results.

In concrete terms, we need to work out the expecta-
tion value (18) of the exponentiated Sint, keeping only 2PI
diagrams in terms of bare vertices and (resummed) full propa-

gator lines. To begin, a prefactor in/n! arises, for the diagrams
of order λn, from the expansion of exp(iSint ). There are
(n − 1)!/2 ways to arrange n � 3 vertices within a ring,
corresponding to the number of their inequivalent circular
permutations. Hence, each ring diagram containing n � 3 ver-
tices comes with a prefactor in/2n.

Next we use the resummed lines of the previous subsec-
tion to construct the diagrams shown in Fig. 2. Let us focus,
first, on the case of an even number of connecting lines. We
enumerate the vertices by j ∈ {1, . . . , n}, implying cyclicity
by identifying indices n + 1 = 1 and n = 0. The number of
propagators between vertices j and j + 1 is denoted by 2k j .
In addition, l j local tadpole loops are connected to each vertex,
such that the jth vertex is of order ϕ2(k j−1+k j+l j ). (Note the
different meaning of the multiplicities l j and k j as to before.)

Without the need of going into further details, we can
now use the arguments of the previous subsection to write
the 2PI effective action containing all rings of n � 3 vertices,
connected by an even number of propagator lines, plus the
“daisies” with an arbitrary high number of petals, which are
of order λ,

�2,e[G] = −
∞∑

n=1

i

2n

n∏
j=1

∫
x j ,C

iλ G(x j, x j )[Ge(x j, x j+1) − 1] |xn+1=x1 = i

2
Tr lnM{δC(x − y) − iλ̄(x)[cosh G(x, y) − 1]}, (27)

where we dropped the index l of the local resummed lines
Gl (x, x) and defined the multi-tadpole-dressed local coupling

λ̄(x) ≡ λ e−G(x,x)/2. (28)

The subscript M in lnM emphasizes that the logarithm is
understood to be that of a matrix. The hyperbolic cosine, as
before, is a function of the scalar matrix elements G(x, y) of
the propagator.

Note that the sum over n has been deliberately chosen to
start at 1 for the logarithmic-series resummation to be possi-
ble. The sum thus includes first- and second-order terms in the
coupling λ̄, which we had not been included in the discussion
of the prefactors for the rings and chains above. It is important
to realize that not all possible first- and second-order 2PI
diagrams are included in these additional terms, as also at

any higher order in λ̄, the rings and chains represent only
a subclass of all 2PI diagrams. This is similar to, e.g., an
expansion of the 2PI effective action of an O(N) λ(ϕaϕa)2

model (a = 1, . . . , N) in powers of 1/N , in the limit of a large
number N of distinguishable components, where, at any order,
the diagrams included represent only a subclass of all 2PI
vacuum diagrams at that order in the coupling. Here we could
also have chosen a different scheme for the resummation, such
as a large-N resummation similar to that for the quartic theory.
Since it is impossible, though, to formally resum all NLO
terms in such an approximation, we restrict ourselves to the
above quoted rings. This will be sufficient, though, for the
scaling analysis to be done in the following.

Analogously, the contribution including an odd number of
lines in each link of the rings, completing again the sums to
run from n = 1, reads

�2,o[G] = −
∞∑

n=1

i

2n

n∏
j=1

∫
x j ,C

(−iλ) G(x j, x j )[Go − G](x j, x j+1) |xn+1=x1

− λ

2

∞∑
n=1

n−1∏
j=1

{∫
x j ,C

(−iλ) G(x j, x j )[Go − G](x j, x j+1)

}∫
xn,C

G(xn, xn) G(xn, x1)

= i

2
Tr lnM{δC(x − y) + iλ̄(x)[sinh G − G](x, y)} − 1

2

∫
x,y,C

G(x, y)

[
1

1 + iλ̄(sinh G − G)

]
(x, y)λ̄(y). (29)

Here the second line, and thus the last term in the third line,
includes closed loop chain diagrams with a single propagator
link between a single pair of vertices. A corresponding term,

including an open loop chain, could be added to the even part,
Eq. (27), but was left out as it leads to subdominant effects
only later.
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G. Self-energies of the resummed 2PI effective action

In a first step towards evaluating the dynamic equations (4),
one determines the contributions to the self-energy, using the
definitions (6) and (20). While the local contribution results as


(0)(x) = λe−3G(x,x)/2

+ 1

2

∫
z,C

[�e(x, z)�e(z, x) − �o(x, z)�o(z, x)]

− 1

2

∫
z,C

G(x, z)�o(z, x), (30)

the even and odd nonlocal self-energies read


e(x, y) = [G(x, y) + �o(x, y)] Ie(y, x), (31a)


o(x, y) = [1 + �e(x, y)] Io(y, x), (31b)

where the multiloop functions summing up the multiple-
propagator links are defined as

�e(x, y) = cosh G(x, y) − 1, (32a)

�o(x, y) = sinh G(x, y) − G(x, y). (32b)

The chains constructed out of lining up these loops are en-
coded in

Ie(x, y) = −
∫

z,C
λ̄(x) �e(x, z) �e(z, y), (33a)

Io(x, y) = −
∫

z,C
λ̄(x) �o(x, z) �o(z, y), (33b)

with nonperturbative nonlocal coupling functions

�e(x, y) = [1 − iλ̄�e]−1(x, y) λ̄(y), (34a)

�o(x, y) = [1 + iλ̄�o]−1(x, y) λ̄(y), (34b)

where the inverse is to be understood, as in the 2PI ef-
fective action, as the matrix inverse. Note that all of the
above functions are symmetric under exchange of their argu-
ments, i.e., G(x, y) = G(y, x) implies �e/o(x, y) = �e/o(y, x),
Ie/o(x, y) = Ie/o(y, x), etc. We furthermore remark that we
have left out contributions to the odd self-energies (31), which
arise from taking the derivative of the term in square brackets
in the second contribution to (29), as they will be subdominant
later.

H. Decomposition of the self-energies

To arrive at the Kadanoff-Baym equations (4), we need to
decompose the nonlocal self-energies according to Eq. (8).
Applying, to cosh G(x, y), sinh G(x, y), the decomposition (5)
of G and standard trigonometric identities we can decompose
the loop functions (32) into their spectral and statistical com-
ponents

�F
e = cosh F cos(ρ/2) − 1,

�ρ
e = 2 sinh F sin(ρ/2), (35a)

�F
o = sinh F cos(ρ/2) − F,

�ρ
o = 2 cosh F sin(ρ/2) − ρ, (35b)

where we suppressed the identical arguments (x, y) of all
(products of) functions. These functions, in particular the re-
tarded and advanced loops

�R
e/o(x, y) = θ (x0 − y0) �

ρ

e/o(x, y), (36a)

�A
e/o(x, y) = −θ (y0 − x0) �

ρ
e/o(x, y), (36b)

are an essential ingredient to the nonperturbative integrals
I , (33), which can also be decomposed into statistical and
spectral components. For this, it is useful to first rewrite the
integrals in terms of implicit integral equations and after de-
composing these, reexpress them in terms of nonperturbative
coupling functions.

For the explicit steps, see Appendix B. As a result of these,
the statistical and spectral components of the integrals (33)
can be written as

IF
e/o = −�R

e/o ∗ �F
e/o ∗ �A

e/o, (37a)

I ρ

e/o = −�R
e/o ∗ �

ρ

e/o ∗ �A
e/o, (37b)

with the nonperturbative couplings

�R
e/o = (1 ∓ λ̄ ∗ �R

e/o

)−1 ∗ λ̄, (38a)

�A
e/o = (1 ∓ λ̄ ∗ �A

e/o

)−1 ∗ λ̄, (38b)

where the star ∗ serves as a short-hand notation for matrix
products in space-time (cf. Appendix A), and λ̄≡ λ̄(x) δ(x−y)
is a diagonal matrix.

The above integrals are finally needed in the statistical and
spectral components of the self-energies (31),


F
e = (F + �F

o

) · IF
e − (ρ + �ρ

o ) · I ρ
e /4, (39a)


 ρ
e = (ρ + �ρ

o ) · IF
e + (F + �F

o

) · I ρ
e , (39b)


F
o = (1 + �F

e

) · IF
o − �ρ

e · I ρ
o /4, (39c)


 ρ
o = −(1 + �F

e

) · I ρ
o − �ρ

e · IF
o , (39d)

where we use the short-hand notation summarized in Ap-
pendix A for products of functions in position space, taking
into account that spectral components are odd under an ex-
change of their coordinates x and y. Note that 
(0) is local
in space-time and thus is equal to its statistical part. The
above self-energy components are now ready for use in the
Kadanoff-Baym dynamic equations (4), where the even and
odd contributions are to be summed up, 
F = 
F

e + 
F
o ,


 ρ = 
 ρ
e + 
 ρ

o .
The mass shift [cf. (7)] finally reads


(0) = {λ exp[−3F/2] + 1
2

[
IF
o − IF

e

]
λ−1 exp[F/2]

− 1
2�R

o ∗ F ∗ �A
o

}
(x, x). (40)

The resulting dynamic equations describe the evolution ac-
cording to in general nonperturbatively strong correlations
built up through the sine-Gordon interactions. The form of
the coupling functions (38) demonstrates that, as is typical for
loop-chain resummations, for the dynamics to be nonpertur-
bative, the loop function multiplied with the (dressed) local
coupling must, at least, be of order unity, |λ̄ ∗ �

ρ
e/o| � 1. We

will later be interested in the limit |λ̄ ∗ �
ρ
e/o| 
 1, in which
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the dressed local coupling λ̄ drops out, and the nonpertur-
bative couplings scale as �R,A

e/o ∼ (�R,A
e/o )

−1
alone. This will

be important for the scaling analysis close to a nonthermal
fixed point where a strong infrared mode occupancy allows
this limit to be reached.

Taking into account nonlinear interactions, the quasiparti-
cle spectral function is modified in general, and quasiparticles
can acquire a finite lifetime. The dispersion relation may then
significantly differ from its free form ω(0)

p . Within the quasi-
particle picture introduced above and the considered spatially
uniform system, the dressed coupling (28) evaluates to

λ̄(x) = λ exp [−F (x, x)/2] = λ exp [−F (X, s = 0)/2]

= λ exp

{
−η

2

∫
p

f (t, p) + 1/2

ωp

}
, (41)

where we used the symmetry (14), and assumed the free
spectral function (11), as well as a parity-even distribution,
f (t, p) = f (t,−p). As is usually encountered for such loop
integrals, the exponent is divergent unless one specifies a UV
cutoff or introduces a renormalization of the bare couplings
η and λ. Moreover, the integral over the quasiparticle distri-
bution must converge and thus requires a physical cutoff or
sufficiently fast decay of f for large momenta. In the nonrela-
tivistic approximation considered here, we assume a cutoff on
the order of M to regularize all momentum integrals and write
the coupling constant as λ̄ ≡ λ exp(−ηn0/2M ), in terms of
the total quasiparticle density

n0 =
∫

p
f (t, p). (42)

During the scaling evolutions considered in the following, this
density is anticipated to be conserved in time, n0(t ) ≡ n0. In
that case, we can pull the couplings λ̄, in the integrals (37)
and couplings (38), as constant factors to the front, removing
thereby all multiplications with the unit matrix δ(x − y).

I. Scattering integral

To arrive at an explicit expression of the kinetic equation,
it remains to Fourier transform the self-energies (39) entering
the scattering integral (17) with respect to the relative coor-
dinates s and insert the quasiparticle parametrization of the
statistical and spectral functions as introduced in the previous
section. As pointed out, we consider an on average spatially
uniform system, taking λ̄ as a renormalized coupling constant.
As a consequence of this, the integrals (37), in Fourier space,
to the lowest order of a gradient expansion can be written as

IF
e/o(t, p) = −(∣∣�R

e/o

∣∣2 · �F
e/o

)
(t, p), (43a)

I ρ

e/o(t, p) = −(∣∣�R
e/o

∣∣2 · �
ρ

e/o

)
(t, p), (43b)

where the dot denotes a product in momentum space; cf.
Appendix A.

The effective momentum-dependent coupling function is
defined as

�R
e/o(t, p) = λ̄

1 ∓ λ̄ �R
e/o(t, p)

, (44)

where we used the symmetry �A
e/o(t, p) = �R

e/o(t,−p) =
[�R

e/o(t, p)]
∗
. The above momentum-dependent integrals con-

volved with correlation and loop functions determine the
self-energies in Fourier space, obtained from Eqs. (39) by
replacing dots with asterisks,


F
e = (F + �F

o

) ∗ IF
e − (ρ + �ρ

o ) ∗ I ρ
e /4, (45a)


 ρ
e = (ρ + �ρ

o ) ∗ IF
e + (F + �F

o

) ∗ I ρ
e , (45b)


F
o = (1 + �F

e

) ∗ IF
o − �ρ

e ∗ I ρ
o /4, (45c)


 ρ
o = −(1 + �F

e

) ∗ I ρ
o − �ρ

e ∗ IF
o . (45d)

For expressing the scattering integral (17) in terms of the
quasiparticle mode occupations f (t, p) it is convenient to
rewrite it in terms of the “greater” and “smaller” components
of the correlators and self-energies, which, by use of Eq. (13),
are

G>(t, p) = F (t, p) + i

2
ρ(t, p) = −i f (t, p) ρ(t, p), (46a)

G<(t, p) = F (t, p) − i

2
ρ(t, p) = −i[ f (t, p) + 1] ρ(t, p)

(46b)

and depend on central time t = (x0 + y0)/2 and 4-momentum
p. The statistical and spectral components of the self-energies
and integrals I are combined analogously. In terms of these
combinations, the self-energies (45) read


≷
e = (G≷ + �≷

o ) ∗ I≷e , 
≷
o = (1 + �≶

e ) ∗ I≶o , (47)

with the loop functions obtained from Eqs. (35),

�≷
e = cosh G≷ − 1, �≷

o = sinh G≷ − G≷, (48)

and I integrals

I≷e/o(t, p) = −(∣∣�R
e/o

∣∣2 · �
≷
e/o

)
(t, p). (49)

With these, the integrand of (17) results as

− i
[



ρ

e/o(t, p)F (t, p) − 
F
e/o(t, p) ρ(t, p)

]
= (
<

e/o · G> − 
>
e/o · G<)(t, p), (50)

and, inserting Eqs. (47) and (48), one arrives at the kernels

− i
[

 ρ

e · F − 
F
e · ρ

]
(t, p)

= {( sinh G> ∗ [∣∣�R
e

∣∣2 · (cosh G> − 1)
]) · G<

− (
sinh G< ∗ [∣∣�R

e

∣∣2 · (cosh G< − 1)
]) · G>

}
(t, p),

(51)

− i
[

 ρ

o · F − 
F
o · ρ

]
(t, p)

= {(
cosh G> ∗ [∣∣�R

o

∣∣2 · (sinh G> − G>)
]) · G<

− (
cosh G< ∗ [∣∣�R

o

∣∣2 · (sinh G< − G<)
]) · G>

}
(t, p).

(52)
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Inserting these into Eq. (17) gives the scattering integral

C[ f ](t, p) =
∫ ∞

0

d p0

2π

({[∣∣�R
e

∣∣2 · (cosh G> − 1)
] ∗ sinh G> + [∣∣�R

o

∣∣2 · (sinh G> − G>)
] ∗ cosh G>

} · G<

− {[∣∣�R
e

∣∣2 · (cosh G< − 1)
] ∗ sinh G< + [∣∣�R

o

∣∣2 · (sinh G< − G<)
] ∗ cosh G<

} · G>
)
(t, p). (53)

Note that the hyperbolic functions are defined in the convolutional sense, cosh G = 1 + G ∗ G/2 + · · · , etc. In the next step, we
expand out the hyperbolic functions in (53), using (46), to obtain the scattering integral

C[ f ](t, p) =
∞∑

n=1

[
C(n)

e [ f ](t, p) + C(n)
o [ f ](t, p)

]
, (54)

with the even and odd contributions of nth order in the expansion in powers of f ,

C(n)
e [ f ](t, p) =

n∑
m=1

∫ ∞

0

d p0

2π

∫
q1...q2n+1

δ(p − q1 − · · · − q2n+1)

(2m)!(2[n − m] + 1)!

∣∣�R
e (q1 + · · · + q2m)

∣∣2 (−1)nρ(p) ρ(q1) · · · ρ(q2n+1)

× [( fq1 + 1
) · · · ( fq2n+1 + 1

)
fp − fq1 · · · fq2n+1 ( fp + 1)

]
, (55a)

C(n)
o [ f ](t, p) =

n∑
m=1

∫ ∞

0

d p0

2π

∫
q1...q2n+1

δ(p − q1 − · · · − q2n+1)

(2m + 1)!(2[n − m])!

∣∣�R
o (q1 + · · · + q2m+1)

∣∣2 (−1)nρ(p) ρ(q1) · · · ρ(q2n+1)

× [( fq1 + 1
) · · · ( fq2n+1 + 1

)
fp − fq1 · · · fq2n+1 ( fp + 1)

]
. (55b)

Here we have suppressed the dependence on the time t . Integrating out the frequencies p0, q0
i is straightforwardly possible for the

free spectral function (11), which leads to the final form of C[ f ], as a sum of multidimensional integrals over the three momenta,
involving a scattering “T matrix,” energy- and momentum-conservation constraints, and a sum of in- and out-scattering terms
depending on the quasiparticle distribution f (t, p) only,

C[ f ](t, p) ≡
∞∑

n=1

C(n)[ f ](t, p)

= −
∞∑

n=1

∫ 2n+1∏
i=1

dqi

(2π )d
|T (n)(t ; p, q1, . . . , q2n+1)|2δ(ωp − ωq1 − · · · − ωqn+1 + ωqn+2 + · · · + ωq2n+1

)

× δ(p − q1 − · · · − qn+1 + qn+2 + · · · + q2n+1)
[(

fq1 + 1
) · · · ( fqn+1 + 1

)
fqn+2 · · · fq2n+1 fp

− fq1 · · · fqn+1

(
fqn+2 + 1

) · · · ( fq2n+1 + 1
)
( fp + 1)

]
. (56)

Here we have suppressed, on the right-hand-side, the depen-
dence of fq ≡ f (t, q) on the time t . As we are eventually
interested in universal transport into the infrared region of
small wave numbers, where the dispersion is in general
gapped, ω(|p| → 0) → M we explicitly write out only the
on-energy-shell terms. Hence, the above scattering integral
describes (n + 1)-to-(n + 1) processes for which the sum of
all frequencies, p0 +∑2n+1

i=1 q0
i is gapless, i.e., n + 1 of the

frequencies are evaluated in the positive domain, q0
i = ω(qi ),

i = 1, . . . , n + 1, and a further n + 1 in the negative domain,
q0

i = −ω(qi ), i = n + 2, . . . , 2n + 1, as well as p0 = −ω(p).

J. Nonperturbative T matrix

The T matrices squared, which measure the probability of
the multi-momentum scattering processes described by (56)
are defined as

|T (n)(t ; p, q1, . . . , q2n+1)|2

= g2
eff (n; t ; p, {qi})

n!(n + 1)!

η2n+2

2ωp

2n+1∏
i=1

1

2ωqi

, (57)

in terms of the nonperturbative couplings (44) entering a (di-
mensionful) coupling geff ,

g2
eff (n; t ; p, {qi})

=
n∑

m=1

⎡
⎣∑

{σ }

∣∣∣∣∣�R
e

(
t,

2m∑
i=1

sσi ωqσi
,

2m∑
i=1

sσi qσi

)∣∣∣∣∣
2

+
∑
{σ }

∣∣∣∣∣�R
o

(
t,

2m+1∑
i=1

sσi ωqσi
,

2m+1∑
i=1

sσi qσi

)∣∣∣∣∣
2
⎤
⎦. (58)

Here sk = sgn(n + 3/2 − k), which is sk = +1 if k � n +
1 and sk = −1 for k > n + 1, and the sums over σ ⊂
{1, . . . , 2n + 1} are those over all subsets of 2m (or 2m + 1,
in the odd case) momenta of all the qk in a given term.
Note that, to arrive at Eq. (57), we first symmetrized over
all momenta, i.e., wrote the even-case scattering integral as
a sum where every choice of 2m momenta out of 2n + 1 mo-
menta is realized once and divide by the number (2n + 1)!/
[(2m)!(2n + 1 − 2m)!] of terms in the sum. After that we are
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free to choose an arbitrary set of n momenta out of 2n + 1
which we evaluate at a negative frequency −ωqi , if in turn
we multiply by the (2n + 1)!/[n!(n + 1)!] possibilities to do
so. Combining the above steps yields the combinatorial factor
1/[n!(n + 1)!]. The odd case is analogous.

Finally, the loop functions �R
e/o entering the coupling func-

tions �R
e/o can be expressed, using Eq. (36a), in terms of

�
ρ
e/o = −i(�>

e/o − �<
e/o). Using Eqs. (35) and (48) they can

be expressed as

�R
e (t, p0, p) = −i[θ ∗ (cosh G> − cosh G<)](t, p0, p)

=
∫

dq0

2π

1

q0 + iε
(cosh G> − cosh G<)(t, p0 − q0, p) , (59a)

�R
o (t, p0, p) = −i[θ ∗ (sinh G> − sinh G< − G> + G<)](t, p)

=
∫

dq0

2π

1

q0 + iε
(sinh G> − sinh G< − iρ)(t, p0 − q0, p) , (59b)

and, as done for the scattering integral itself, expanded in powers of the distribution function f ,
�R

e (t, p0, p) = −i[θ ∗ (cosh G> − cosh G<)](t, p0, p)

=
∞∑

n=1

∫
dq0

2π

η2n

q0 + iε

∫ 2n∏
i=1

dqi

(2π )d2ω(qi )

2n∑
m=0

−1

m!(2n − m)!

× δ
(
p0 − q0 − ωq1 − · · · − ωqm + ωqm+1 + · · · + ωq2n

)
δ(p − q1 − · · · − qm + qm+1 + · · · + q2n)

× [( fq1 + 1
) · · · ( fqm + 1

)
fqm+1 · · · fq2n − fq1 · · · fqm

(
fqm+1 + 1

) · · · ( fq2n + 1
)]

, (60a)

�R
o (t, p0, p) = −i[θ ∗ (sinh G> − sinh G< − G> + G<)](t, p)

=
∞∑

n=1

∫
dq0

2π

η2n+1

q0 + iε

∫ 2n+1∏
i=1

dqi

(2π )d 2ωqi

2n+1∑
m=0

−1

m!(2n − m + 1)!

× δ
(
p0 − q0 − ωq1 − · · · − ωqm + ωqm+1 + · · · + ωq2n+1

)
δ(p − q1 − · · · − qm + qm+1 + · · · + q2n+1)

× [( fq1 + 1
) · · · ( fqm + 1

)
fqm+1 · · · fq2n+1 − fq1 · · · fqm

(
fqm+1 + 1

) · · · ( fq2n+1 + 1
)]

. (60b)

Integrating again over the frequencies gives the final expressions

�R
e (t, p0, p) = − 1

2π

∞∑
n=1

∫ 2n∏
i=1

dqi

(2π )d2ω(qi )

2n∑
m=0

η2n

m!(2n − m)!

× (p0 − ωq1 − · · · − ωqm + ωqm+1 + · · · + ωq2n + iε
)−1

δ(p − q1 − · · · − qm + qm+1 + · · · + q2n)

× [( fq1 + 1
) · · · ( fqm + 1

)
fqm+1 · · · fq2n − fq1 · · · fqm

(
fqm+1 + 1

) · · · ( fq2n + 1
)]

, (61a)

�R
o (t, p0, p) = − 1

2π

∞∑
n=1

∫ 2n+1∏
i=1

dqi

(2π )d 2ωqi

2n+1∑
m=0

η2n+1

m!(2n − m + 1)!

× (p0 − ωq1 − · · · − ωqm + ωqm+1 + · · · + ωq2n+1 + iε
)−1

δ(p − q1 − · · · − qm + qm+1 + · · · + q2n+1)

× [( fq1 + 1
) · · · ( fqm + 1

)
fqm+1 · · · fq2n+1 − fq1 · · · fqm

(
fqm+1 + 1

) · · · ( fq2n+1 + 1
)]

, (61b)

which, due to the nonperturbative s-channel resummation,
take a similar form as the scattering integral (56) itself. Note,
however, that the on-shell energy conservation is replaced by
the energy denominator shifted into the complex plane, which,
in addition, includes a principal value part. Moreover, due to
the sums over m, the expressions still include inelastic such as
m ↔ 2n − m processes.

III. NONTHERMAL FIXED POINTS
OF THE SINE-GORDON MODEL

Having set up our nonperturbative kinetic theory of trans-
port in the sine-Gordon model, the subsequent step is to

examine the resulting kinetic equation for possible univer-
sal dynamics, i.e., scaling evolution in space and time at a
nonthermal fixed point. For this, one presupposes that, in a
late-time scaling limit, the distribution function obeys a scal-
ing form [18,27]

f (t, p) = (t/t0)α fs([t/t0]βp), (62)

where t0 is some reference time within the scaling interval.
fs is a universal scaling function depending on momentum
only, which defines, together with the scaling exponents α

and β, the universality class of the respective nonthermal fixed
point. The task will be to determine the scaling exponents α
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and β of the space-time rescaling, as well as the universal
properties of the scaling function fs by means of a scaling
analysis of the kinetic equation (15) with scattering integral
(56) and T matrix (57), where the coupling functions are
defined in Eqs. (44), (61a), and (61b). We will argue that there
are different parameter regimes depending, in particular, on
the total quasiparticle density and the renormalized mass M,
where different types of universal dynamics prevails. As a
consequence, different sets of scaling exponents will result,
which hints to the existence of different nonthermal fixed
points.

A. Infrared fixed points: Regimes of different scaling

While, in general, the scaling evolution can be character-
ized by either a positive or a negative exponent β, our focus is
set on infrared fixed points, i.e., evolutions towards low wave
numbers, with β > 0. For momenta on the order of the mass,
p ≈ M, the dispersion ω(p) is not a homogeneous function
of p. Hence, scaling is expected to require either p � M or
p 
 M. At infrared fixed points, we can restrict ourselves to
the nonrelativistic limit p � M, where

ω(p) ≈ M + p2

2M
(63)

throughout the range of momenta contributing to the scat-
tering integral. In this limit, the energy-conservation delta
distribution reduces scattering to on-energy-shell processes
to which we have already restricted the integral in Eq. (56),
and we can thus replace the distribution by δ(εp − εq1 − · · · −
εqn+1 + εqn+2 + · · · + εq2n+1 ), i.e., expressed in terms of the
homogeneous nonrelativistic dispersion

ε(p) = p2/2M = s−zε(s p), (64)

with dynamic exponent z = 2. In contrast, the factors
1/2ω(qi ) in (57), in the scaling limit, are approximately given
by 1/2M. Analogously, the frequency-momentum integral
over the statistical function, which enters, e.g., the dressed
coupling (41),

F (t, s = 0) = F (x, x) =
∫

dd+1 p

(2π )d+1
F (t, p) ≈ ηn0

2M
, (65)

is a constant which depends on the coupling, the dressed mass,
and the quasiparticle density (42).

Let us now have a look at the scattering integral (56) in
order to identify a measure for distinguishing regimes which
can give rise to different possible infrared fixed points. The ex-
pression (56) contains an infinite sum over (n + 1)-to-(n + 1)
elastic collision processes between “particles,” over all integer
orders n. As we argue in the following, though, not all orders
contribute with an equal weight. To estimate the relative im-
portance of different orders, let us, for the first, assume that the
order of magnitude of the coupling functions �R

e/o is roughly
equal for all m and all σ . Under this assumption, the sum over
the subsets σ appearing in (57) is approximately proportional
to the number of these subsets, such that their sum over m in
(57) evaluates to a power of 2,

n∑
m=1

[
(2n + 1)!

(2m)!(2[n − m] + 1)!
+ (2n + 1)!

(2m + 1)!(2[n − m])!

]

= 22n+1 − (2n + 2) ≈ 22n+1, for n 
 1. (66)

Estimating, furthermore, the momentum integrals over the
distribution functions fqi to scale as the quasiparticle density
n0 [cf. Eq. (42)], we find that the nth-order contribution to the
scattering integral (56) scales as

C(n)[ f ] ∼
(

ηn0

M

)2n+1 1

n!(n + 1)!
∼ F0

n + 1

(
F n

0

n!

)2

, (67)

where F0 ≡ F (t, s = 0) = ηn0/M; recall (42). Hence, the di-
mensionless quantity F0 provides a measure for the order n
of the interactions contributing to the cosine potential (21) of
the sine-Gordon model that dominates the collisional integral:
If F0 � 1, all terms C(n)[ f ] beyond n = 1 can be neglected,
whereby we recover the standard wave-Boltzmann-type scat-
tering integral of the φ4 theory, here describing elastic 2 → 2
scattering [18].

If instead F0 
 1, the sine-Gordon model gives rise to dis-
tinctly different collisional properties, because C(n)[ f ] reaches
its maximum at n ≈ F0 
 1. Consequently, the order n of
the dominant contribution can grow very large, in accordance
with the exponential growth of the hyperbolic functions enter-
ing the collision integral (53). We will argue in the following
that this can have a surprising effect on the scaling behavior
of the scattering integral as compared to the standard φ4 case.

B. Spatiotemporal scaling analysis of the kinetic equation

We now proceed to finding a scaling relation between
the exponents α and β by demanding both sides of the
kinetic equation to show the same scaling. Inserting the scal-
ing form (62) into the kinetic equation (15) and rescaling
p → (t/t0)−βp we obtain

(t/t0)α−1[α fs(p) + βp · ∂p fs(p)] = t0 (t/t0)−βμC[ fs](p).
(68)

Here the exponent μ characterizes the homogeneity of the
scattering integral,

C[ f ](t, p) = (t/t0)−βμC[ fs]([t/t0]βp). (69)

It follows immediately from Eq. (68) that a solution f of
the kinetic equation can assume the scaling form (62) if the
scaling relation

(I) α − 1 = −βμ (70)

between the three exponents is fulfilled. This represents con-
dition no. I between the exponents α and β, with a yet to
determine exponent μ.

To obtain a further relation between these exponents, one
uses the explicit form (56) of the scattering integral for ex-
pressing μ in terms of the scaling exponents α and β of f and
z of ω(p). In determining this relation, we proceed step by
step, first having a look at a single contribution C(n) at order n
and focus on the gain and loss terms,(

fq1 + 1
) · · · ( fqn+1 + 1

)
fqn+2 · · · fq2n+1 fp

− fq1 · · · fqn+1

(
fqn+2 + 1

) · · · ( fq2n+1 + 1
)
( fp + 1).

(71)

At an infrared fixed point, we expect large occupation num-
bers, fq 
 1, throughout the region of low wave numbers q.
In this limit, one can sort the different contributions to (71)
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with respect to powers in f . As usual, the highest-order terms,
containing 2n + 2 distribution functions f in the gain and loss
terms cancel each other so that the leading-order terms consist
of 2n + 1 f ’s. Terms of lower order in f can be neglected.

Note that in 2n + 1 out of these 2n + 2 terms of leading
order O( f 2n+1) in C(n)[ f ], i.e., in each of the terms in the sum
in

−
2n+1∏
i=1

fqi +
2n+1∑
j=1

(−1)θ ( j−n−3/2) fp

2n+1∏
i=1 | i �= j

fqi (72)

there is one “free” momentum k ≡ q j , i.e., one momentum
k ∈ {q1, . . . , q2n+1} that is integrated over but which is not an
argument of a distribution function f (t, qi ). Let us suppose
that, if n is sufficiently large, we can neglect, beyond these
2n + 1 terms, the single one without such a free momentum,
i.e., the first term in (72), which arises from the constant in
the factor fp + 1. Such a free momentum is already present in
the collision integral of the standard φ4 theory, equivalent to
the leading-order contribution C(1)[ f ]. However, in the case
of high “sine-Gordon-ness,” F0 
 1 [cf. our discussion fol-
lowing Eq. (67)], this free momentum can modify the scaling
behavior significantly.

The free momentum k is not constrained by the distribution
f , neither by its IR scaling form, nor by its falloff in the
UV. Nevertheless, in the standard φ4 collision integral, it does
not cause a UV divergence, because it is still restricted by
the delta distributions, which ensure momentum and energy
conservation. In principle, this is true also for the full sine-
Gordon integral. However, if the dominant order n ∼ F0 grows
very large, these restrictions could effectively disappear. The
reason is that the large number of different momenta {p, qi}
and frequencies {ωp, ωqi} can sum up, within the delta func-
tions in (56), to any, also very large total values k and ωk,
respectively. As a result, the single momentum k will then
ultimately be restricted only by the UV cutoff of the theory.
In that case, the integral over k does not contribute to the
scaling of the scattering integral, other than in and close to the
limit n = 1.

Let us discuss this more rigorously. As introduced above,
we denote free momentum by k while keeping the notation qi

for the other integrated ones and p for the external momen-
tum. Neglecting the single term without a free momentum
and pulling all integrals in C(n), except that over k, as well
as the T -matrix, the energy-momentum conservation and the
gain and loss terms into a kernel integral K (n), we rewrite the
nth-order collision integral as

C(n)[ f ](t, p) ∼ −
∫ �UV

dd k K (n)[ f ](t, p; ε(k), k) f (t, p),

(73)

with the kernel integral being defined as

K (n)[ f ](t, p; E , k)

=
∫ 2n+1∏

i=1

dqi

(2π )d

2n+1∑
m=1

{
δ(k − qm)

× |T (n)(t ; p, q1, . . . , q2n+1)|2

× δ

⎛
⎝p − σ (n)

m k −
2n+1∑

l=1;l �=m

σ
(n)
l ql

⎞
⎠

× δ

⎛
⎝εp − σ (n)

m E −
2n+1∑

l=1;l �=m

σ
(n)
l εql

⎞
⎠

× σ (n)
m

m−1∏
l=1

f (t, ql )
2n+1∏

l ′=m+1

f (t, ql ′ )

}
. (74)

Here the sign index σ
(n)
l = 1 for l = 1, . . . , n + 1, and σ

(n)
l =

−1 for l = n + 2, . . . , 2n + 1, cares for the signs of the mo-
menta and energies as well as of the gain vs the loss terms.
Recall again that the free momentum k = q j is defined as the
one for which, in each of the terms in the sum over m the
factor f (t, k) is missing; cf. (72).

Assume, for a moment, that the T matrix is a momentum-
independent constant. Since the distributions f appearing in
K (n) are the same for each integrated momentum qi �= k, it
becomes very reasonable, for n 
 1, to adopt a statistical
approach to the analysis of the highly intricate scattering inte-
gral. We can thus apply the central-limit theorem and conclude
that both E and k will be distributed according to a multivari-
ate, uncorrelated Gaussian, i.e., that the kernel distribution can
be approximated by

K (n)[ f ](t, p; E , k) ∼ exp

(
− E2

2σ 2
E

)
exp

(
− k2

2σ 2
p

)
, (75)

where we neglected constants and where the standard devi-
ations scale as σE ∼ [M + ε(p�)]

√
n and σp ∼ p�

√
n, with

p� being a scale which characterizes the width 〈p2〉 f =∫
p p2 f (t, p)/

∫
p f (t, p) of the distribution f (t, p) in momen-

tum space. In accordance with the previous discussion, we
assume this scale to be p2

� � M. Note, in advance, that, for
the case of the spatial scaling form f (t, p) ∼ [pκ

� + pκ ]−1

found in our numerical simulations [81], the width 〈p2〉 f ≈
p2

� is set by the infrared cutoff scale, below which the distri-
bution is constant in p.

Consider a UV cutoff scale �UV that is set by the inverse
spatial resolution with which one describes the system, e.g.,
a scale on the order of M, beyond which our low-energy
effective theory analysis is expected to be inapplicable. Then,
if ε(�UV) � σE and �UV � σk , which will be the case for
sufficiently large n ≈ F0 
 (�UV/p�)2, the collision integral
term (73) reduces to

C(n)[ f ](t, p) ∼ −�d
UV K (n)[ f ](t, p; 0, 0) f (t, p). (76)

It remains to take into account that the T matrix is, in gen-
eral, not independent of its arguments. According to Eq. (57),
it contains a sum of coupling functions |�R

e/o|2 with different
arguments. These arguments are sums of subsets of the ar-
guments of the T matrix, i.e., of p, k and the qi, as well as
of the respective energies. Similarly to the above discussion
for the kernel integral K (n), we may conclude that these argu-
ments, according to the loop functions �R

e/o, Eqs. (61a) and
(61b), defining the coupling functions �R

e/o, Eq. (44), are also
distributed, for sufficiently large n, as uncorrelated Gaussians.
For sufficiently large n ∼ F0, their standard deviation will be
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much larger than �UV, such that we can shift the energy and
momentum arguments by ε(k) and k, respectively, without
changing the integrals, such that we obtain that

|T (n)(t ; p, q1, . . . , q2n+1)|qm=k

� |T (n)(t ; p, q1, . . . , q2n+1)|qm=0, (77)

for all m = 1, . . . , 2n + 1. Thereby the T matrix becomes
independent of k and the above analysis leading to the ap-
proximation (76) remains valid.

The resulting approximate dependence (76) of the colli-
sional integral on the distribution function f , together with
the full definition (74) of the kernel function enables us, fi-
nally, to derive its scaling exponent μ as defined in Eq. (69).
Collecting all contributions from the remaining 2n momentum
distribution functions and qi integrals, from the d-dimensional
momentum and z-dimensional energy delta functions, from
the T matrix, and from the outer f (t, p), we find the exponent
to be given by

μ = 2n(d − α/β ) − d − z + 2m − α/β, (78)

where m denotes the scaling exponent of the T matrix,

|T (n)(t ; p, {qi})| = s−m|T (n)(s−1/βt ; sp, {sqi})|, (79)

not to be confused with the sum indices m used before.
Note that, upfront, we assume the exponent m to be inde-

pendent of n. μ, however, as given in Eq. (78), is in general
not independent of n, such that the entire collision integral
C[ f ], summed over all n would not scale homogeneously.
One typically postulates, though, that in the IR scaling region,
either the total quasiparticle density (42) or the quasiparticle
energy density E0 = ∫p ε(p) f (t, p) remains constant in time.
As for the massive sine-Gordon model in the IR regime, where
ε(p) � M, the collision integral is dominated by elastic, num-
ber conserving, i.e., n-to-n processes, quasiparticle number
(42) is conserved, n0 ≡ const, and thus the scaling form (62)
is subject to the constraint

(II) α = dβ. (80)

Therefore, the n-dependent term in (78) drops out and μ

results as being independent of n,

(III) μ = 2m − d − z − α/β. (81)

Interestingly, in contrast to the case of standard φ4 theory,
one can also reverse this argument: The scaling hypothesis for
the distribution function and thus for the scattering integral
in fact requires that (80) holds and thus quasiparticle number
must be conserved. This is a remarkable feature in comparison
with standard φ4 theory, where one has to postulate parti-
cle conservation in the relevant momentum region [18], i.e.,
to effectively restrict the collision integral to elastic 2-to-2
processes. In contrast to this, the transcendental dependence
of the collision integral (53) on G≷ shows already that for
C[ f ] to scale requires G≷(x) to scale trivially, G≷(t ; x0, x) =
G≷(s−1/βt ; x0/sz, x/s) (neglecting the fast oscillations with
frequency ∼M), because otherwise, the hyperbolic functions
prevent the collision integral to be homogeneous. This trivial
scaling, in turn, with Eqs. (46), (16), and the general scaling
behavior ρ(p0, p) = s2ρ(sz p0, sp) of the spectral function,
already leads to the scaling relation (80) and thus implies

number conservation. We may conclude, therefore, that also
for other theories, which lead to a collision integral depend-
ing transcendentally on G≷, or at least polynomially with a
minimum of two different powers, scaling requires number
conservation at a nonthermal fixed point. Vice versa, in the
case that alternative conservation laws should hold, e.g., for
the total energy, the collision integral can only depend on
functions, whose arguments only involve the respective con-
served “charge”.

We finally analyze the scaling of �R
e/o, Eqs. (61a) and

(61b), in a similar manner. Again, a single integral over a
“free” momentum does not contribute to the scaling if F0

is sufficiently large. As in the numerator of the scattering
integral, all terms in the sum over n scale in the same way by
virtue of particle conservation. Finally, the scaling behavior
of the entire T matrix is ensured by the fact that, for a high
occupation f (t, p) 
 1 in the IR, close to an NTFP, we can
approximate

λ̄�R
e/o 
 1, (82)

such that �R
e/o scales homogeneously if �R

e/o does so; cf.
Eq. (44). As a result, the energy denominator and the momen-
tum conservation delta distribution in Eqs. (61a) and (61b)
yield the scaling exponent of the T matrix,

(IV) m = d + z. (83)

Together with this, we obtain, from conditions I–III, i.e.,
Eqs. (70), (80), and (81), the (anomalously small, see below)
exponents α and β,

(A) β = 1

z + d
= 1

2 + d
, α = d

z + d
. (84)

We compare these with the “Gaussian” exponents, which
we expect to be valid for small F0 and thus n ∼ 1 dominating
the collision integral. In this case, the scaling of C(n)[ f ], under
the assumption of number conservation, is found to be set by

(III-G) μG = d + 2n(d − α/β ) − d − z + 2m − α/β

= 2m − z − α/β, (85)

since one more qi integral, the one which dropped out in
the anomalous case above, contributes at each order n of the
integral (56). Analogously, the scaling of the T matrix is given
by

(IV-G) mG = z, (86)

such that the exponents α and β for this “Gaussian” nonther-
mal fixed point [23,27,28] result as

(G) βG = 1

z
= 1

2
, αG = d

z
. (87)

C. Spatial scaling form

Having determined the scaling exponents α and β for the
spatiotemporal universal scaling evolution of the occupation-
number distribution f (p) at an IR fixed point of the
sine-Gordon model, it remains to find the scaling function
fs(p); cf. Eq. (62). In the following we analyze the kinetic
equation at a fixed time for pure power-law solutions of the
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form

fs(p) ∼ |p|−κ . (88)

Such a pure power law is typically observed only above a
certain momentum scale, |p| 
 p�(t ) ∼ t−β , whereas f (t, p)
saturates in a plateau below this scale. In fact, as typically
κ � d , the �R

e/o functions as well as the whole scattering
integral would be IR divergent if a pure power law persisted
to arbitrarily small momenta. Instead, the plateau renders the
integrals convergent in the IR, such that the scale p� takes
the role of an IR regulator. Typically, the scaling function
therefore takes a form such as

fs(p) ∼ pκ−d
�

pκ
� + |p|κ , (89)

which needs to be normalized such that it fulfils the condition
(42). The way it goes over from the plateau into the power-law
falloff (88) can be different, though [29].

At the nonthermal fixed point, i.e., in the scaling limit
p� → 0 and thus t → ∞, or, for all practical purposes, within
the power-law region |p| 
 p�, we can make the ansatz (88)
and otherwise work with an IR momentum cutoff. Similarly
as in the spatiotemporal scaling analysis, we state the purely
spatial scaling hypothesis that, at a fixed time, the scattering
integral fulfils

C[ f ](t0, p) = s−μκC[ f ](t0, sp). (90)

The time-independent fixed-point equation

(α + βp · ∂p) fs(p) = t0C[ fs](p) (91)

then demands, if κ �= d , that

(V) κ = −μκ. (92)

Under a rescaling of all momenta, p → sp, in the scattering
integral (56), the integral measures and the f ’s, as well as in
the T matrix and the delta distributions, the nth-order term
rescales according to

C(n)[ f ](t0, p) = s−2nd−2mκ+d+z+(2n+1)κC(n)[ f ](t0, sp), (93)

where we have again taken into account that the integral over
the free momentum does not contribute to the scaling. In
analogy to before, we denote the scaling exponent of the T
matrix at fixed time by mκ , i.e.,

|T (n)(p, {qi})| = s−mκ |T (n)(sp, {sqi})|. (94)

However, (93) cannot not be the final answer, yet, already
because it is n-dependent. Besides this, we need to recall that
the scattering integral in our case is nonlocal, i.e., it depends
crucially on the physics at the IR boundary of the scaling
interval, and we anticipate that the value of C(n)[ f ] at the fixed
point is dominated by the values of f and T (n) at the IR cutoff
scale p�. Hence, a rescaling of the momenta in the power-law
region also includes a rescaling of the IR cutoff scale,

C(n)[ f ](t0, p; p�)

= s−2nd−2mκ+d+z+(2n+1)κC(n)[ f ](t0, sp; sp�). (95)

To determine the actual scaling exponent μκ of C(n)[ f ], the
scale p� must be held fixed, though, i.e., we need to deter-
mine the rescaling of the scattering integral under p� alone.

This can be inferred from the degree of IR divergence when
replacing all f ’s by a pure power law (89) and imposing p�

as an IR integral cutoff,

C(n)[ f ](t0, p; p�) = s−(2n−1)(d−κ )C(n)[ f ](t0, p; sp�). (96)

Here we took into account that, in any of the terms, if κ > d ,
there are at most 2n − 1 algebraically divergent integrals over
functions f ∼ p−κ , each contributing a leading-order depen-
dence ∼pd−κ

� on the cutoff.
To understand this argument, note that (i) in each of the

2n + 1 out of 2n + 2 leading-order terms in the gain-minus-
loss factor (71) that contain an f (p) evaluated at the fixed
momentum p, there are 2n factors fqi being integrated over,
which can, in principle, give a divergence. And, (ii), in the
single term without an f (p), there are 2n + 1 such factors. In
any of the terms, however, not all of these integrals can diverge
simultaneously: In case (i) the strongest divergence can be
expected when 2n − 1 momentum integrals are dominated by
the momentum regime qi � p�. This is possible, if one of
the two delta distributions constrains the free momentum k,
which is not weighted by an f , and the other one constrains
one of the f -weighted momenta q j to be of the order of
magnitude of the outer momentum |p| � p�. In the single
term which represents case (ii), there is no fp, such that the
two delta distributions constrain two integrated momenta that
are arguments of an f . Hence, in both cases, at most 2n − 1
of the f functions can contribute to the overall IR divergence.

In summary, if κ > d , the degree of algebraic divergence is
(2n − 1)(κ − d ). Subtracting this from the scaling exponent
of C(n) in (95), we obtain the n-independent exponent

(VI) μκ = 2mκ − z − 2κ. (97)

Note finally, that in principle, the scattering integral could
also be dominated by the regime where only two of the mo-
menta are larger than p�, viz., p and one further momentum
qi. This would correspond to near-forward scattering where
particles are scattered to modes close to the incoming mo-
mentum, with momentum transfer being 0 < �p � p�. We
will exclude this possibility, which is known to give rise to
a wave-turbulent cascade, where the distribution fp(t ), in the
regime p 
 p�, remains by definition constant in time due
to the local wave-turbulent transport. In that case, combining
Eqs. (62), (80), and (89), the spatial exponent must be κ = d
[27,44], such that, in this case the divergence does not alter
the scaling (95).

In order to obtain a prediction for κ , we furthermore need
to analyze, in the same way, the functions �R

e/o and thus
T (n) to find mκ . As the argument is similar for �R

e (61a)
and �R

o (61b), we describe it only for the former. Including
any divergent integral but the free one, upon rescaling we
find that −mκ = (2n − 2)d − z − (2n − 1)κ . We expect the
degree of IR divergence, i.e., the scaling exponent of p−1

� to be
(2n − 1)(κ − d ) and thus the same as above, which ensures
that the overall scattering integral remains finite in the limit
p� → 0. The crucial difference to the numerator of the scat-
tering integral is that, on the one hand, there is no f in �R

e/o,
the argument of which is an outer momentum. On the other
hand, there is no energy conserving delta distribution that can
prevent one integral to be dominate by f being evaluated in
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the IR limit. One can still argue that the iε-regulated energy
denominator at least suppresses configurations with the sum
of the energies being large and that therefore at least one
momentum should be of the order of the outer momentum and
thus not come close to p�.

Subtracting the contribution to scaling from p� alone, we
again obtain an n-independent result,

(VII) mκ = z + d. (98)

Inserting this into Eq. (97) finally gives, with Eq. (92), the
spatial exponent at the anomalous nonthermal fixed point,

(A) κ = 2d + z = 2d + 2. (99)

Again, this is in contrast with the Gaussian fixed point, which
we expect to play a role for small F0 and thus n ∼ 1 domi-
nating the collision integral. In that case, one finds the weaker
falloff with (cf. Ref. [27])

(G) κG = d + z/2 = d + 1. (100)

We note that also in this Gaussian limit, the scaling at a
fixed time t0 is partially determined by the dependence on
p�, which needs to be removed in order to obtain κ . Notably,
in this Gaussian case, only the effective coupling, i.e., �R, is
dominated by one integral momentum below p�, while there
are no relevant divergences in the scattering integral. This
can be seen from the explicit calculation of the integral [27],
which demonstrates that a down-conversion like one-to-two
process where only one momentum in the elastic collision
vanishes, while the two of the momenta add up to the third
one, is possible but kinematically suppressed. This constitutes
a further qualitative difference to the scaling we here propose
to characterise universal sine-Gordon dynamics.

D. Scaling analysis in position space and time

We finally reexamine the above scaling analysis, thereby
considering the gain and loss terms in the scattering integral
(53) in position space and time. In this way, we can exhibit
more clearly the spatially local character of the scattering
processes in the case of the anomalously slow scaling with
exponents (84) and (99), which stands in contrast to wave-
turbulent types of scaling evolution that are rather local in
momentum space.

In deriving the scattering integral in the form (73), with
kernel (74), we expanded the gain and loss terms (71) to
leading order in powers of the large occupation numbers
f , involving 2n + 1 factors fqi , i.e., one less than there are
factors in each term in (71). This expansion, in fact, can
already be done in the scattering integral (53), where it cor-
responds to keeping only terms where all but one factor
of ρ are paired with one factor of f : Using (46), we can
replace G< by G<(t, p) = G>(t, p) − iρ(p) = −i[ f (t, p) +
1] ρ(t, p). Expanding then the scattering integral to first order
in the added −iρ, i.e., to order O(1/ f ), one obtains

C[ f ](t, p) = i
∫ ∞

0

d p0

2π
F
[{[∣∣�R

e

∣∣2 ∗ (ρ · sinh G>
)] · sinh G>

+ [∣∣�R
e

∣∣2 ∗ (cosh G> − 1)
] · ρ · cosh G>

+ [∣∣�R
o

∣∣2 ∗ (ρ · cosh G> − ρ)
] · cosh G>

+ [∣∣�R
o

∣∣2 ∗ (sinh G>−G>)
] · ρ · sinh G>

}∗ G>

+ {[∣∣�R
e

∣∣2 ∗ (cosh G> − 1)
] · sinh G>

+ [∣∣�R
o

∣∣2∗ (sinh G>−G>)
]· cosh G>

}∗ ρ
]
(t, p)

+ subleading terms ∼ O( f −2), (101)

because the leading terms containing G> ∼ f ρ only cancel
exactly in (53). Note that we have expanded all hyperbolic
functions of ρ to linear order in ρ. Moreover, we have
written all terms of the integrand as a Fourier transform of
the respective terms expressed in space and time, meaning
that, as compared with (53), convolutions (∗) are exchanged
with products (·) everywhere, and vice versa. The scattering
integral, expanded in this form, does no longer distinguish be-
tween gain and loss terms. It rather represents the contribution
to their difference, which is linear in an unpaired ρ. Otherwise
only G> appears, in which ρ is multiplied with f .

In the integrand of (101), the two-point functions G>(t, x)
and ρ(x) depend on x = (x0, x), i.e., (relative) time x0 and
spatial coordinate x [106]. This has the advantage that the
hyperbolic functions can be evaluated without convolutions in
a Taylor expansion in powers of G>. From the momentum-
space expressions of G>, (46), and of the free spectral
function, (11), one finds

G>(t, x) = η

∫
p

f (t ; ωp, p)

ωp
cos(ωpx0 − p · x), (102a)

ρ(x) = η

∫
p

1

ωp
sin(ωpx0 − p · x). (102b)

These expressions help exhibiting the local character, in posi-
tion space, of the scattering integral. Both functions show fast
temporal oscillations in x0 with frequency � ω0 = M, which
are modulated by the contributions from nonzero p.

Consider, in particular, the case of anomalous scal-
ing (A). If f has a universal form similar to (89),
with κ = 2(d + 1), (99), the function (102a) is strongly
peaked at x = 0, falling to small values on a scale set
by 1/p� in |x| and 2M/p2

� in x0. In fact, one may
easily show that G>(t ; 0, x) � F0 exp [ − (p�|x|)2/2d], at
short distances |x| � 4p−1

� , and G>(t ; x0, 0) � F0 cos [(M +
p2

�/2M )x0][cosh(p2
�x0/2Mcd )]−1, with F0 = ηn0M−1 and

some O(1) constant cd for x0 � 4M/p2
�.

Recall now that, as we found above, the anomalous scaling
with (84) and (99) requires F0 
 1. Hence, the hyperbolic
functions in (101) are exponentially large at the peak, where
G>(t, 0) � F (t, 0) = F0, while the spectral function ρ out-
side the exponentials remains of order O(1). Moreover, the
hyperbolic functions are approximately equal, cosh G> �
sinh G> � exp(G>)/2 and thus fall off to exponentially
smaller values at nonzero x, such that one may neglect all con-
tributions beyond the above scales. In fact, making use of the
regularized representation δε (x) = (2πε)−1/2 exp(−x2/2ε)
of the Dirac distribution, δ(x) = limε→0 δε (x), we can
approximate the hyperbolic functions, in the limit F0 
 1, as

exp[G>(t, x)] ≈ 2π
√

ε0ε eF0C(x0) δε0 (x0) δε (|x|), (103)

with ε0 = (2Mcd )2/(p4
�F0), ε = d/(p2

�F0), where cd is a
d-dependent constant. We have, in particular, separated off
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the fast oscillations with frequency ω� = M + p2
�/2M 


p2
�/2M into the function

C(x0) =
∑
n∈Z

√
γ δγ

(
x0 − 2πn

ω�

)
wπ/ω�

(
x0 − 2πn

ω�

)
,

(104)

with window function wδ (x) = θ (x + δ)θ (δ − x). In the limit
F0 
 1, M 
 p�, C(x0) is a Dirac comb with γ = 2ω−2

� /F0.
Hence, notwithstanding these fast oscillations, as a result,
the hyperbolic functions in the scattering integral are, to a
good approximation, local in x, such that the terms in curly
brackets in (101) reduce to constants multiplying the func-
tions G> and ρ, respectively. These constants depend on F0

and p�, respectively, and the degree of spatial locality is set
by ε0 and ε, and thus the stronger, the larger F0 is. This
spatiotemporal locality is in stark contrast to the structure of
scattering integrals giving rise to wave-turbulent transport, in
which typically forward scattering dominates and which thus
are rather local in momentum space.

To analyze and discuss quantitatively the consequences of
this locality is beyond the scope of the present work. The
above analysis, however, also enables us to shed more light
on the origins of the anomalous scaling, as we will discuss in
the remainder of this section.

In principle, the constant rest mass M prevents an exact
scaling relation of the above functions and thus of the scat-
tering integral. In our previous scaling analysis, we neglected
this, however, by considering the nonrelativistic limit where
only on-mass-shell collision processes play a role in the dy-
namics, such that an equal number of positive and negative
frequencies appears in the energy conservation delta distribu-
tion in (56). This means, that only those terms contribute to
(101), in which the fast oscillations with frequency M inter-
fere with each other destructively. So, in order to do obtain
the scaling properties of (101), we need to disregard the fast
rest-mass contribution to the expanded frequency (63) in the
arguments of the trigonometric functions in Eqs. (102). In
the frequency ωk in the denominators in (102), however, we
neglect the kinetic energy p2/2M as compared with the much
larger M. Under these approximations, the functions scale as

G>(t, x0, x) = sd−α/βG>(sβt, x0/sz, x/s), (105a)

ρ(t, x0, x) = sdρ(sβt, x0/sz, x/s). (105b)

Since G> appears, in (101), as an argument in the hy-
pergeometric functions, it must not rescale with s, which
immediately returns the condition (80), that α/β = d .

In contrast, the spectral function ρ scales with sd and
gives rise to an overall contribution of the dimension d to
the homogeneity exponent μ of the scattering integral; cf.
(69). It is this contribution which gives rise to the distinction
between the Gaussian, β = 1/z, and the anomalous exponent,
β = 1/(z + d ), derived before.

Let us have a closer look at the relevance of ρ in (101).
Since ρ is not restricted by the distribution f , higher mo-
menta contribute to it more significantly than to G>. Hence,
ρ(x) falls off to smaller values and oscillates on even shorter
time and length scales, approximately given by the UV cut-
off beyond which the low-energy-effective description is not

expected to apply. This cutoff, in our case, is estimated to be
�UV � M.

ρ, however, in the scattering integral (101), is not included
in the argument of the exponentially large hyperbolic func-
tions, but rather multiplies these. Hence, compared with the
amplitude of the exponentiated G> [cf. Eq. (103)] ρ can be
approximated as a constant,

ρ(x) exp [G>(t, x)] � 2ρ+(0) exp [G>(t, x)], (106)

where ρ+(0) = η
∫

p(2ωp)−1 is the positive-frequency con-
tribution at x = 0. This approximation is equivalent to
integrating over the free momentum k after using the central-
limit theorem to arrive at Eq. (75) [107].

As a result, in the case that F0 
 1, the spectral function ρ

takes the role of a constant prefactor in the scattering integral
and thus, it does not rescale with sd [cf. Eq. (105b)], as
it would be the case when F0 � 1 and thus the hyperbolic
functions can be approximated to lowest order. Hence, in
the anomalous case, the scaling exponent μ of C[ f ](t, p) is
diminished as described above, by the dimension d .

We finally remark that a similar analysis applies to the
coupling functions (44) appearing in (101), as we can expand
the resummed ‘loop’ functions in the same way and write
them, in position space, as

�R
e (t, p0, p) = F[θ · (ρ · sinh G>)](t, p0, p), (107a)

�R
o (t, p0, p) = F[θ · (ρ · cosh G> − ρ)](t, p). (107b)

Again, the function ρ can be approximated as a constant and
its contribution to the scaling be dropped.

IV. SUMMARY AND OUTLOOK

We have extended the nonperturbative theory of universal
scaling at infrared nonthermal fixed points to account for the
nonpolynomial interactions of the sine-Gordon model. At an
infrared fixed point, the system’s excitations are character-
ized by large overoccupation of low-wave-number modes,
that typically leads to a strong renormalization of the ef-
fective interactions governing the dynamics. Within the 2PI
effective action approach, we have chosen a resummation
scheme, which accounts for such a renormalization. While
such schemes are made and usually used for field theo-
retic models with simple, low-order polynomial interactions,
we have achieved a closed-form resummation that takes
into account the nonpolynomial potential of the sine-Gordon
model. The series resummation thus entails not only loop
diagrams containing self-consistently dressed propagators up
to arbitrary orders in the coupling λ but also resums the
bare couplings themselves to arbitrary order. We have used
the resulting nonperturbative 2PI effective action to derive
Kadanoff-Baym equations and from these a wave-Boltzmann-
type kinetic equation.

The resulting wave-kinetic equation is reminiscent of
those used for wave turbulence, both in the weak- and
strong-coupling limits, and accounts for elastic collisional
interactions of arbitrary many quasiparticle modes. Using a
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standard scaling analysis we were able to determine the pos-
sible universal scaling solutions that represent a self-similar
transport of excitations to lower wave numbers. For small
quasiparticle densities, we could recapture Gaussian scaling
that is characterized by the same exponents as for a standard
φ4 model. While, in this limit, the weakly varying field ex-
plores only the low-order Taylor contributions to the cosine
potential, different scaling is predicted to prevail in the op-
posite limit, when the excitations probe many minima of the
periodic interactions. In this situation, energy and momen-
tum conservation in the collisions are found to constrain the
momenta of the participating modes only weakly. This gives
rise to a rather nonlocal transport in momentum space and an
anomalously slowed scaling evolution. Our analytic predic-
tions made here are corroborated by numerical simulations
reported in [81], which provide an intuitive picture of the
coarsening dynamics underlying the anomalous nonthermal
fixed point.

We remark that ultimately, a renormalization-group (RG)
formulation of nonthermal fixed points, in analogy to fixed
points describing, e.g., phase transitions in equilibrium,
would be desirable. While there has been some progress
[2,16,108,109], such a formulation is lacking to date. Note,
also, that the s-channel resummation of the 2PI effective ac-
tion, for the case of a ϕ4 theory, has been shown to correspond
to solving coupled functional RG equations for the 2- and 4-
vertices [108]. Moreover, numerical results confirm or support
the existence of the predicted scaling solutions of the kinetic
equations [26,27], and therefore, it is expected that also the
scaling behavior derived in the present work represents a
leading-order result which will have to be refined by more
advanced methods once available.

The results presented here suggest that the methods used
could be applicable also to other models with transcenden-
tal interactions containing Taylor vertex terms to arbitrary
order in powers of the field. Moreover, together with the
numerical simulations, they open a perspective on describing
coarsening dynamics and phase-ordering kinetics from first
principles. This could also play a role for systems not directly
associated with a model such as sine-Gordon. For example,
the sine-Gordon model examined here is known to serve, in
equilibrium, as an effective model that captures phase tran-
sitions and excitations governed by ensembles of nonlinear
excitations such as vortices to which it is related by a duality
transformation [64–72]. Provided such transforms to apply
(approximately) between models defined in Minkowskian
space time, a direct application of the methods presented
here appears possible. In fact, the exponents obtained in the
present work for the case of two spatial dimensions (β = 1/4,
α = 1/2, and κ = 6) are surprisingly close to those found at
the “strongly anomalous nonthermal fixed point” described
in [23] for a two-dimensional Bose gas. At that fixed point,
the universal dynamics is found to be associated with strong
clustering of vortices of equal winding number ±1 and char-
acterized by β = 0.193 ± 0.05, α = 0.402 ± 0.05, and κ ≡
ζa = 5.7 ± 0.3. While this could be a coincidence, it leaves
open the possibility of a deeper connection between the well-
known dualities relating topological defects to field theories of
the sine-Gordon type in equilibrium and some (approximate)
version of theirs out of equilibrium.
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APPENDIX A: NOTATION

Choosing the (+ − − −) convention for the
metric, the Minkowski product of (d + 1)-vectors
p = (p0, p1, . . . , pd ) = (p0, p) = (ω, p), etc., reads
px = p0x0 − p · x. Defining the (d + 1)-dimensional Fourier
transform as F [ f (p)](x) = f (x) = ∫p exp{−ipx} f (p) ≡
(2π )−(d+1)

∫
dd+1 p exp{−ipx} f (p), the following convention

is used for convolutions:

( f ∗ h)(x) =
∫

dd+1y f (x − y) h(y), (A1)

( f ∗ h)(p) =
∫

dd+1q

(2π )d+1
f (p − q) h(q). (A2)

The convolution theorem is then

F[( f ∗ h)](x) = ( f · h)(x) = f (x) h(x), (A3)

F[( f ∗ h)](p) = ( f · h)(p) = f (p) h(p). (A4)

For two-point functions in position space, we use the notation

( f · h)(x, y) = f (x, y) h(x, y), (A5)

( f ∗ h)(x, y) =
∫

dd+1z f (x, z) h(z, y), (A6)

which translates into the above convolutions in the case of
translational invariance, f (x, y) ≡ f (x − y).

APPENDIX B: DECOMPOSITION
OF THE SELF-ENERGIES

In this Appendix, we provide details of the steps leading to
the decomposition of the nonlocal self-energies according to
Eq. (8); cf. Sec. II H. Recall the decomposition (35) of the loop
functions (32) into their spectral and statistical components
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using (5) and standard trigonometric identities,

�F
e = cosh F cos(ρ/2) − 1,

�ρ
e = 2 sinh F sin(ρ/2), (B1a)

�F
o = sinh F cos(ρ/2) − F,

�ρ
o = 2 cosh F sin(ρ/2) − ρ, (B1b)

as well as the corresponding retarded and advanced loops (36),

�R
e/o(x, y) = θ (x0 − y0) �

ρ
e/o(x, y), (B2a)

�A
e/o(x, y) = −θ (y0 − x0) �

ρ
e/o(x, y). (B2b)

These loop functions are an essential ingredient to the nonper-
turbative integrals I , (33), which can also be decomposed into
statistical and spectral components. For this, we rewrite the
integrals in terms of implicit integral equations and after de-
composing these, reexpress them in terms of nonperturbative
coupling functions. Using that the coupling function (34a) can
be written in two different ways,

�e(x, y) = [1 − iλ̄�e]−1(x, y) λ̄(y)

= λ̄(x) [1 − i�e λ̄]−1(x, y), (B3)

and, in the same way, the functions �o and �̄e, we can write
the loop chain integrals (33) as

Ie(x, y) = −λ̄(x) �e(x, y) λ̄(y) + i
∫

z,C
Ie(x, z) �e(z, y) λ̄(y),

Io(x, y) = −λ̄(x) �o(x, y) λ̄(y) − i
∫

z,C
Io(x, z) �o(z, y) λ̄(y).

(B4)

Note that any matrix product on the CTP starting
at some initial time t0, A(x, y) = ∫z,C B(x, z)C(z, y),
decomposes into AF (x, y) = −i(BR ∗ CF + BF ∗ CA)(x, y),
A ρ (x, y) = −i(BR ∗ CR − BA ∗ CA)(x, y). Finite integration
limits in time are thereby taken into account by the
theta function θ (x, y) ≡ θ (x0 − y0), with θ−(x) ≡ θ (−x),
which defines the retarded and advanced functions
BR(x, y) = (θ · B ρ )(x, y), BA(x, y) = −(θ− · B ρ )(x, y),

implying that B ρ (x, y) = BR(x, y) − BA(x, y). In the
decomposition of A ρ (x, y), depending on whether x0 > y0

or x0 < y0, either the convolution of retarded functions or
that of advanced functions is nonzero, such that one gets
AR(x, y) = −i(BR ∗ CR)(x, y), AA(x, y) = −i(BA ∗ CA)(x, y).

Using these decompositions and the short-hand notation
for matrix products in space-time by an asterisk (∗ ) (cf. Ap-
pendix A), we can rewrite the loop chain integrals (B4) as

IF
e/o = −λ̄ ∗ �F

e/o ∗ λ̄ ± (IR
e/o ∗ �F

e/o + IF
e/o ∗ �A

e/o

) ∗ λ̄,

(B5a)

I ρ
e/o = −λ̄ ∗ �

ρ
e/o ∗ λ̄ ± (IR

e/o ∗ �R
e/o − IA

e/o ∗ �A
e/o

) ∗ λ̄,

(B5b)

IR,A
e/o = −(λ̄ ∗ �R,A

e/o ∓ IR,A
e/o ∗ �R,A

e/o

) ∗ λ̄, (B5c)

where, for keeping the notation compact, it is implied that
ρe = GR,A

e = 0, ρo = ρ, GR,A
o = GR,A, Fe = 1, Fo ≡ F , and

that λ̄ ≡ λ̄(x) δ(x − y) is a diagonal matrix. We note that the
dressed coupling λ̄ [cf. Eqs. (28) and (41)] depends only on
the local statistical function G(x, x) ≡ F (x, x) and thus is not
further affected by the decomposition; cf. Eq. (41).

We can now write the loop chain integrals again in explic-
itly resummed form. Solving Eq. (B5c) with respect to IR,A

e/o
yields

IR,A
e/o = −λ̄ ∗ �R,A

e/o ∗ λ̄ ∗ (1 ∓ �R,A
e/o λ̄

)−1
, (B6)

such that, applying the identity I ρ = IR − IA, one arrives at

I ρ
e/o = −λ̄ ∗ (1 ∓ �R

e/oλ̄
)−1 ∗ �

ρ
e/o ∗ (1 ∓ λ̄ �A

e/o

)−1 ∗ λ̄.

(B7)

Inserting (B6) into Eq. (B5a) and solving with respect to IF
e/o,

one finds

IF
e/o = −λ̄ ∗ (1 ∓ �R

e/oλ̄
)−1 ∗ �F

e/o ∗ (1 ∓ λ̄ �A
e/o

)−1 ∗ λ̄.

(B8)

In a more compact notation the above integrals and nonper-
turbative couplings then take the form given in Eqs. (37) and
(38), respectively.
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