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Quantum entanglement of atoms enables precision measurement and frequency metrology beyond the stan-
dard quantum limit that is imposed by the quantum projection noise. Here we propose employing entangled
atoms in the synchronous differential measurement to enhance the detection sensitivity of spatially dependent
frequency shift. Two ways of engineering entangled atoms are studied. The synchronous comparison between
two pixels within an entangled atomic cloud leads to a sensitivity enhancement factor of 1.4 over the standard
quantum limit. The sensitivity enhancement becomes saturated for a large number of atoms. In contrast, the
synchronous comparison between two independent pixels that are individually composed of entangled atoms
allows for a strong sensitivity enhancement by a factor of, for example, about 10 with 103 entangled atoms in
each pixel, corresponding to a reduction of the averaging time by a factor of about 102. A large atom number
may further elevate the sensitivity. Our work paves the way towards the entanglement-enhanced detection of
gravitational redshift by means of the in situ imaging spectroscopy.
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I. INTRODUCTION

Optical atomic clocks have achieved fractional frequency
instabilities and systematic uncertainties at the 10−18 level
[1–6], towards a redefinition of the SI second based upon
optical transitions in atoms. The frequency comparison be-
tween two clocks lies at the heart of various applications in
precision measurement and sensing on, for instance, the vari-
ation of fundamental constants such as the proton-to-electron
mass ratio and the fine structure constant [7,8], the gravity
potential difference between remote locations (i.e., relativistic
geodesy [9–11]), and the interactions between atoms [12–14].
Recently, the robust comparison between two transportable
optical lattice clocks has resulted in the most precise ground-
based measurement of the gravitational redshift [15].

Thus far, the frequency instabilities of most optical clocks
are still limited by the Dick effect [16], which arises from the
down-conversion of the frequency noise in local lasers that are
used to periodically interrogate atoms. A great deal of effort
has been paid to suppress the local oscillator noise. It has been
demonstrated that placing high-finesse optical resonators, to
which local oscillators are prestabilized, in the cryogenic en-
vironment can vastly reduce their statistical Brownian thermal
noise [17,18]. The resultant linewidths of prestabilized lasers
may reach the millihertz level with a coherence time of up
to 50 s and a fractional frequency instability of 4×10−17 at
the averaging time of 1 s [19]. Nevertheless, complex laser-
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prestabilization measures add the significant complexity and
volume to the clock setup.

In many practical applications, the absolute frequency
measurement of optical clocks is unnecessary. Employing the
synchronous differential comparison enables the cancellation
of local oscillator noise [20,21] and reaching the standard
quantum limit that is imposed by the quantum projection noise
[22]. In particular, the synchronous clock comparison benefits
from the long atom-atom coherence time (in principle, up to
102 s) and has demonstrated a fractional frequency uncertainty
at the 10−21 level after about 102 hours of averaging [23].
Such an unprecedented precision can resolve the gravitational
redshift between two clocks that are spatially separated at
the submillimeter scale [24], offering new opportunities for
testing fundamental physics. However, the long averaging
time prevents the synchronous comparison from detecting
relatively fast physical processes.

It has been pointed out that the standard quantum limit
of the clock frequency instability may be overcome using
entangled (correlated) atoms [25–27]. An optical lattice clock
with hundreds of entangled atoms can shorten the averag-
ing time by approximately three times, compared to the one
with independent atoms [28]. Combining the local-oscillator-
noise cancellation in the synchronous comparison and the
entanglement-enhanced sensitivity beyond the standard quan-
tum limit potentially advances the timekeeping precision and
stimulates various scientific applications such as tests of fun-
damental physics [29] and the gravitational-wave detection
[30].

In this work, we theoretically explore the application of en-
tangled atoms in the synchronous differential comparison. We
focus on the in situ imaging spectroscopy of a lattice-trapped
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FIG. 1. Schematic of synchronous differential comparison. An
ensemble of 171Yb atoms is trapped in a one-dimensional optical
lattice that is formed by a standing wave in an optical cavity. The
atomic cloud is divided into two pixels with the same atom number
N . Each atom is composed of |↓〉 = (6s2) 1S0(F = 1

2 , MF = − 1
2 )

and |↑〉 = (6s6p) 3P0(F = 1
2 , MF = − 1

2 ) states. The auxiliary |u〉 =
(6s2) 1S0(F = 1

2 , MF = 1
2 ) and |v〉 = (6s6p) 3P1(F = 3

2 , MF = 3
2 )

states are used to create entangled atoms. The spatial shifts of two
pixels are �eff/2 and −�eff/2, respectively.

atomic cloud that is divided into two pixels. For each pixel
containing 103 atoms, the entanglement of atoms enhances
the spatial-shift sensitivity by a factor of about 10 and sig-
nificantly shortens the averaging time of the synchronous
measurement. Increasing the atom number further raises the
metrological gain. The recent atom-optical technologies allow
for testing the predictions obtained in this study.

II. PHYSICAL SYSTEM

Figure 1 illustrates the schematic diagram of the physical
system. 171Yb atoms are tightly confined in a one-dimensional
magic-wavelength (759 nm) optical lattice that is formed by
a standing wave in an optical cavity [31]. The atomic cloud
is divided into two groups, corresponding to two pixels in the
in situ imaging spectroscopy [32]. We assume that two pixels
contain the same number N of atoms. Each atom is modeled as
a spin composed of the clock |↓〉 = (6s2) 1S0(F = 1

2 , MF =
− 1

2 ) and |↑〉 = (6s6p) 3P0(F = 1
2 , MF = − 1

2 ) states with the
transition frequency of ω0 = 2π×519 THz. Other atomic
levels and transitions shown in Fig. 1 are used for creating
entangled atoms (see below). We neglect the spontaneous
decay of spins since the timescale of interest in this work is
much shorter than the natural lifetime (over 16 s [33]) of the
|↑〉 state.

The sub-Hilbert space for the kth (k = 1, 2) pixel is
spanned by the collective spin basis |Jk, Mk〉 (i.e., the
exchange-symmetric Dicke manifold), where Jk = N

2 denotes
the total angular momentum and Mk corresponds to the projec-

tion. The angular momentum vector operator for the kth pixel
is written as Ĵk = ∑

μ=x,y,z Ĵμ,k êμ with Ĵ2
k |Jk, Mk〉 = Jk (Jk +

1) |Jk, Mk〉 and Ĵz,k |Jk, Mk〉 = Mk |Jk, Mk〉. The Hilbert space
for the entire spin system is then spanned by |J1, M1; J2, M2〉,
which can be simplified as |M1, M2〉. In the kth pixel, the
spin population in |↑〉 is given by Pk = 〈P̂k〉 = 〈ψ | P̂k |ψ〉 with
the projection operator P̂k = Ĵz,k + N

2 and the system state ψ .
The total projection operator is written as P̂ = P̂1 + P̂2 and
P̂d = P̂2 − P̂1 corresponds to the projection operator for the
population difference between two pixels.

The spin system experiences the extra spatially dependent
frequency shifts that may be caused by, for example, the
residual magnetic field gradient, the lattice-induced shifts, and
the gravitational redshift. We assume that the inhomogeneity
of spins within each pixel is negligible due to the small pixel
size. By contrast, in order to model the relative frequency
difference between two pixels, the effective spatial frequency
shifts ±�eff/2 are introduced to two pixels, respectively (see
Fig. 1).

We numerically simulate the Ramsey measure-
ment. The spin system is initially prepared in ψ0 =
|M1 = −N

2 , M2 = −N
2 〉, i.e., all spins are in |↓〉. Two light

π
2 -pulses are successively applied to excite spins. The gap
time between two pulses is T and the phase difference
between two pulses is φ. The populations of two pixels in |↑〉,
P1 and P2, are then measured and the population difference
Pd = 〈P̂d〉 is computed. The mathematical treatment of the
Ramsey measurement is listed in Appendix A.

III. INDEPENDENT SPINS

For the system composed of independent spins, the de-
pendence of Ramsey excitation fractions of two pixels on the
phase φ are expressed as

P1

N
= 1

2
+ C

2
cos

(
φ + �effT

2

)
, (1a)

P2

N
= 1

2
+ C

2
cos

(
φ − �effT

2

)
. (1b)

Due to the absence of the spin decay, the fringe contrast C
is equal to unity. We make the parametric plot that graphs P1

and P2 on a coordinate system. The plot exhibits an ellipse
with the lengths of major and minor axes of 2a and 2b,
respectively [see Figs. 2(a) and 2(b)]. Varying the spatial-
shift-induced phase �effT changes the ellipticity e = b/a
[see Fig. 2(c)]. The parametric plot becomes a circle, i.e.,
e = 1, when �effT = π

2 . The orientation angle of the ellipse,
i.e., the angle of the semimajor axis that is measured counter-
clockwise from the positive horizontal axis, is equal to π

4 or
3π
4 , depending on if �effT is less than π

2 .
We are interested in detecting the small spatial shift �eff.

In the limit of �effT ∼ 0, Eq. (1) leads to

�eff = 2Pd

NT sin φ
. (2)

Thus, one may evaluate �eff through measuring the Ram-
sey excitation difference Pd between two pixels. Usually,
the phase difference between two light π

2 -pulses is set as
φ = π

2 . Then, the uncertainty σ (�eff ) of the spatial-shift
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FIG. 2. Synchronous differential comparison with independent
spins. (a) and (b) Parametric plots of the excitation fraction of two
pixels for different �effT . (Symbols) Monte Carlo simulation. (Solid
lines) Analytical results. (c) Dependence of the lengths of half-major
a (solid) and half-minor b (dashed) axes and the ellipticity e = b/a
(dotted) on �effT .

measurement is determined by the standard deviation �Pd =√
〈P̂2

d 〉 − 〈P̂d〉2 of Pd ,

σ (�eff ) = 2�Pd

NT

= 2

NT

√
(�P1)2 + (�P2)2 − 2G(P1, P2), (3)

where we have defined the correlation function,

G(P1, P2) = 〈P̂1P̂2〉 − 〈P̂1〉〈P̂2〉. (4)

Actually, Eq. (3) represents the sensitivity of the spatial-shift
measurement. For independent spins, two pixels are uncor-
related and one has G(P1, P2) = 0. We neglect all technical
noise sources. The standard deviation of the Ramsey mea-
surement is then completely caused by the quantum projection
noise, �P1 = �P2 =

√
N

2 [34], and we obtain

σ (�eff ) = 1

T

√
2

N
. (5)

Extending the free-evolution time T suppresses the uncer-
tainty σ (�eff ). Nevertheless, the spin decay aggravates the
uncertainty for a large T .

An arbitrary state of the ensemble of independent spins
may be written as [35]

ψCSS(θ, n) = e−iθn·(Ĵ1+Ĵ2 )ψ0, (6)

i.e., rotating the initial state ψ0 around the axis n by an angle
of θ . The expectation value of the total projection operator
is P = 〈P̂〉 = N (1 − cos θ ) and the corresponding standard
deviation is �P = √

N/2| sin θ |. The ψCSS(θ, n) state is usu-
ally referred to as the coherent spin state (CSS), in which the
standard deviation �P of the quantum projection noise scales

FIG. 3. Procedure of creating entangled spins. (Upper panel) The
sequence of RF and light pulses driving the |↓〉 − |u〉, |u〉 − |v〉,
and |u〉 − |↑〉 transitions in Fig. 1. (Lower panel) The equivalent
operations performed on the spin system.

as
√

N , i.e., the standard quantum limit [36]. For the Ram-
sey measurement, the spin system is in ψCSS(θ = π

2 , n = ex )
before the second light π

2 -pulse is launched.

IV. ENTANGLED SPIN SYSTEM

It has been pointed out that the standard quantum limit
may be overcome by employing entangled (correlated) spins
[37,38]. Various methods of generating the entanglement be-
tween atoms have been proposed [39–41] and demonstrated
[28,42,43]. Here, we follow the approach based on the one-
axis twisting Hamiltonian [28,40]. Equations (2) and (3) are
still valid for entangled spins. As we will see below, the resul-
tant nonzero interpixel correlation G(P1, P2) may suppress the
deviation �Pd of the Ramsey excitation difference below the
standard quantum limit.

To create entangled atoms, two auxiliary states,
|u〉 = (6s2) 1S0(F = 1

2 , MF = 1
2 ) and |v〉 = (6s6p) 3P1(F =

3
2 , MF = 3

2 ), are involved (see Fig. 1), where |u〉 acts as a
role similar to |↑〉. The specific procedure is summarized
as follows (see Fig. 3): All spins are initialized in |↓〉.
A radiofrequency (RF) π

2 -pulse is used to create a CSS
between |↓〉 and |u〉. This step is equivalent to preparing
the spin system in ψCSS(θ = π

2 , n = ex ). Subsequently,
an off-resonant light pulse drives the |u〉 − |v〉 transition
through the optical cavity, introducing the cavity-mediated
interactions between atoms. This step corresponds to the
evolution of the spin system under the one-axis twisting
Hamiltonian Ĵ2

z = (Ĵz,1 + Ĵz,2)2 for a duration α. Usually, the
spin-echo technique is used to eliminate the acquired linear
phase shift [28]. Then, another RF pulse is applied to rotate
the system composed of |↓〉 and |u〉 around the y axis by an
angle (β − π

2 ), equivalent to imposing the same operation on
the spin system. Finally, a light π -pulse is launched to map
the population in |u〉 to |↑〉. In theory, the whole procedure is
described as

ψSSS1(α, β ) = e−i(β−π/2)(Ĵy,1+Ĵy,2 )e−iα(Ĵz,1+Ĵz,2 )2

×ψCSS(θ = π/2, n = ex ). (7)
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FIG. 4. Standard deviations �P (a), �P1 = �P2 (b), and �Pd

(c) of entangled spins as a function of the angles α and β with the
atom number N = 50 of each pixel. The dashed circles in (a) and
(b) show the small regimes where �P < (�P)CSS and �Pk=1,2 <

(�Pk )CSS, respectively. (d) Dependence of the minimum of �Pd

on N .

After using the second light π
2 -pulse, one may evaluate the

Ramsey excitation refractions of two pixels. It is worth noting
that unlike the application of entangled spins in quantum
metrology [28,35], the spin entanglement here is employed to
suppress the standard deviation �Pd of the excitation differ-
ence Pd between two pixels so as to reduce the measurement
uncertainty σ (�eff ) of the spatial shift �eff. Equation (7) is
referred to as the squeezed spin state (SSS).

Figure 4(a) plots the deviation �P =
√

〈P̂2〉 − 〈P̂〉2 of the
total projection operation P̂ (i.e., the Ramsey excitation of
the whole spin system) as a function of the angles α and β.
It is found that within the most (α, β ) regime, �P exceeds
the corresponding standard quantum limit (�P)CSS = √

N/2.
That is, the entanglement does not always suppress the pro-
jection noise. Nevertheless, there is a certain (α, β ) regime,
within which one has �P < (�P)CSS. This is because, ac-
cording to the Heisenberg uncertainty relation for angular
momentum operators, the spreading of the quantum uncer-
tainty in one direction is accompanied by squeezing in the
orthogonal axis [35]. In addition, since individual pixels are
parts of the whole entangled spin system, the dependence of

�Pk=1,2 =
√

〈P̂2
k 〉 − 〈P̂k〉2 on (α, β ) is similar to that of �P

[see Fig. 4(b)].
Our goal is to reduce the deviation �Pd of the excitation

difference Pd [see Eq. (3)], rather than the suppression of �P
or �Pk=1,2. Interestingly, as shown in Fig. 4(c), �Pd is always
less than or equal to the standard quantum limit (�Pd )CSS =√

N/2. This is attributed to the non-negative correlation be-
tween two pixels, G(P1, P2) � 0 [see Eq. (4)]. Comparing
Figs. 4(b) and 4(c), one finds that the strong suppression
of �Pd occurs within the (α, β ) regime where �Pk=1,2 are
strongly enhanced. Thus, despite the strong quantum fluctu-
ations in the Ramsey measurement of individual pixels, the
large interpixel correlation (i.e., the entanglement between

FIG. 5. Population of the entangled ψSSS1 state in different
|M1, M2〉 states. Here, ψSSS1 is the state in which �Pd/(�Pd )CSS

is minimized. The atom number of each pixel is N = 50. (Inset)
Population distribution for independent spins, i.e., the spin system
is in ψCSS(θ = π

2 , n = ex ).

two pixels) still ensures the suppression of the quantum noise
in the synchronous differential measurement.

In the special case, where each pixel contains only
one spin, i.e., N = 1, the minimum of �Pd reaches zero,
i.e., min(�Pd ) = 0 [see Fig. 4(d)]. Actually, this situa-
tion is analogous to the recent experiment in [27], where
two single ion clocks are fully entangled, i.e., ψSSS1 =

1√
2
(|M1 = − 1

2 , M2 = − 1
2 〉 + |M1 = 1

2 , M2 = 1
2 〉). As N is

increased, the ratio min(�Pd )/(�Pd )CSS approaches a satura-
tion value of ∼0.7, corresponding to a metrological gain of 1.5
decibels and a reduction of the averaging time by a factor of
2. The saturation indicates that both min(�Pd ) and (�Pd )CSS

scale as
√

N for a large N , i.e., the entanglement based on
ψSSS1 does not change the scaling. Here, ψSSS1 corresponds
to the entangled state in which �Pd/(�Pd )CSS reaches its
minimum.

In order to gain insight into the entanglement between two
pixels, we compute the distribution of the entangled ψSSS1

state in different |M1, M2〉 states. As depicted in Fig. 5, the
entangled spin system is mainly populated around the diag-
onal line with M1 = M2 in the (M1, M2) regime. In contrast,
the system composed of independent spins is mainly popu-
lated around |M1 = 0, M2 = 0〉 and the distribution presents
an isotropic Gaussian pattern (see the inset in Fig. 5), in-
dicating the single spin behavior. Thus, the entanglement
synchronizes the excitations of two pixels. Additionally, the
distribution of ψSSS1 is maximized at the |M1 = N

2 , M2 = N
2 〉

and |M1 = −N
2 , M2 = −N

2 〉 states, characterizing the cooper-
ative behavior of spins. The resulting correlation G(P1, P2) has
the same scaling (∝ N) with (�Pk=1,2)2 for a large N , leading
to min(�Pd ) ∝ √

N . According to the distribution shown in
Fig. 5, one may numerically simulate the Ramsey excitation
fractions P1,2 of two pixels by using the Monte Carlo method.
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FIG. 6. Dependence of the deviation �Pk=1,2 on the angles α and
β, where the system is in ψSSS2(α, β ) before the second light π

2 -pulse
is launched in the Ramsey measurement. The number of the spins in
each pixel is N = 103. (Inset) The ratio of the minimum of �Pd to
(�Pd )CSS changing with N .

V. TWO INDEPENDENT PIXELS WITH EACH
INDIVIDUAL COMPOSED OF ENTANGLED SPINS

In the last section, we have discussed the synchronous
comparison with the entanglement of all spins, where the
positive interpixel correlation reduces the deviation �Pd of
the Ramsey excitation difference Pd . From Eq. (3), it is
seen that �Pd can be also suppressed by reducing �P1,2

even when the interpixel correlation G(P1, P2) vanishes, i.e.,
�Pd = √

2�P1 < (�Pd )CSS. Here, we have used �P1 = �P2.
Motivated by this, we further consider the following situation,
where two pixels are independent while the spins in each pixel
are entangled through the approach shown in Fig. 3. Thus, the
system is in

ψSSS2(α, β ) =
∏

k=1,2

e−i(β−π/2)Ĵy,k e−iαĴ2
z,k

×ψCSS(θ = π/2, n = ex ), (8)

before the second light π
2 -pulse is launched in the Ramsey

measurement. Such an entanglement scheme may be imple-
mented by using the optical tweezer clock technique [44–46].

Figure 6 displays the dependence of �Pk=1,2 on the angles
α and β. As is expected, within a certain (α, β ) regime the
entanglement of spins in each pixel may reduce �Pk=1,2 below
that of the pixels composed of independent spins. The inset in
Fig. 6 plots the minimum of the resultant deviation �Pd of the
Ramsey excitation difference as a function of the number N of
spins in each pixel. In the simplest case with N = 1, one has
�Pd = (�Pd )CSS. For N = 2, the squeezed ψSSS2 state takes
the form of |�〉1 ⊗ |�〉2 with the Bell state |�〉k = 1√

2
(|↓↓〉 −

|↑↑〉)k of the kth pixel and the minimum of �Pd reaches
zero. Recently, the enhanced metrological stability has been
demonstrated by using the long-lived Bell states [26]. Unlike
the system in ψSSS1, increasing the spin number N may further
suppress the ratio min(�Pd )/(�Pd )CSS for the system in ψSSS2

FIG. 7. Monte Carlo simulation. (a) Distributions of the Ramsey
excitation difference Pd between two pixels for the spin system in
different states. For all plots, the spin number is N = 50. (b) Allan
deviation σy(τ ) of the synchronous differential measurement of the
spatial shift �eff. (Symbols) Numerical results with N = 50. (Solid
lines) Curve fitting. (Dashed line) Analytical results with N = 103.

[see Fig. 4(d) and the inset in Fig. 6]. For example, ψSSS2 leads
to min(�Pd )/(�Pd )CSS ≈ 0.27 (0.1) when N = 50 (103), cor-
responding to a spatial-shift sensitivity enhancement of 5.7
(9.9) decibels. This is attributed to the fact that for the system
in ψSSS2 the squeezed �Pk=1,2 scale as Nν with ν < 1

2 .

VI. ALLAN DEVIATION

Finally, we consider the stability (i.e., Allan deviation)
of the synchronous differential measurement of the spatial
shift �eff. We numerically simulate the pixel populations P1,2

using the Monte Carlo method (see Appendix A) and compute
the Ramsey excitation difference Pd . Figure 7(a) shows the
distributions of Pd for the spin system in ψCSS, ψSSS1, and
ψSSS2, respectively. It is seen that the ψCSS state leads to a
Gaussian distribution of Pd with the standard deviation of
�Pd = √

N/2. In contrast, Pd for the system in ψSSS1 has a
distribution width narrower than that of ψCSS. The distribution
width is further narrowed when the system is in ψSSS2.

According to Eq. (2), one may compute the spatial shift
�eff from the measurement of Pd . This �eff corresponds to the
mean value of the spatial shift averaged over a cycle time Tc.
Each cycle is composed of the preparation of lattice-trapped
spins (i.e., laser cooling and trapping, loading atoms into the
optical lattice, and Raman sideband cooling), the generation
of the entanglement between spins (i.e., optically pumping
spins into |↓〉, creating CSS, evolving under the one-axis
twisting Hamiltonian, and rotating SSS), and the Ramsey
measurement (i.e., Ramsey sequence and interrogation of
spins). Typically, the Ramsey free evolution time T is of the
order of 1 s and the total time duration for preparing lattice-
trapped spins, creating entangled spins, and the state measure-
ment is of the order of 0.1 s [28]. Thus, Tc approximates T .
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Performing the simulation repeatedly, one obtains a frequency
series {�eff,k, k ∈ Z}, where the index k denotes the kth mea-
surement cycle. The Allan deviation is then given by

σy(τ = nTc) = ω−1
0

√
〈(�̄eff,m+1 − �̄eff,m)2〉, (9)

with �̄eff,m = 1
n

∑mn
k=(m−1)n+1 �eff,k averaged over the period

and n ∈ Z .
The numerical results with T = 2 s and Tc = 2.3 s [28]

are shown in Fig. 7(b). The entanglement of spins improves
the stability of the measurement of �eff. For N = 50, the
Allan deviation for the system in ψCSS is evaluated to be
σy(τ ) = 4.5×10−17/

√
τ . Preparing the system in ψSSS1 leads

to σy(τ ) = 3.3×10−17/
√

τ . In contrast, the Allan deviation
for the system in ψSSS2 is σy(τ ) = 1.1×10−17/

√
τ , denoting

a metrological gain of 6.1 decibels over the standard quantum
limit and a reduction of the averaging time by a factor greater
than 16. The analytic expression of the Allan deviation takes
the form,

σy(τ ) = σ (�eff )

ω0

√
Tc

τ

= 2�Pd/N

ω0T

√
Tc

τ
. (10)

Since �Pd for the system in ψSSS2 decreases with the atom
number N (see the inset in Fig. 6), one may increase N to
enhance the measurement stability. When N = 103, we obtain
σy(τ ) = 1.0×10−18/

√
τ , improved by a factor of 4 compared

to the one in [24], by employing ψSSS2 [see Fig. 7(b)]. For two
pixels with an effective separation of 20 µm, the gravitational
redshift at the Earth’s surface causes a fractional frequency
difference of 2.2×10−21, which can be resolved when τ ≈
60 h.

VII. CONCLUSION

In summary, we have investigated the application of the
entanglement of atoms in the synchronous differential com-
parison. The resultant suppression of the deviation of Ramsey
excitation difference between two pixels leads to an enhanced
sensitivity of the spatial-shift detection and a strong reduction
of the averaging time. The proposed metrology scheme is
feasible by means of the recent atom-optical techniques and
will advance tests of fundamental physics.

In this study, we have assumed two pixels have the same
atom number. However, in practice this cannot be ensured
when preparing the sample. In addition, the total number of
atoms varies for different samples. According to the experi-
ment in [28], the standard deviation σN of the atom number
whose mean value is N = 350 can be controlled to σN = 40.
In contrast, the experiment in [20] has N ≈ 103 with σN of

the order of 10. Assuming a deviation of σN/N = 0.01, we
estimate that the fluctuations of the atom number cause an
extra uncertainty component in σ (�eff ) less than one percent.

Note added. Recently, we became aware of the experiment
of the direct comparison of two spin squeezed optical clocks
[47].
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APPENDIX: RAMSEY MEASUREMENT

We simulate the Ramsey measurement on an ensemble of
N spins. In the Heisenberg picture, one has the projection
operator,

P̂(φ) = N/2 + eiπ Ĵx/2e−iφĴz/2eiπ Ĵx/2Ĵz

× e−iπ Ĵx/2eiφĴz/2e−iπ Ĵx/2

= N/2 − Ĵz cos φ − Ĵx sin φ. (A1)

Here, φ is the phase difference between two light π
2 -pulses.

The expectation value of P̂(φ) is given by P(φ) = 〈P̂(φ)〉 =
〈ψ | P̂(φ) |ψ〉 with the initial state ψ of the system. The
standard deviation �P =

√
〈P̂2〉 − 〈P̂〉2 of the projection

measurement takes the form,

(�P)2 = (〈ĴzĴx〉 + 〈Ĵx Ĵz〉 − 2〈Ĵz〉〈Ĵx〉) cos φ sin φ

+ (�Jz )2 cos2 φ + (�Jx )2 sin2 φ, (A2)

with �Ju=x,z =
√

〈Ĵ2
u 〉 − 〈Ĵu〉2. For independent atoms, the

standard deviation �P/
√

N reaches zero when P/N = 0 or
P/N = 1, i.e., all spins are in |↓〉 or |↑〉, and is maximized
when P/N = 1/2.

One may also compute the distribution p(M ) = |〈J =
N/2, M|ψ (φ)〉|2 of spins in different states. Here ψ (φ) is the
wave function of the system after the second light π

2 -pulse
is launched. We have P = ∑

M (M + N
2 )p(M ) and (�P)2 =∑

M (M + N
2 )2 p(M ) − P2. According to p(M ), one can nu-

merically simulate the spin excitation through the Monte
Carlo method. For a certain φ, we need to select a spe-
cific (M + N

2 ) with the corresponding probability p(M ) as
a Ramsey measurement result. To this end, we compute the
maximum pmax in the array {p(−J ), p(−J + 1), · · · , p(J −
1), p(J )}, shuffle the elements in the array, and draw a uniform
random number x in [0,1]. Then, we compare x to the first
element p(M̃ ) in the shuffled array. If x <

p(M̃ )
pmax

, the Ramsey

measurement result is (M̃ + N
2 ). Otherwise, the procedure is

repeated. Finally, one obtains an ensemble of measurement
results, whose mean value is P and standard deviation is �P.
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