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Compton ionization momentum spectrum from neutral hydrogenlike atoms
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We investigate the ionization momentum spectrum of a bound system composed of two oppositely charged
particles, which interact via electromagnetic forces, under nonrelativistic Compton scattering. Our analysis
focuses on positronium, a unique system that can be experimentally realized. We find that as the incident photon
energy increases, the ionization momentum spectrum of positrons and electrons converges to their respective
bound-state momentum distributions. This property distinguishes positronium from the hydrogen atom and can
be attributed to the mass ratio Rm of the two particles in the system. We provide a detailed analysis of the effect of
Rm and demonstrate the existence of hydrogenlike atoms with Rm �= 1 that exhibit similar behavior in Compton
scattering. Such atoms correspond to exotic systems found in nature.
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I. INTRODUCTION

X rays are a ubiquitous and powerful tool in modern scien-
tific research, capable of being scattered, absorbed, reflected,
and transmitted as they interact with matter. When x rays are
scattered, the physical mechanisms involved can be divided
into two types depending on whether the photon energy is lost
or not. One type is Thomson scattering [1], which is an elastic
scattering process, and the other is Compton scattering [2].
Thomson scattering has been widely and effectively utilized
in physical structure detection [3,4]. Compton scattering, as an
inelastic scattering process, is closely related to the momen-
tum distribution of electrons [5–9] and has thus been applied
in many fields, including the detection of the internal structure
of atoms and molecules [10,11] and the imaging of ultrafast
processes [12–15]. Nevertheless, basic research on Compton
scattering is ongoing [16–18].

By utilizing the highly efficient cold target recoil ion
momentum spectroscopy technique [19], coincidence exper-
iments on the Compton effect of atoms or molecules are no
longer limited to solid targets. A recent study [20] reported
a coincidence experiment for helium atoms (gas targets) by
detecting electrons and ions in coincidence, thus avoiding the
difficulties of measuring scattered photons. This also enables
Compton scattering experiments of various gas molecules or
atoms. While in the past important studies [7–10] mainly fo-
cused on the light-scattering spectrum of atoms, the ionization
spectrum of ionized electrons and ions was rarely discussed.
Recently, some studies [17,18] have proposed the possibil-
ity of using the Compton ionization momentum spectrum
to detect the momentum information of electrons in atoms,
showing that the ionization momentum spectrum in Compton
scattering contains rich information about the structure of
atoms. Inspired by these findings, we investigate the Compton
ionization spectrum of hydrogenlike atoms in this paper.
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The hydrogenlike atom is the simplest bound system
caused by electromagnetic interactions, consisting of two
charge centers. During Compton scattering, both positive and
negative charge centers interact with the electromagnetic field,
leading to interference effects whose magnitude depends on
the mass ratio Rm of the positive to negative charge cen-
ters. Reference [21] presented the contribution of interference
effects to the light-scattering spectrum of positronium and
the hydrogen atom. Moreover, a recent work [22] calculated
and analyzed the Compton ionization of positronium and hy-
drogen atoms at incident photon energies below 5 keV and
found the resonance effect of the double-differential cross
section with respect to positronium.

In this paper we numerically calculate the ionization mo-
mentum spectrum of two free particles produced by neutral
hydrogenlike atoms in Compton scattering under nonrela-
tivistic limits. We show that when Rm = 1, the ionization
momentum spectrum of two particles approaches the bound-
state momentum distribution as the incident photon energy
increases. Positronium [23] serves as an example of such
a system, and its characteristic lifetime (on the order of
nanoseconds) [24] allows for a feasible Compton scattering
experiment. Moreover, when Rm > 1, we observe the same
behavior in the momentum spectrum of the particle with
greater mass. However, the properties of the momentum spec-
trum of the other particle depend heavily on Rm. To further
analyze this, we also calculate the energy spectrum of the
particle with smaller mass. The results indicate that at higher
incident photon energy (greater than or equal to 10 keV), the
energy spectrum presents two peaks and there may exist a
critical value of Rm. When Rm is smaller than this value, the
second peak of the energy spectrum decays or even disappears
as the incident photon energy increases.

The paper is organized as follows. In Sec. II we describe
the calculation process of the ionization momentum spectrum
in detail. Our numerical results are presented in Sec. III.
We summarize in Sec. IV. Unless state otherwise, atomic
units (a.u.) with h̄ = e = 1 and c ≈ 137.036 are employed
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FIG. 1. Schematic of Compton scattering from hydrogenlike
atoms. Here k1 and k2 represent the momentum of the incident and
scattered photons, respectively, and p1 and p2 are the momentum of
particles m1 and m2 after ionization, respectively.

throughout this paper. Here e represents the elementary charge
and c is the speed of light.

II. METHOD

For the two particles constituting the hydrogenlike atom,
we denote their masses by m1 and m2 (also used as names
later in the article), respectively. Without loss of generality,
we can set m1 = 1 a.u. and assume that m2 > m1 and both
particles carry a unit charge. We now consider the Compton
ionization momentum spectrum of m1 and m2; the correspond-
ing dynamic process is depicted in Fig. 1.

The Hamiltonian of the whole system is written as

H = H0 + HI , (1)

where

H0 = p2
1

2m1
+ p2

2

2m2
+ V (r1, r2) (2)

and

HI = A2(r1, t )

2m1
+ A2(r2, t )

2m2

+ p1 · A(r1, t )

m1
− p2 · A(r2, t )

m2
. (3)

Here V (r1, r2) = − 1
|r1−r2| is the Coulomb interaction energy

and

A(x, t ) =
∑
k,s

gk(e−iωt eik·xεk,sak,s + H.c.). (4)

In Eq. (4), gk =
√

2π
ωV , with V the normalized volume of

the light field. In addition, ω = c|k|, ak,s is the annihilation
operator for photons, and εk,s is the polarization vector of the
light field. Since the Coulomb gauge is used, s = 1, 2.

Let the initial and final states of the whole system be φi

and φ f , respectively. Using the centroid coordinate R and the

relative coordinate r, we have

φi = 1√
V

ϕ0(r)ei0·Re−iε0t ⊗ ∣∣1k1

〉 ⊗ ∣∣0k2

〉
,

φ f = 1√
V

ϕp(r)eiP·Re−i(Ep+EP )t ⊗ ∣∣0k1

〉 ⊗ ∣∣1k2

〉
. (5)

Here

r = r1 − r2, R = m1r1 + m2r2

m1 + m2
. (6)

In addition, P and p are the final center-of-mass momentum
and relative momentum, respectively, and we assume that the
initial center-of-mass momentum is zero. Meanwhile, we also
neglect the distribution of the center-of-mass momentum. This
is because, in experiments, the target gas is cooled down to
temperatures of a only a few kelvin or even below [19] to
avoid the momentum fluctuations caused by thermal motion.
The expressions for Ep and EP are given by Ep = p2/2μ

and EP = P2/2M, respectively, where M = m1 + m2 and μ =
m1m2/(m1 + m2) is the reduced mass. Here ε0 is the ground-
state energy of the hydrogenlike atom. In addition, ϕ0(r) and
ϕp(r) are given by

ϕ0(r) = (πa3)−1/2 exp(−r/a),

ϕp(r) = V −1/2�(1 + iη)eπη/2eip·rF [−iη, 1,−ipr − ip · r)].
(7)

In the above formulas, η = μ/p and F is the confluent hyper-
geometric function.

In our paper we consider only the A2 approximation [7].
The amplitude for a transition from the initial state to the final
state is given by

Wf i =
∫ T

0
〈φ f | 1

2m1
A2(r1, t ) + 1

2m2
A2(r2, t )|φi〉dt . (8)

Thus, we can obtain the total scattering cross section

σ = 1

2

∑
i

∑
f

lim
T →∞

V |Wf i|2
cT

= G
∫∫∫

1

ω1ω2
(1 + cos2 θ )|M|2

× δ

(
ω1 + ε0 − ω2 − p2

1

2m1
− p2

2

2m2

)

× δ(k1 − k2 − p1 − p2)dk2d p1d p2. (9)

In Eq. (9), 1
2 comes from averaging the photon polarization in

the initial state and G is a constant. In addition, θ is the angle
between k1 and k2, and ω1 = c|k1| and ω2 = c|k2|. Here we
might as well set the z axis along the direction of k1. Note
that p = 1

M (m2 p1 − m1 p2) and P = p1 + p2. The function M
is given by

M = 〈ϕp(r)| 1

m1
ei(m2/M )k·r + 1

m2
e−i(m1/M )k·r|ϕ0(r)〉, (10)

where k = k1 − k2. According to Ref. [25],

〈ϕp(r)|eik·r|ϕ0(r)〉 = −16π

√
μ5

πV
�(1 − iη)eπη/2[k2 − (p + iμ)2]−1−iη[(k − p)2 + μ2]−2+iη

[
k2 − (p + iμ)

p · k
p

]
. (11)
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For convenience, let

E f = p2
1

2m1
+ p2

2

2m2
+ ω2. (12)

We then have

c3dk2 = ω2
2

dω2

dE f
sin θdθdϕdE f , (13)

where k2/|k2| = (sin θ cos ϕ, sin θ sin ϕ, cos θ ). In Eq. (9) we
could integrate p2 to obtain the conservation of momentum,
that is,

p2 = k1 − k2 − p1. (14)

Substituting Eq. (14) into Eq. (12), we have

E f = p2
1

2m1
+ (k1 − k2 − p1)2

2m2
+ ω2. (15)

Before integrating p1, θ , and ϕ, they could be treated as
constants. Therefore, there are only two variables ω2 and E f

in Eq. (15). By a simple derivative, we can obtain

dω2

dE f
= m2c2

m2c2 + ω2 − ω1 cos θ + cp1 · e2
, (16)

where e2 = k2/|k2|.
Finally, the momentum spectrum of the particle m1 is given

by

d3σ

d p1xd p1yd p1z
=

∫∫
ω2

ω1
(1 + cos2 θ )

dω2

dE f
|M|2 sin θdθdϕ.

(17)

In Eq. (17) we have omitted the constant G because it does
not affect the properties of the whole momentum spectrum.
Also, M is just a function of p1, θ , and ϕ. The conservation of
energy can be obtained by integrating ω2 in Eq. (9), that is,

ω1 + ε0 = p2
1

2m1
+ (k1 − k2 − p1)2

2m2
+ ω2. (18)

When p1, θ , and ϕ are given, ω2 is calculated by the equation

ω2
2

2m2c2
+

(
1 − ω1 cos θ

m2c2
+ p1 · e2

m2c

)
ω2

+ (p1 − k1)2

2m2
+ p2

1

2m1
− ω1 − ε0 = 0. (19)

In the nonrelativistic case, 1 − ω1 cos θ
m2c2 + p1·e2

m2c > 0 and (p1−k1 )2

2m2

+ p2
1

2m1
− ω1 − ε0 < 0, so the solution of Eq. (19) is unique.

Similarly, the momentum spectrum d3σ/d p2xd p2yd p2z of the
particle m2 can also be calculated.

III. NUMERICAL RESULTS

Let us introduce a dimensionless parameter Rm = m2/m1.
In this section we analyze and discuss the ionization momen-
tum spectrum or energy spectrum corresponding to different
Rm. The conclusions obtained for the same Rm are universal,
regardless of the specific values of m1 and m2. As the integral
in Eq. (17) does not have an analytic expression, we can

FIG. 2. Ionization momentum spectrum d2σ/d p1xd p1z from
positronium, with incident photon energy ω1 of (a) 0.6, (b) 0.8,
(c) 1.2, (d) 1.5, (e) 2, (f) 5, (g) 10, and (h) 50 keV. (i) Momentum
distribution of the electron or positron in the ground state of positro-
nium in the x-z plane.

only handle it numerically. The ϕ0(r) is independent of spatial
orientation, so we will just focus on the momentum spectrum
in the x-z plane. Furthermore, the numerical results presented
in this section have been normalized.

A. Positronium and Rm = 1

Positronium is a system composed of an electron and a
positron. It is evident that the ionization momentum spectrum
of the electron is identical to that of the positron. In Fig. 2
we present the ionization momentum spectrum d2σ/d p1xd p1z

from positronium corresponding to various incident photon
energies. For positronium, its ionization threshold [20] ω1 ≈
0.75 keV. First, we observe that when ω1 = 0.6 keV, there
is only one island structure. The island is the result of the
forward transfer of photon momentum. In contrast to helium
atoms with two electrons, however, there is no recoil island
[20] observed near the threshold from positronium. This in-
dicates that the recoil island of the momentum distribution of
the He+ ion in Ref. [20] is primarily caused by the repulsion
between two electrons.

Next, as depicted in Figs. 2(a)–2(h), a second island
emerges near the origin and gradually becomes stronger and
closer to the origin as ω1 increases. Meanwhile, the first island
to form strengthens, then weakens, and eventually disappears
as it moves to the right. In fact, these phenomena could be
explained qualitatively from Eq. (10). Specifically, it can be
considered that the term ei(m2/M )k·r/m1 controls the first island
and the other term e−i(m1/M )k·r/m2 shows momentum transfer
as −k. Therefore, the latter would weaken the strength of
the first island and affect the formation of the second island.
In the case of positronium, for incident photon energies that
are large, the interference effect between the former and the
latter disappears and their contributions to the light-scattering
spectrum become identical [21]. As a result, in Fig. 2(h),
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FIG. 3. Ionization momentum spectrum d2σ/d p2xd p2z from hy-
drogen atoms, with incident photon energy ω1 of (a) 1.5, (b) 5, (c) 15,
(d) 20, and (e) 40 keV. (f) Momentum distribution of H+ ions in the
ground state of the hydrogen atom.

only one island remains, which is nearly symmetric about the
x axis.

In addition, it can be observed that d2σ/d p1xd p1z exhibits
asymptotic behavior and tends to stabilize as ω1 increases.
For comparison, the momentum distribution of the electron
or positron in the ground state of positronium in the x-z
plane is shown in Fig. 2(i). By comparing Fig. 2(i) with
Fig. 2(h), it can be clearly seen that d2σ/d p1xd p1z is very
close to the bound-state momentum distribution when ω1 =
50 keV. It is as if the electron and positron in the positron-
ium instantaneously lose their interaction under the impact of
ultrahigh-energy photons and move separately in free motion.
It is worth mentioning that we have previously assumed that
the initial center-of-mass momentum is 0, i.e., p1 = −p2.
Thus, p = p1 = −p2 and the Fourier transform of ϕ0(r) is
just the momentum distribution of the electron or positron in
the ground state of positronium. Since d3σ/d p1xd p1yd p1z is
rotationally symmetric about the z axis, we can conclude that
for Rm = 1, d3σ/d p1xd p1yd p1z will tend to be the initial-state
momentum distribution when ω1 is large.

B. Rm > 1

As a typical example corresponding to Rm > 1, the mo-
mentum spectrum of H+ ions from hydrogen atoms (Rm =
1836) via Compton scattering is illustrated in Fig. 3. Upon
comparing Fig. 3(e) with Fig. 3(f), it is apparent that
d2σ/d p2xd p2z closely resembles the momentum distribution
of H+ ions in the ground state of the hydrogen atom at
ω1 = 40 keV. A similar phenomenon was also recently re-
ported in an experimental study on helium atoms [16] and
it reflects the validity of the impulse approximation [7]. In
other words, when the incident photon energy is very high,
the bound electrons in the atom are quickly stripped, so the
momentum distribution of the atomic nucleus remains unaf-
fected. Next we further calculate d2σ/d p2xd p2z for various
Rm values. Similar to positronium, interesting phenomena
for d2σ/d p2xd p2z arise as ω1 varies. However, we will not
present these details here, but rather focus on whether the
asymptotic behavior of d2σ/d p2xd p2z mentioned earlier is
affected by Rm. As shown in Fig. 4, when ω1 = 50 keV,
the d2σ/d p2xd p2z for each Rm tends to their corresponding

FIG. 4. Ionization momentum spectrum d2σ/d p2xd p2z from hy-
drogenlike atoms at ω1 = 50 keV, with a mass ratio Rm of (a) 2, (b) 4,
(c) 8, (d) 13, (e) 30, and (f) 206.

bound-state momentum distribution. This indicates that the
asymptotic property of d2σ/d p2xd p2z is independent of Rm

for hydrogenlike atoms.
However, the ionization properties of particle m1 are

distinct. From the aforementioned discussion, we already es-
tablished that the ionization momentum spectrum of particle
m2 is very close to its bound-state momentum distribution
when ω1 is large. This naturally raises the question of whether
the ionization spectrum of particle m1 exhibits similar reg-
ularity. For convenience, we calculate the ionization energy
spectroscopy of particle m1 by averaging Eq. (17) over the
directions of p1, as follows:

dσ

dE1
=

∫∫
d3σ

d p1xd p1yd p1z

√
E1d�. (20)

Here E1 = p2
1/2m1 and � denotes the solid angle correspond-

ing to p1. The numerical results are presented in Figs. 5
and 6, where dσ/dE1 has been replaced by the normalized

FIG. 5. Ionization energy spectroscopy of the particle m1 for hy-
drogenlike atoms. The form x-y in the legend means that the incident
photon energy is x keV and y is the value of Rm. The symbol H
represents the hydrogen atom and its corresponding Rm = 1836.
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FIG. 6. Partially enlarged view of Fig. 5. Further, as shown by
the orange dash-dotted line and the black dashed line in the figure,
we also added the bound-state energy spectroscopy of the particle m1

corresponding to Rm = 13 and 4, respectively.

intensity. It can be observed that, for ω1 � 10 keV, there
are two peaks in the ionization energy spectroscopy of the
particle m1 wherein the first peak is located closer to the
origin and the second peak moves to the right as ω1 increases.
However, some behaviors of the two peaks are essentially
different due to the variation in Rm. For example, the intensity
of the second peak corresponding to the hydrogen atom in-
creases with ω1, but the opposite trend is observed for Rm = 4
and 13. Notably, the second peak associated with Rm = 4 is
almost disappearing in the current range of data in Fig. 5.
Although not all the ionization energy spectroscopy results
corresponding to Rm are presented in this paper, it is evident
from Fig. 5 that a critical value of Rm exists around 13. When
Rm is less than this critical value, the intensity of the second
peak decreases with increasing ω1: otherwise the opposite
occurs. As another example, it can be observed from Fig. 6
that the first peaks corresponding to Rm = 4 and 13 gradually
approach their respective bound-state energy spectroscopy of
particle m1 as ω1 increases. This phenomenon is particularly
prominent for Rm = 4. Also, combined with the properties
of the second peak just discussed, it can be inferred that the
energy or momentum spectrum of particle m1 corresponding
to Rm = 4 will also tend to the bound-state distribution with
ω1 increasing. This also implies the existence of hydrogenlike
atoms with Rm �= 1, which consist of two particles whose
ionization momentum spectrum in Compton scattering will be
very close to their respective bound-state momentum distribu-
tions when the incident photon energy is large. This finding
is surprising. In fact, such atoms are found in nature, such
as kaonic hydrogen, which is a bound system composed of a
negative kaon (K−) and a proton. The decay lifetime of K− is
about 1.2 × 10−8 s and its rest mass is about 967 times that
of the electron. Kaonic hydrogen corresponds to Rm ≈ 1.9,
which is less than 4. Obviously, according to our analysis
in this paper, kaonic hydrogen is such a system that fits the

criteria. Similar exotic atoms [26,27] also include πK atoms
(Rm ≈ 3.5), pionic hydrogen (Rm ≈ 6.7), muonic hydrogen
(Rm ≈ 8.9), etc.

It is intriguing to note that kaonic hydrogen, with its sim-
ple structure, serves as an excellent experimental subject for
probing the strong interaction [26]. We imagine that if the
bound-state momentum distribution of charged particles in
kaonic hydrogen can be measured directly, the information
on strong interaction could be inferred. Our discussion and
analysis suggest that Compton scattering could be a viable
method for such measurements. This can yet be regarded as
a different way to explore the strong interaction. However, it
should be noted that the strong interaction that is unknown
has not been taken into account in our calculations. In fact, in
kaonic hydrogen, the strong interaction shows a repulsive ef-
fect and the electromagnetic interaction still dominates. More
importantly, the strong interaction affects the internal potential
energy V (r1, r2) between the K− and the proton rather than the
interaction Hamiltonian HI . Therefore, we have reasons to be-
lieve that the conclusions predicted in this paper still hold true
for real kaonic hydrogen. Nevertheless, there may still be a
long way to go before Compton scattering experiments can be
realized on exotic atoms. For instance, it is very challenging
to efficiently form exotic atoms [26]. Furthermore, the lifetime
of exotic atoms and their constituent mesons is quite limited
and the crucial problem of how to measure the momentum of
ionized fragments within this limited time also needs to be
solved.

IV. CONCLUSION

In summary, our investigation focused on the ionization
momentum spectrum generated by Compton scattering from
neutral hydrogenlike atoms in the nonrelativistic case. By
conducting meticulous numerical calculations, we discussed
in detail the ionization momentum spectrum of positronium,
revealing a noteworthy phenomenon wherein the momentum
spectrum of electrons and positrons will tend to their respec-
tive bound-state momentum distributions when subjected to
high-energy photons. We also examined the impact of the
mass ratio Rm between two particles in hydrogenlike atoms,
establishing that the asymptotic property of d2σ/d p2xd p2z

is independent of Rm. Furthermore, the ionization energy
spectroscopy of the less massive particle m1 was calculated,
and it has two peaks. Our analysis indicates that there is a
critical value of Rm that governs the properties of these two
peaks. Finally, we also found that there are real hydrogenlike
atoms with Rm �= 1 in nature, which consist of two particles
whose ionization momentum spectrum in Compton scattering
will be very close to their respective bound-state momentum
distributions as ω1 increases. This finding may be useful in
studying the strong interaction.
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