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Direct imaging of the hyperfine depolarization in electronically excited NO molecules
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We visualize the hyperfine depolarization dynamics of electronically excited nitric oxide (NO) molecules.
Pump-probe ion-imaging measurements have been performed to track the spatiotemporal propagation of the
angular distribution of NO (A 2�+, v = 0, J = 3/2, N = 2), excited by ultraviolet nanosecond laser pump pulses
resonant with the R21(1/2) transition. Femtosecond intense probe pulses induced Coulomb explosion of the
excited NO molecules, where fragment N+ and O+ ions were ejected along the direction of the molecular
axis just before the explosion. The space-slice imaging coupled with the circularly polarized probe pulse,
recently developed in this research group [K. Mizuse et al., Rev. Sci. Instrum. 90, 103107 (2019)] has directly
(i.e., without any mathematical reconstruction procedure) provided the two-dimensional section of the
molecular-axis distribution, which clearly shows evolution in the nanosecond regime. We have developed
a model to reproduce the experimentally captured images by considering a time-dependent density matrix
for the excitation of multiple hyperfine states. The model has been proven to be fully compatible with the
spherical-tensor-operator formalism [A. J. Orr-Ewing and R. N. Zare, Annu. Rev. Phys. Chem. 45, 315 (1994)],
and the initially prepared density matrices have been retrieved successfully from the analysis of time-dependent
molecular-axis distribution.

DOI: 10.1103/PhysRevA.107.043116

I. INTRODUCTION

Angular momentum vectors pertinent to spatial distribution
of electrons or molecular frameworks are often modulated
and/or decayed by the interaction with other angular mo-
menta or an external environment. This effect is commonly
termed “angular momentum depolarization (AMD)” [1–3].
The earliest investigations based on (zero-field) quantum-
beat spectroscopy date back almost a half century [4–9].
Oscillation of emission intensity in an atomic system was
observed, and this experimental finding was attributed to the
interference between coherently excited fine [4–7] or hy-
perfine [8,9] eigenstates, as reviewed by Hack and Huber
[10]. Fano and Macek developed a theoretical framework
to treat AMD [1]: here the precession of the electronic or-
bital angular momentum, initially prepared in an anisotropic
manner, was interpreted with respect to the coupling with
electronic and/or nuclear spins. To explore hyperfine struc-
ture, hyperfine quantum-beat spectroscopy has been applied
also to the molecular systems [11,12]. Since then, there
have been a number of reports on AMD pertinent to molec-
ular rotation, based on polarized laser spectroscopy [13],
angle-resolved photoelectron spectroscopy [14], and time-
of-flight mass spectrometry with photodissociation [15–17].
Along with the experimental studies, there have been some
theoretical considerations devoted to AMD [2,3,18,19]. Es-
pecially, a spherical-tensor-operator formalism by Orr-Ewing
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and Zare [2,3] has been applied to reproduce the experi-
mentally observed time-modulated signals with appropriate
parametrization.

Polarization of molecular rotational angular momenta
leads to spatially aligned or antialigned distribution pertinent
to the molecular axes. Thus, controlling rotational angular
momenta has been extensively explored by various methods
[20–23] and comes to play an essential role in recent advanced
experiments utilizing anisotropic molecular ensembles, e.g.,
ultrafast x-ray and electron diffraction [24,25], scattering with
surface and particle [26,27], and molecular-frame photoelec-
tron spectroscopy [28,29]. Detailed information on molecular
orientational distribution can be captured by charged parti-
cle imaging [30,31], which has been proven as a versatile
tool for investigating photodissociation [32,33] and real-time
probing of photoexcited reactions [34,35]. In particular, by
incorporating laser-induced Coulomb explosion, ion imaging
has been extensively used to visualize rotational dynamics
induced by ultrashort intense laser pulses [36–41]. On the
contrary, imaging investigation of the depolarization dynam-
ics has been limited so far. In the velocity map imaging (VMI)
investigation of the photodissociation of excited hydrogen sul-
fide radicals, it has been shown that anisotropy of the products
is depolarized during the long lifetime in the predissociating
excited state [42]. The VMI study on the vibrationally me-
diated photodissociation of hydrogen chloride has identified
time-modulated distribution of the products and the spherical-
tensor-operator formalism has been adopted to derive the
depolarization coefficients [43]. Quite recently, the Coulomb
explosion imaging (CEI) study on the rotational wave packet
in I2 molecules has shown that the hyperfine coupling due to
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the electric quadrupole moment of the iodine nuclei slightly
affects the wave-packet propagation at the long-time delay
[44]. A theoretical investigation has also shown that the spin-
spin and spin-rotation couplings in O2 also affect its molecular
alignment at the long delay [45].

Although the ultimate advantage of the ion imaging is
its capability for directly providing the spatial distributions
pertinent to the molecular orientation and alignment, we have
to remember that experimentally captured images are of-
ten biased with anisotropic efficiency in the probing (e.g.,
ionization) process, as in the cases of the above-mentioned
previous studies [42–44]. Recently, the present research group
has developed an imaging apparatus with a mechanical slit,
which slices three dimensionally expanding ion clouds into
two-dimensional (2D) sheets [46,47]. The resultant ion sheets
are further repelled in the perpendicular direction by applying
a pulsed high voltage to be projected onto a 2D position
sensitive detector (PSD). This experimental configuration al-
lows us to take 2D ion images perpendicular to the laser
propagation direction. With the combination of the circularly
polarized probing laser pulse, the isotropic probing of the
pump-pulse-induced dynamics can be realized. Its utility has
been demonstrated in the CEI measurements of unidirection-
ally rotating (UDR) ensembles of nitrogen molecules. Here,
the molecular-axis angular distribution has been directly (i.e.,
without any numerical reconstruction procedure such as Abel
inversion) recorded successively for changing pump-probe de-
lays, to provide a “molecular movie” of the UDR wave packet
(more properly, the square of its absolute value) [39,46,48,49].

In the present study, we visualize the molecular-axis an-
gular distribution in the electronically excited nitric oxide
(NO) molecules, modulated temporally by the hyperfine de-
polarization. Nitric oxide has been extensively studied as a
spectroscopic benchmark, because it is a stable open-shell
diatomic molecule exhibiting interesting coupling between
several different kinds of angular momenta [50–59]. The
hyperfine splitting (hfs) in the first electronically excited
state (A 2�+) has been repeatedly investigated by a variety
of experimental approaches, including Stark quantum-beat
spectroscopy (in the v = 0 vibrational level) [50], hyperfine
quantum-beat spectroscopy (at v = 0) [51], high-resolution
two-photon spectroscopy (at v = 1) [52], and optical radio
frequency double-resonance spectroscopy (at v = 3) [53].
The observed transition frequencies and the determined hfs
parameters have been summarized by Brouard and co-workers
[51]. Microwave spectroscopy was adopted to determine pre-
cise hfs constants in the X 2� electronic ground states [54].
State-selective lifetime measurements [55] and fine (and par-
tially hyperfine) structure resolved spectroscopy [56] have
been also reported for the A 2�+ state. CEI was utilized to
visualize the singly occupied molecular orbital of NO in the
X 2� and A 2�+ states [57,58]. Creation of the wave packets
composed of the �-type doubling states in X 2� was consid-
ered by numerical calculation [59].

Recently, we reported the results on the imaging of the
rotational wave functions in the electronically excited NO
molecules [60]. Since the 14N nucleus possesses nonzero
spin (I = 1), the molecular rotation should be affected by
the hyperfine depolarization, as has been shown in the pre-
vious photoelectron study [14], but such an effect was not

FIG. 1. Energy diagram for the A 2�+ −X 2�1/2 R21(1/2) transi-
tion of NO, including hyperfine splitting in each rotational level.

examined in the previous report [60]. Here, we track the
hyperfine depolarization dynamics on the molecular rotation
by implementing the CEI coupled with the nanosecond (ns)
laser excitation. The linearly polarized ns pulse was set in
resonance with the A 2�+ −X 2�1/2 R21(1/2) transition of
NO, to create initial alignment of excited molecules. Then,
pump-probe imaging captured the variation of the molecular-
axis angular distribution. We also theoretically consider the
time-dependent probability distribution pertinent to the wave
packets constituting multiple hyperfine eigenstates and com-
pare them with the experimental results. We also demonstrate
that these results agree with the formulation deliberated by
Orr-Ewing and Zare [2,3].

II. THEORY

In the present study, multiple eigenstates split by the hy-
perfine interaction in a single rotational level are coherently
coupled to create a wave packet of hfs states in the elec-
tronically excited NO molecules, the time evolution of which
is the issue to be discussed. Since multiple hfs states are
populated as the initial states, an incoherent summation of
the wave packets has to be considered. Then, we construct
the density matrix of the system in the electronically excited
state by evaluating the matrix elements from the transition
amplitudes. The density matrix will be implemented to give
the angular distribution. The density matrix representation is
further transformed into the spherical-tensor representation to
assess the formulation developed in the previous studies [2,3]
and to compare with the experimental results.

A. Wave packets, the density matrix, and the angular
distribution

Figure 1 schematically represents the energy levels in the
A 2�+ −X 2�1/2 electronic transition of nitric oxide, which
are relevant to the present study. The NO molecule in the
A 2�+ state is appropriately described by Hund’s case (bβJ )
[55]. Thus, the hfs eigenstate of NO (A 2�+) is represented
as |A 2�+, N�SJIFMF 〉 (see Appendix A). The angular mo-
menta appearing here are as follows: molecular rotation, R;
the projection of the electronic orbital angular momentum
onto the molecular axis, �; the total angular momentum ex-
cluding the spins, N(= R + �); the electronic spin, S; the
total angular momentum without nuclear spin, J (= N + S);
the 14N nuclear spin, I; and the total angular momentum,
F (= J + I), with its projection onto the space-fixed Z axis as
MF . Since the magnitude of the fine and hyperfine splitting is
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well below a few hundred MHz [51], the hfs has not been fully
resolved, even when Doppler-free two-photon spectroscopy
was adopted by using single-mode cw lasers [52,56].

In the present study, a conventional ns pulsed laser was
used for the electronic excitation of NO molecules. Its pulse
duration was ∼10 ns and the corresponding coherent fre-
quency bandwidth was ∼100 MHz, which is large enough
to simultaneously excite multiple hfs eigenstates to create
their coherent superposition, i.e., a wave packet. The ac-
tual frequency bandwidth was much larger (reaching to ∼1
GHz), since the laser operated in multilongitudinal modes.
Still, it was narrow enough to selectively excite a single
rotational line in the A 2�+ −X 2�1/2 transition, R21(1/2) in
the present case. To summarize, wave packets constituting
the hfs eigenstates with F = 1/2, 3/2, and 5/2 in the single
fine-structure level with (N, J, MJ ) = (2, 3/2,±1/2) should
be considered in the present condition. The initial rotational
level (X 2�1/2, � = 1/2, J = 1/2, with parity ε = −1) has
also quite small hfs (∼200 MHz) [54], and the two hfs eigen-
states with F = 1/2 and 3/2 were almost equally populated
even in the adiabatically cooled condition (with effective rota-
tional temperature of ∼2 K). Thus there are six initial states:
|F, MF 〉 = |1/2,±1/2〉, |3/2,±1/2〉, and |3/2,±3/2〉. The
accessible excited hfs eigenstates from a certain initial hfs
state are restricted by the selection rules for the one-photon
transition with linearly polarized light, i.e., �F = 0, ±1, and
�MF = 0, as shown in Fig. 1.

The wave packet created from an initial hfs eigenstate,
|F0, MF 〉, in the electronic ground state is represented as

|	 (F0,MF )(t )〉 =
∑

F1

C(F0,MF )
F1

|A 2�+, N1�1SJ1IF1MF 〉e−iωF1 t ,

(1)
where subscripts 0 or 1 for each quantum number indicate the
electronically ground or excited states, respectively, and ωF is
the angular frequency with ωF /2π = 28.75, 12.5, and 0 MHz
for F = 1/2, 3/2, and 5/2, respectively [51]. The summation
over F1 ranges from |F0−1| to F0 + 1. The coefficient C(F0,MF )

F1

is proportional to the transition probability as

C(F0,MF )
F1

= 〈A 2�+, N1�1SJ1IF1MF |Ĥ ′|X 2�, S��̄J0IF0MF ε〉
h̄ωF1 − h̄ωF0

= A
√

(2F0 + 1)(2F1 + 1)(−1)F0+F1−MF −S

×
{

J1

F0

F1

J0

I
1

}(
F1

−MF

1
0

F0

MF

)
, (2)

where |X 2�, S��̄J0IF0MF ε〉 is the parity-adopted eigen-
function in NO (X 2�), described in case (aβ ) [61]. The
light-matter interaction Ĥ ′ = μ̂ · Ê is due to the electric
dipole moment of the molecule. The coefficient A is indepen-
dent from F0, F1, and MF , while it depends on other quantum

numbers, as shown in Appendix B. The brackets and

are the Wigner’s 3- j and 6- j symbols, respectively.
The density matrix for a single wave packet from the initial

hfs eigenstate of |F0, MF 〉 is represented as

ρ̂ (F0,MF )(J ) = |	 (F0,MF )〉〈	 (F0,MF )|. (3)

Here J is explicitly specified since it is preserved. Gener-
ally, the density matrix element in the coupled representation
should have four subscripts as ρF1,MF1 ,F2,MF2

. However, with
the selection rule of excitation by a linearly polarized light, the
following relation should be held: MF1 = MF2 = MF . Thus, its
matrix elements in the |F, MF 〉 space in the electronic excited
state are given as

ρ
(F0,MF )
F1,F2

(J, t ) ≡ 〈F1MF |ρ̂ (F0,MF )(J, t )|F2MF 〉
= ρ

(F0,MF )
F1,F2

(J, t = 0)e−i(ωF1 −ωF2 )t , (4)

with

ρ
(F0,MF )
F1,F2

(J, t = 0) = C(F0,MF )
F1

C(F0,MF )∗
F2

, (5)

where F2 stands for total angular momentum also in the elec-
tronically excited state.

The time-dependent angular distribution pertinent to the
molecular axis is derived as the matrix element of ρ̂ (F0,MF )

with the eigenvectors of the angular coordinate θ (the an-
gle between the space-fixed Z axis and the molecular axis).
Since the orientation of the electronic and nuclear spins has
not been specified during the observation, the distribution is
represented as an average over the spin wave functions as

P(F0,MF )(θ, t )

=
∑

MS ,MI

〈SMs|〈IMI |〈θ |ρ̂ (F0,MF )(J, t )|θ〉|IMI〉|SMS〉

=
∑
F1,F2

ρ
(F0,MF )
F1,F2

(J, t ) fF1,F2,MF (θ ), (6)

with

fF1,F2,MF (θ ) ≡
∑

MS ,MI

〈IMI |〈SMS|〈θ |N�SJIF1MF 〉

× 〈N�SJIF2MF |θ〉|SMS〉|IMI〉, (7)

which represents a time-independent basis function for the
angular distribution. It is further recast with the case (b) basis
[see Appendix A, Eqs. (A1)–(A4)] into the following form:

fF1,F2,MF (θ ) =
∑

MJ ,MI

〈JMJ , IMI |F1MF 〉〈JMJ , IMI |F2MF 〉

×
∑

MN ,MS

〈NMN , SMS|JMJ〉2 2N + 1

4π

[
dN

MN �(θ )
]2

,

(8)

where 〈· · · , · · ·|· · ·〉 is the Clebsch-Gordan coefficient and
dN

MN �(θ ) is the Wigner’s d matrix [2]. The angular distri-
bution is expressed as the sum of the time-independent and
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dependent terms as

P(F0,MF )(θ, t ) =
∑

F1

ρ
(F0,MF )
F1,F1

(J, t = 0) fF1,F1,MF (θ )

+
∑

F1>F2

ρ
(F0,MF )
F1,F2

(J, t = 0) fF1,F2,MF (θ )

× cos [(ωF1 − ωF2 )t]. (9)

The latter terms, called the quantum beating, are caused by
the interferences between eigenstates with different energies.

In the present experimental condition, the initial state is a
mixed state with different |F0, MF 〉’s. The density matrix of
the total system is a weighted sum of those for a single wave
packet, as

ρ̂ =
∑

F0,MF

WF0 ρ̂
(F0,MF ), (10)

where WF0 is the relative distribution for the initial states with
F0 = 1/2 and 3/2. We note that once the density matrix ρ̂ is
specified, all the physical quantities of the molecular system
can be derived from it. In particular, the corresponding angular
distribution is given as

P(θ, t ) =
∑

F0,MF

WF0 P(F0,MF )(θ, t )

=
∑

F1,F2,MF

ρF1,MF ,F2,MF (J, t ) fF1,F2,MF (θ ), (11)

with

ρF1,MF ,F2,MF (J, t ) =
∑

F0

WF0ρ
(F0,MF )
F1,F2

(J, t ). (12)

Its time dependence is quite similar to Eq. (4) as

ρF1,MF ,F2,MF (J, t ) = ρF1,MF ,F2,MF (J, t = 0)e−i(ωF1 −ωF2 )t . (13)

In the present case, all the weights for the six initial states
are essentially identical due to the small hfs (with only ∼1%
difference at even ∼2 K): WF0 = 1/6.

B. Spherical-tensor representation

The hyperfine depolarization is explained as the change
of the spatial orientation of the angular momentum J by
the coupling with the nuclear spin I. To compare our model
with the previous formulation [2,3], we introduce the density

matrix of the subsystem |J, MJ〉. First, we convert the total
density matrix from the coupled representation ρF1,MF ,F2,MF to
the uncoupled representation ρMJ1,MI1,MJ2,MI2 :

ρMJ1,MI1,MJ2,MI2 (J, t ) ≡ 〈JMJ1IMI1|ρ̂|JMJ2IMI2〉
=

∑
F1,F2,MF

〈JMJ1, IMI1|F1MF 〉

× 〈JMJ2, IMI2|F2MF 〉
× ρF1,MF ,F2,MF (J, t ). (14)

To obtain the density matrix in the subspace spanned by
the |J, MJ〉, ρMJ1,MI1,MJ2,MI2 is summed up for the subsystem
|I, MI〉:

ρMJ1,MJ2 (J, t ) =
∑
MI

ρMJ1,MI ,MJ2,MI (J, t ). (15)

Equations (14) and (15) lead to the relation MJ1 + MI =
MJ2 + MI = MF , and thus the off-diagonal matrix elements
vanish. Similarly, the density matrix in the |I, MI〉 subspace
is also diagonal. Since the nuclear spin is isotropically dis-
tributed at t = 0, the matrix elements are given as

ρMI1,MI2 (J, t = 0) = (2I + 1)−1δMI1,MI2 . (16)

We next introduce the relationship between the wave
packet and the spherical-tensor operator. The q component of
the operator of rank k (often called a state multipole moment)
is derived from the density matrix elements as [3,62]

ρ (k)
q (J, t ) = √

2k + 1
∑

MJ1,MJ2

(−1)J−MJ

(
J
−MJ1

k
q

J
MJ2

)

× ρMJ1,MJ2 (J, t ). (17)

Its inverse transformation is

ρMJ1,MJ2 (J, t ) =
∑
k,q

(−1)J−MJ
√

2k + 1

(
J
−MJ1

k
q

J
MJ2

)

× ρ (k)
q (J, t ). (18)

Since linear polarization is adopted for excitation in the
present case, q = 0 and the diagonal elements are only in-
volved in Eqs. (17) and (18). Then Eqs. (14), (15), and (17)
provide the transformation from the coupled representation to
the spherical tensor:

ρ
(k)
0 (J, t ) = √

2k + 1
∑

F0,F1,F2,MF

(−1)J+I−MF
√

(2F1 + 1)(2F2 + 1)WF0ρ
(F0,MF )
F1,F2

(J, t )
∑

MJ ,MI

(−1)F1+F2+I+k+MF −MJ

×
(

F2

−MF

I
MI

J
MJ

)(
J
MJ

k
0

J
−MJ

)(
I
MI

J
MJ

F1

−MF

)

= √
2k + 1

∑
F1,F2,MF

(−1)J+I−MF
√

(2F1 + 1)(2F2 + 1)

{
F2

J
I
k

J
F1

}(
k
0

F2

−MF

F1

MF

)
ρF1,MF ,F2,MF (J, t ). (19)
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The inverse transformation at t = 0 is provided by using Eqs. (16) and (18) as

ρF1,MF ,F2,MF (J, t = 0) =
∑

MJ1,MJ2,MI

〈JMJ1, IMI |F1MF 〉〈JMJ2, IMI |F2MF 〉ρMJ1,MI ,MJ2,MI (J, t = 0)

=
∑

MJ1,MJ2,MI

〈JMJ1, IMI |F1MF 〉〈JMJ2, IMI |F2MF 〉ρMJ1,MJ2 (J, t = 0)ρMI ,MI (J, t = 0)

=
√

(2F1 + 1)(2F2 + 1)

2I + 1

∑
k

(−1)J+I−MF
√

2k + 1

{
F2

J
I
k

J
F1

}(
k
0

F2

−MF

F1

MF

)
ρ

(k)
0 (J, t = 0).

(20)

Next, we substitute Eq. (13) into Eq. (19) and then replace
ρF1,MF ,F2,MF (J, t = 0) with ρ

(k)
0 (J, t = 0) by using Eq. (20), to

finally have the closure expression for the time propagation of
the state multipole moments:

ρ
(k)
0 (J, t ) = G(k)(t )ρ (k)

0 (J, t = 0) (21)

with

G(k)(t ) ≡
∑
F1,F2

(2F1 + 1)(2F2 + 1)

2I + 1

{
F2

J
I
k

J
F1

}2

e−i(ωF1 −ωF2 )t

(22)

being just the depolarization coefficient [2,3]. Thus, the
present density matrix consideration has confirmed that the
spherical-tensor formalism by Orr-Ewing and Zare [2,3] is
valid for describing the hyperfine depolarization for hfs eigen-
states coherently excited by a linearly polarized light.

By substituting Eq. (20) into Eq. (11), the time-dependent
angular distribution is expanded with the state multipole mo-
ments as

P(θ, t ) =
∑

k

ρ
(k)
0 (J, t ) f (k)

0 (θ )

=
∑

k

ρ
(k)
0 (J, t = 0)G(k)(t ) f (k)

0 (θ ) (23)

with

f (k)
0 (θ ) ≡

∑
MJ

(−1)J−MJ 〈JMJ , J − MJ |k0〉

×
∑

MN ,MS

〈NMN , SMS|JMJ〉2 2N + 1

4π

[
dN

MN �(θ )
]2

.

(24)

The basis function for the angular distribution, now ex-
panded in state multipoles, is further recast after some angular
momentum algebra, as shown in Appendix C, into a very
concise form as

f (k)
0 (θ ) = (−1)J+S (2N + 1)(2J + 1)

√
2k + 1

4π

×
{

N S J
J k N

}(
k N N
0 −� �

)
Pk (cos θ ), (25)

which is simply proportional to the Legendre polynomial of
rank k, Pk (cos θ ). The expression given in Eq. (23) along
with Eq. (25) can be directly compared to the observed time-
dependent angular distribution.

III. EXPERIMENT

Details of the experimental setup have been described in
the previous report [59]. Briefly, a gaseous mixture of ∼0.7%
NO diluted in helium was expanded into a vacuum chamber
from an Even-Lavie pulsed valve (repetition rate at 250 Hz;
back pressure: 2 MPa). The molecular beam of the adiabat-
ically cooled sample (with rotational temperature of ∼2 K),
with its propagation direction set here along the Z axis, was
crossed at right angles with the pump and probe laser pulses,
which counterpropagated to each other (along the Y axis). The
ns ultraviolet pump pulse was delivered as second harmonics
(226 nm, ∼20 nJ, pulse width <10 ns, linewidth ∼1 GHz,
repetition rate at 250 Hz) of the output of a dye laser (Sirah,
Allegro, with coumarin 450 dye). The near-infrared intense
probe pulse was provided as an output of a Ti+ sapphire
multipass amplifier (Quantronix, Odin II HE, ∼800 nm, pulse
width ∼80 fs, repetition rate at 1 kHz). The pump pulse was
linearly polarized through a half-wave plate and a Glan laser

FIG. 2. Distributions of N+ fragments from the excited NO molecules: (a) The spatial distribution after correction to the circular shape of
the subtracted image. The annotated half circle marks the inner-shell region analyzed in this work. (b–f) Time-dependent angular distributions
derived from the observed images for each pump-probe delay. Data per 4◦ are plotted as red dots with three times standard deviation indicated
as red bars.
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TABLE I. Retrieved state-multipole moments ρ
(k)
0 (J, t ). Num-

bers in parentheses are the 3σ standard deviation of the fit, in units
of the last quoted digit.

t (ns) k = 0 k = 2

5 0.503 (10) –0.410 (8)
10 0.501 (13) –0.250 (11)
15 0.500 (9) –0.187 (8)
20 0.500 (11) –0.066 (10)
25 0.500 (15) 0.019 (13)

prism and was focused onto the molecular beam by a lens
( f = 250 mm). Its polarization direction was set along the
Z axis, perpendicular to the time-of-flight (TOF) direction
(along the X axis). The probe pulse was circularly polarized
by passing through a series of a half-wave plate, a pair of
reflection-type prism polarizers, and a quarter-wave plate,
and finally focused onto the molecular beam by another lens
( f = 150 mm). The timings of the pump and probe pulses and
the valve opening were controlled by a digital delay generator.
Spatial distributions of ions generated by the irradiation of
light pulses were recorded as tomographic images (in the ZX
plane) by space-slice ion imaging [39,46,47].

The spatial overlap between the pump and probe pulses
had to be optimized for each record of images with different
pump-probe delays, since molecules excited by the pump
pulses were moved by ∼10 µm during a few tens of ns due
to the molecular-beam translation. The best overlap of the
two pulses was achieved by finding the substantial enhance-
ment of NO+ generation, while the intensities of both pulses
were set so low that negligible NO+ ions were generated by
pump or probe pulse only. Then, the pump-pulse intensity was
raised to increase the numbers of excited molecules within
the range of a very low level of two-photon ionization signals
by the pump pulse alone. The probe intensity was adjusted to
give high contrast of the N+ signals enhanced by the pump
against those with the probe pulse alone. The optimized pulse

FIG. 3. The state-multipole moments plotted against the delay
time. Experimentally determined ρ

(0)
0 (J, t ) and ρ

(2)
0 (J, t ) at each de-

lay time are indicated as open circles and dots, respectively, with
black bars as three times standard deviation of the fit. Blue and green
lines are results of the global fit to the determined ρ

(0)
0 (J, t ) and

ρ
(2)
0 (J, t ), respectively. Theoretical predictions for ρ

(2)
0 (J, t ) are given

as a red broken line.

TABLE II. State-multipole moments ρ
(k)
0 (J, t = 0).

Obs.a Theory

k = 0 0.501 (2) 0.5
k = 2 –0.44 (9) –0.5

aStatistical uncertainties (3σ ) are represented in parentheses in units
of the last quoted digit.

energy was ∼200 µJ, which was fixed for a series of image
recordings.

The image recorded with the pump and probe pulses con-
tained ion signals from the ground-state molecules as well
as from the excited molecules. The latter signals were much
larger than the former, although the relative population in
the excited state was estimated to be only ∼10% [59]. After
subtracting the background signals recorded with the probe
pulse only, we analyzed the spatial distribution of N+ frag-
ments from the excited NO molecules. The signals were
distributed in an elliptical shape because the ion cloud was
kept constant along the acceleration direction (along the X
axis) while it expanded along the perpendicular direction
(along the Z axis). The ion image was least-squares fitted to
determine the elliptical parameters (i.e., the center position
and the ellipticity) and its Z/X aspect ratio was corrected to
give a circular shape that represents the angular distribution.
The resultant image of fragment ions can be regarded as a
2D section of the three-dimensional (3D) probability distribu-
tion pertinent to the molecular axis in the laboratory frame.
This is mainly owing to the isotropic ionization efficiency
within the plane of detection by using the circularly polarized
probe-laser field; in addition the axial recoil approximation
was valid and the effect of the dynamical alignment induced
by the probe pulse was marginal in the present experimental
condition [46,47,59].

The angular distribution for the ground-state molecules
should be isotropic due to their random orientation as an initial
distribution. Still, the images of the observed background
signals showed some fluctuation, most probably due to the
spatial variation in the detecting efficiency of the PSD. This

TABLE III. Density matrix elements, ρF1,MF ,F2,MF (J, t = 0), for
the coupled-presentation basis. Plus-minus and minus-plus values of
the elements correspond to the plus-minus values of MF .

(F1, F2, MF ) Obs.a Theory Obs.–theory

(1/2, 1/2, ±1/2) 0.0835 (2) 0.0833 0.000
(1/2, 3/2, ±1/2) �0.066 (14) �0.0745 ±0.008
(1/2, 5/2, ±1/2) −0.033 (7) −0.0373 0.004
(3/2, 3/2, ±1/2) 0.098 (3) 0.1000 −0.002
(3/2, 5/2, ±1/2) �0.030 (6) �0.0333 ±0.003
(5/2, 5/2, ±1/2) 0.143 (12) 0.1500 −0.007
(3/2, 3/2, ±3/2) 0.069 (3) 0.0667 0.002
(3/2, 5/2, ±3/2) �0.073 (15) �0.0816 ±0.008
(5/2, 5/2, ±3/2) 0.098 (3) 0.1000 –0.002
Norm 0.982 (43) 1.0000 –0.018

aStatistical uncertainties (3σ ) are represented in parentheses in units
of the last quoted digit.
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FIG. 4. The angular distributions at each delay time: The experimental values are indicated as red dots with 3σ statistical errors (red bars),
calculated with the determined ρ

(0)
0 (J, t ) and ρ

(2)
0 (J, t ) at each delay time as blue lines, calculated for the global fit as green broken lines, and

the theoretical prediction as black dashed-dotted lines.

positional detection variation was corrected by normalization
of the excited-state signals with the background signals and
right-left symmetrization. Parts of the images of the N+ sig-
nals were overlapped with other ions, e.g., NO2+ and O+, in
the region for larger TOFs (or smaller X positions). Thus,
the upper (or larger X ) half of the circular signals was only
used to obtain the angular distribution to avoid the interfer-
ences. Given that the 3D angular distribution should be axially
symmetric around the polarization direction, the images of
each delay were normalized by the integration around the
symmetry axis.

IV. RESULTS AND DISCUSSION

Figure 2(a) shows a typical ion image of N+ fragments
from excited NO molecules. There appear three different ve-
locity components: the central part as well as two annular
regions. In the present study, the angular distributions were
derived from the signals in the inner-ring region, as shown
in the green half circle region in Fig. 2(a), since the signal
counts are much larger and more enhanced by the pump
pulse than those in the outer-ring region. The angular dis-
tributions P(θ, t ) at each pump-probe delay are shown as
red dots in the polar plots [Figs. 2(b)–2(f)], with the experi-
mental statistical error of three times standard deviation (3σ ,
with σ being evaluated from the square root of the
ion counts) indicated as red bars. Small standard devi-
ation and high angular resolution express the benefit of
high data throughput realized by using our ion-imaging
apparatus [46,47].

As shown in the sequence with the delay time from 0 to
25 ns [Figs. 2(b)–2(f)], the angular distribution pertinent to
the molecular-axis direction, initially concentrated along the
pump polarization (horizontal) direction, gradually grows iso-
topic. This time evolution of P(θ, t ) is represented as a linear
combination of products of the angular- and time-dependent
terms f (k)

0 (θ ) and ρ (k)
q (J, t ), respectively, as given in Eq. (23).

The latter term, called the state-multipole moment, is further
recast as a product of the initial value ρ

(k)
0 (J, t = 0) and the

time-dependent depolarization coefficient G(k)(t ), as given in
Eq. (21). For the excitation to J = 3/2, the rank k of the
state multipole should be �3, to satisfy the triangle condition
in Eq. (17). In addition, terms with odd k do not contribute
due to the vanishing 3- j symbol in Eq. (25) with � = 0.
Thus, terms with k = 0 and 2 are only considered for the
time-dependent angular distribution observed in the present

study. For k = 0, the triangle rule for the 6- j symbol in
Eq. (22) allows only F1 = F2; then G(0) becomes stationary.
For k = 2, |F1–F2| � 2. and G(2) shows time evolution. The
angular basis functions in Eq. (25) are given as f (0)

0 (θ ) =
1/(2π ) and f (2)

0 (θ ) = −P2(cos θ )/(2π ) in the present case;
i.e., N = 2, S = 1/2, J = 3/2, and � = 0. Then, the angular
distribution P(θ, t ) points to the horizontal or vertical direc-
tion when ρ

(2)
0 (J, t ) is negative or positive, respectively. It is

noted that the angular momentum vector J is approximately
perpendicular to the molecular axis and it exhibits alignment
or antialignment against the laser polarization direction for
positive or negative values of ρ

(2)
0 (J, t ).

The angular distribution is subjected to least-squares re-
gression to Eq. (23) with ρ

(0)
0 (J, t ) and ρ

(2)
0 (J, t ) taken as

variables at each delay time t . The results are listed in
Table I and also plotted in Fig. 3. Reproduction of the angular
distribution is satisfactorily good as shown in Fig. 4, where
the experimentally obtained P(θ, t ) is compared with that
calculated from the determined state multipoles. As expected,
ρ

(0)
0 (J, t ) remains constant (∼0.5), while ρ

(2)
0 (J, t ) gradually

changes from ca −0.4 to 0 as the delay becomes larger. Then,
the state-multipole moments thus determined at each delay
time are subjected to the global fit by adopting Eq. (21) to
evaluate the initial values of ρ

(k)
0 (J, t = 0) for k = 0 and 2.

Here G(k)(t ) is calculated with the hfs frequencies reported
previously [51]. The determined state-multipole moments at
t = 0 are listed in Table II. The stationary k = 0 component
is determined with small statistical uncertainty (3σ is less than
0.1%). The k = 2 component shows a larger uncertainty (3σ

reaches almost 20%), but the deviations at each delay time
from the fitting curve are within acceptable ranges, as shown
in Fig. 3.

Once the state-multipole moments at t = 0 have been
determined, all the density matrix elements with the coupled-
presentation basis, ρF1,MF ,F2,MF (J, t = 0), are experimentally
retrieved by using Eq. (20). Their statistical uncertainties are
also evaluated from 3σ of the state-multipole moments. The
results are listed in Table III. The norm of the density matrix
is only 0.2% smaller than unity. This fact validates the present
analysis.

When the electronic excitation is well within the weak field
limit, the wave-packet expansion coefficients for the (F0, MF )
initial state, C(F0,MF )

F1
, are proportional to the transition prob-

abilities as mentioned before. Then, they are theoretically
predicted by using Eq. (2). The density matrix elements at
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FIG. 5. The 3D bar charts of the density matrix elements ρ
(F0,MF )
F1,F2

(J, t = 0), retrieved from observation (blue), and calculated for completely
coherent wave packets (red).

t = 0 are also calculated from the theoretical coefficients,
by adopting Eqs. (5) and (12). The results are also listed in
Table III.

By using the calculated density matrix elements, the state-
multipole moments are predicted by Eq. (19), as listed in
Table II. In the comparison with the experimental values, the
stationary term with k = 0 shows quite a good matchup. In
contrast, the time-dependent k = 2 term exhibits small but
notable deviation. The experimental value is smaller than the
predicted one by almost 15%. We note that the prediction
relies on fully coherent excitation to create the wave packets.
Since the excitation source in the present experiments is a
pulsed dye laser, which operates at multi-longitudinal-mode
oscillation, the coherence in the resultant wave packets may
be degraded to some extent, to give smaller amplitude in the
k = 2 term. In fact, the density matrix for MF = ±3/2 exclu-
sively comes from the F0 = 3/2 initial state, and the following
equation should be held for completely coherent excitation:

|ρ3/2,±3/2,5/2,±3/2|√
ρ3/2,±3/2,3/2,±3/2ρ5/2,±3/2,5/2,±3/2

= 1, (26)

but the experimental ratio is ∼0.88(3), indicating the incoher-
ent nature of the systems.

The density matrix elements, ρF1,MF ,F2,MF (J, t = 0), are
the sums of the components, ρ

(F0,MF )
F1,F2

(J, t = 0), for the
initial states, as represented in Eq. (12). The values of
ρ

(F0,MF )
F1,F2

(J, t = 0) can be retrieved with several assumptions
as follows. First, the weights, WF0 , for each initial state are
to be the same. Second, the degree of incoherence in the
off-diagonal terms is assumed to be the same, i.e.,

∣∣ρ (F0,MF )
F1,F2

∣∣√
ρ

(F0,MF )
F1,F1

ρ
(F0,MF )
F2,F2

= x (27)

to be held for any F0, F1, F1, and MF , with a single value of
x, which is an empirical parameter to describe the extent of
incoherence. Here the sign of the off-diagonal matrix elements
is set to be consistent to Eq. (2); (i.e.), the sign is positive or
negative when F0 + F1–MF –S is even or odd.

The retrieved density matrix elements, ρ
(F0,MF )
F1,F2

(J, t = 0),
are represented as 3D bar charts in Fig. 5, along with the
theoretically predicted values for the completely coherent sit-
uation. The results are also tabulated in Table IV in Appendix
D. The value of x is found to be 0.89. It is noted that all
the diagonal and off-diagonal terms for the initial (F0, MF ) =

(1/2,±1/2) and (3/2,±3/2) states are comparable, while
the diagonal (F1, F2) = (5/2, 5/2) terms dominate over other
terms for (F0, MF ) = (3/2,±1/2). That means the former
two are close to maximally coherent states, while the latter
is not.

Since the density matrix has been experimentally derived,
any physical quantity of the system can be evaluated. First,
we reconstruct the time evolution of the molecular-axis an-
gular distributions of subsystems for the initial (F0, MF ) =
(1/2,±1/2), (3/2,±1/2), (3/2,±3/2) states [Figs. 6(a)–
6(c)] as well as that for the total system [Fig. 6(d)]. All
the distributions of the subsystems exhibit the same shape at
t = 0, and they evolve differently from each other. As shown
in Figs. 6(a) and 6(c), the distributions from (1/2,±1/2)
and (3/2,±3/2) clearly show an antialignment maximum
at around 40 and 30 ns, respectively, while that from
(3/2,±1/2) stays aligned up to 50 ns [Fig. 6(b)]. The large
time dependence in the former two systems is due to their
maximally coherent nature while the weak modulation in the
latter system is a consequence from the predominance of
a single diagonal term, as just mentioned. Because of the
different behaviors of each subsystem, evolution of the total
distribution is slow and moderate.

TABLE IV. Density matrix elements, ρ
(F0,MF )
F1,F2

(J, t = 0). Plus-
minus and minus-plus values of the elements correspond to the
plus-minus values of MF .

(F0, MF ) (F1, F2) Obs.a Theory Obs.–theory

(1/2, ±1/2) (1/2, 1/2) 0.0737 (2) 0.074 0.000
(1/2, 3/2) �0.072 (13) �0.083 ±0.011
(3/2, 3/2) 0.090 (3) 0.093 –0.003

Norm 0.328 (6) 0.333 –0.005
(3/2, ±1/2) (1/2, 1/2) 0.00979 (3) 0.009 0.001

(1/2, 3/2) ±0.006 (1) ±0.008 �0.002
(1/2, 5/2) −0.033 (7) -0.037 0.004
(3/2, 3/2) 0.0098 (3) 0.007 0.003
(3/2, 5/2) �0.030 (6) �0.033 ±0.003
(5/2, 5/2) 0.143 (13) 0.150 –0.007

Norm 0.321 (26) 0.333 –0.012
(3/2, ±3/2) (3/2, 3/2) 0.069 (3) 0.067 0.002

(3/2, 5/2) �0.073 (15) �0.082 ±0.009
(5/2, 5/2) 0.098 (3) 0.100 –0.002

Norm 0.334 (12) 0.333 0.001

aStatistical uncertainties are represented in parentheses in units of the
last quoted digit.
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FIG. 6. Reconstructed molecular-axis angular distributions. (a–c) for the initial states (F0, MF ) = (1/2, ±1/2), (3/2, ±1/2), and
(3/2, ±3/2), respectively. (d) Total reconstructed distribution (blue lines) with observed data (red dots with error bars).

Next, we discuss longer-time dynamics. Here the time-
dependent alignment parameter, 〈cos2θ〉(t ), is evaluated up to
1 μs, as shown in Fig. 7. The parameter exhibits almost full
revival at t = 800 ns. The value at this timing (and also t = 0)
is the largest, 0.451. The revival time is ascribed as nearly
integral multiples (10, 13, and 23, respectively) of the three
beating periods (80.0, 61.5, and 34.8 ns) between hfs compo-
nents [51]. The alignment parameter is symmetric with respect
to the half revival (400 ns), and at several timings until then,
it becomes maxima at t = 68, 131, 177, 244, 312, and 378 ns,
with its values of 0.429, 0.379, 0.413, 0.449, 0.431, and 0.396,
respectively. The minima appear at t = 33, 94, 153, 213, 278,
341, and 400 ns, with the values of 0.306, 0.337, 0.345, 0.314,
0.301, 0.326, and 0.348, respectively. Some of the timings are
also nearly integral multiples of the three hfs beating periods.
For instance, 244 and 312 ns correspond to (3, 4, 7) and (4, 5,
9), respectively. Aligned or antialigned molecular ensembles

FIG. 7. Time evolution of the alignment parameter, 〈cos2θ〉, from
the experiments (red circles), and calculated by the reconstructed
density matrix (blue line).

appearing a few hundred ns after their creation will be utilized
in several dynamical studies, e.g., on photodissociation, but
the time window for its utility is restricted by the deactivation
of NO (A 2�+, v = 0), the fluorescence lifetime of which is
∼200 ns [63–65].

V. CONCLUSION

We report here detailed tracking of time-dependent
molecular-axis distribution of nitric oxide (NO) molecules
after the excitation into a single rotational level (A 2�+, v = 0,
N = 2, J = 3/2). The angular distribution has been recorded
by a space-sliced ion-imaging apparatus coupled with a cir-
cularly polarized intense laser pulse as a probe [60]. This
experimental setup affords us nonmathematical tomographic
imaging with high collecting availability of signal ions. As the
pump-probe timing is delayed, the molecular-axis distribution
evolves from alignment to antialignment. This is a clear man-
ifestation of rotational angular momentum depolarization by
the hyperfine interaction with the 14N nuclear spin. The time-
dependent state multipole moment is retrieved experimentally
and the density matrix on a coupled basis is reconstructed.
The present results enable us to discuss the incoherence of
the created molecular system. By utilizing the retrieved den-
sity matrix, any physical quantity can be evaluated. We have
demonstrated it here by breaking down the time-dependent
total angular distribution into those for each initial state and by
estimating long-time alignment and antialignment dynamics
to show the characteristic revival structure.
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APPENDIX A: BASIS OF NITRIC OXIDE IN X 2�1/2

AND A 2�+

The molecular wave function of NO (A 2�+) is defined as

|A 2 +
�, v, N�SJIFMF 〉 ≡ |n�〉|v〉|N�SJIFMF 〉, (A1)

where |n�〉 and |v〉 are the electronic and vibrational parts of
the state vector, respectively, and |N�SJIFMF 〉 is the basis of
Hund’s case (bβJ ), which is described as

|N�SJIFMF 〉 =
∑

MJ ,MI

〈JMJ , IMI |FMF 〉|N�SJMJ〉|IMI〉,
(A2)

with |IMI〉 being the nuclear spin part, and |N�SJMJ〉 is the
basis of Hund’s case (b). It is further recast as

|N�SJMJ〉 =
∑

MN ,MS

〈NMN , SMS|JMJ〉|N�MN 〉|SMS〉,
(A3)

with |SMS〉 being the electronic spin part, and the |N�MN 〉
with the Wigner D matrix, as

|N�MN 〉 = ψN,�,MN (θ, φ) = 〈θ, φ, χ = 0|N�MN 〉

=
(

2N + 1

4π

) 1
2

D(N )∗
MN �(φ, θ, χ = 0). (A4)

The wave function of NO (X 2�1/2) is defined as

|X 2�1/2, v, S�, �̄JIFMF , ε〉
≡ |v〉[|n�, S�, �̄JIFMF 〉

+ ε|n − �, S − �,−�̄JIFMF 〉], (A5)

where ε = +1 or −1 is the label of parity, �̄ is the absolute
value of �, and |n�, S�,�JIFMF 〉 is the basis of Hund’s
case (aβ ) which is described as

|n�, S�,�JIFMF 〉
=

∑
MI

〈JMJ , IMI |FMF 〉|n�, S�, J�MJ〉|IMI〉, (A6)

with

|n�, S�, J�MJ〉 = |n�〉|S�〉|J�MJ〉, (A7)

where |S�〉 and |J�MJ〉 are the electronic spin part written
in the molecular frame and the basis of Hund’s case (a),
respectively. The rotational part is represented as

|J�MJ〉 = ψJ,�,MJ (θ, φ) = 〈θ, φ, χ = 0|J�MJ〉

=
(

2J + 1

4π

) 1
2

D(J )∗
MJ �

(φ, θ, χ = 0). (A8)

The relationship between case (a) and case (b) is

|n�, S�, J�MJ〉 =
∑
N,�

〈N�, S�|J�〉|N�SJMJ〉. (A9)

Using Eq. (A9), we can convert the case (a) basis to the
case (b) basis.

APPENDIX B: COEFFICIENT C(F0,MF )
F1

OF THE EIGENSTATE |A 2�+, N�SJIFMF〉
The electric dipole interaction is written as Ĥ ′ = μ̂ · Ê = ∑

p μ
(1)
−pE (1)

p = ∑
p,q D(1)∗

−pqμ
(1)
q E (1)

p . Here the electric dipole moment
μ and the laser electric field E are represented as spherical-tensor operators of rank 1, μ(1)

q and E (1)
p , respectively, with the suffix

p and q (=0 or ±1) specifying the space-fixed (lab) frame and the molecular-fixed frame, and D(1)∗
pq is the complex conjugate of

the Wigner D matrix [2].
The coefficient of the excited eigenstate is proportional to the interaction matrix element, under the first-order perturbation

framework, because the F dependencies of the electronic excitation energy can be securely ignored,

C(F0,MF )
F1

= 〈A 2�+, N1�1SJ1IF1MF

∣∣Ĥ ′∣∣X 2�, S�, �̄J0IF0MF , ε〉
h̄�ω

, (B1)

with �ω being the angular frequency for the A 2�+ −X 2�1/2 R21(1/2) transition of NO.
Using Eq. (A5), the matrix element is written as

〈A2�+, N1�1SJ1IF1MF |Ĥ ′|X2�, S�, �̄J0IF0MF , ε〉 ∝ 〈n1�1, N1�1SJ1IF1MF |Ĥ ′|n0�0, S�, �̄J0IF0MF 〉
+ ε〈n1�1, N1�1SJ1IF1MF |Ĥ ′|n0 − �0, S − �,−�̄J0IF0MF 〉. (B2)

The matrix elements in Eq. (B2) are recast as

〈n1�1, N1�1SJ1IF1MF |Ĥ ′|n0�0, S�, �̄J0IF0MF 〉 =
∑

p

E (1)
p

∑
q

〈n1�1|μ(1)
q |n0�0〉〈N1�1SJ1IF1MF |D(1)∗

−pq|S�, �̄J0IF0MF 〉.
(B3)

We can use the two relationships,

〈n1�1 = 0|μ(1)
∓1|n0�0 = ±1〉 = 〈n1�1 = 0|μ(1)

±1|n0�0 = ∓1〉, (B4)

and

〈N1�1SJ1IF1MF |D(1)∗
−pq|S − �,−�̄J0IF0MF 〉 = (−1)J0+S+N1+1〈N1�1SJ1IF1MF |D(1)∗

−pq|S�, �̄J0IF0MF 〉. (B5)
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Then, the matrix element in Eq. (B2) is given as

〈A 2�+, N1�1SJ1IF1MF |Ĥ ′|X 2�, S�, �̄J0IF0MF , ε〉
∝ {1 − ε(−1)J0+S+N1+1}〈n1�1, N1�1SJ1IF1MF |Ĥ ′|n0�0, S�, �̄J0IF0MF 〉. (B6)

The matrix element appearing in Eq. (B6) can be recast as

〈N1�1SJ1IF1MF |D(1)∗
−pq|S�, �̄J0IF0MF 〉 = (−1)F1−MF

(
F1

−MF

1
−p

F0

MF

)
〈N1�1SJ1IF1‖D(1)∗

q ‖S − �,−�̄J0IF0〉

= (−1)F0+F1+J1+I+1−MF
√

(2F0 + 1)(2F1 + 1)

{
J1

F0

F1

J0

I
k

}(
F1

−MF

1
−p

F0

MF

)
〈N1�1SJ1‖D(1)∗

q ‖S − �,−�̄J0〉

=
∑
N0

(−1)F0+F1+J1+N0+I−S+1−�̄−MF
√

(2F0 + 1)(2F1 + 1)(2N0 + 1)

×
{

J1

F0

F1

J0

I
1

}(
F1

−MF

1
−p

F0

MF

)(
N0

�0

S
−�

J0

�̄

)
〈N1�1SJ1‖D(1)∗

q ‖N0�0SJ0〉

=
∑
N0

(−1)F0+F1+J0+J1+N0+N1+I+2−�̄−MF
√

(2F0 + 1)(2F1 + 1)(2J0 + 1)(2J1 + 1)(2N0 + 1)

×
{

J1

F0

F1

J0

I
1

}{
N1

J0

J1

N0

S
1

}(
F1

−MF

1
−p

F0

MF

)(
N0

�0

S
−�

J0

�̄

)〈
N1�1

∥∥D(1)∗
q

∥∥N0�0
〉

=
∑
N0

(−1)F0+F1+2J0+J1+2N0+2N1+I+S+2−�̄−�1−MF
√

(2F0 + 1)(2F1 + 1)(2J0 + 1)(2J1 + 1)(2N0 + 1)

×
{

J1

F0

F1

J0

I
1

}{
N1

J0

J1

N0

S
1

}(
F1

−MF

1
−p

F0

MF

)(
N0

−�0

S
�

J0

−�̄

)(
N1

−�1

1
q

N0

�0

)〈
N1

∥∥D(1)∗
q

∥∥N0
〉

= (−1)F0+F1+J0+2J1+I−2�1−MF
√

(2F0 + 1)(2F1 + 1)(2J0 + 1)(2J1 + 1)(2N1 + 1)

{
J1

F0

F1

J0

I
1

}(
F1

−MF

1
−p

F0

MF

)

×
∑
N0

(−1)N1+S−J1+J0+1+N0+�1−�̄(2N0 + 1)

{
N1

J0

S
1

J1

N0

}(
1
q

N1

−�1

N0

�0

)(
S
�

J0

−�̄

N0

−�0

)

= (−1)F0+F1+J0+2J1+I−2�1−MF
√

(2F0 + 1)(2F1 + 1)(2J0 + 1)(2J1 + 1)(2N1 + 1)

×
{

J1

F0

F1

J0

I
1

}(
F1

−MF

1
−p

F0

MF

)(
N1

−�1

S
�

J1

−m

)(
J0

−�̄

1
q

J1

m

)
, (B7)

where 〈 j1‖T (k)‖ j0〉 is the reduced matrix element. The first and the fifth equalities use the Wigner-Eckert theorem; the second
and the fourth ones use the simplification of the spherical-tensor product; the third one uses the basis transformation of case
(a) to case (b), given in Eq. (A9); the sixth one uses the equation 〈N1‖D(1)∗‖N0〉 = √

(2N0 + 1)(2N1 + 1); and the seventh one
uses the relation between the 3- j and 6- j symbols [2]. In this work, p = 0 is adapted because now we consider excitation with
linearly polarized light. Then, we can obtain the coefficient as

C(F0,MF )
F1

= A × (−1)F0+F1−MF
√

(2F0 + 1)(2F1 + 1)

{
J1

F0

F1

J0

I
1

}(
F1

−MF

1
0

F0

MF

)
, (B8)

with

A = NE (1)
0

〈v1|v0〉√
2h̄�ω

{1 − ε(−1)J0+S+N1+1}
∑

q

〈
A 2�+∣∣μ(1)

q

∣∣X 2�
〉
(−1)J0+J1−N1+I+2�̄−2�1

√
(2J0 + 1)(2J1 + 1)(2N1 + 1)

×
(

N1

�1

S
�

J1

m

)(
J0

�̄

1
q

J1

m

)
. (B9)

Here, N is the normalization coefficient which makes the trace of the density matrix to be unity.
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APPENDIX C: MOLECULAR-AXIS ANGULAR DISTRIBUTION OF THE STATE MULTIPOLE MOMENT

The molecular-axis angular distribution of the state multipole moment can be defined by the linear combination of those of
|J, MJ〉 as

f (k)
0 (θ ) ≡

∑
MJ

(−1)J−MJ 〈JMJ , J − MJ |k0〉 fJ,MJ (θ )

=
∑
MJ

(−1)J−MJ 〈JMJ , J − MJ |k0〉
∑
MS

〈θ |〈SMS |N�SJMJ〉〈N�SJMJ |SMS〉 |θ〉. (C1)

The inner product of the state vector of Hund’s case (b) and the space-fixed spin vector is described by using the state vector
of Hund’s case (a),

〈SMS |N�SJMJ〉 =
√

2N + 1

2J + 1

∑
�,�

〈N�, S�|J�〉|J�MJ〉D(S)
MS�

, (C2)

where we use the transformation of case (b) to case (a) [66]

|N�SJMJ〉 =
√

2N + 1

2J + 1

∑
�,�

〈N�, S�|J�〉|J�MJ〉|S�〉 =
√

2N + 1

2J + 1

∑
�,�,M ′

S

〈N�, S�|J�〉|J�MJ〉D(S)
M ′

S�

∣∣SM ′
S
〉
, (C3)

and that of the space-fixed spin vector to the molecular-fixed one [66]:

|S�〉 =
∑
MS

D(S)
MS�

|SMS〉. (C4)

Using Eqs. (C2) and (C3), we can obtain the relationship
∑
MS

〈SMS|N�SJMJ〉〈N�SJMJ |SMS〉 = 2N + 1

2J + 1

∑
MS

∑
�,�

〈N�, S�|J�〉|J�MJ〉D(S)
MS�

∑
�′,�′

〈N�, S�′|J�′〉〈J�′MJ |D(S)∗
MS�′

= 2N + 1

2J + 1

∑
�,�

〈N�, S�|J�〉|J�MJ〉
∑
�′,�′

〈N�, S�′|J�′〉〈J�′MJ |δ��′

= 2N + 1

2J + 1

∑
�,�

〈N�, S�|J�〉2|J�MJ〉〈J�MJ |. (C5)

Thus, we can rewrite (C1) as

f (k)
0 (θ ) = 2J + 1

4π

∑
MJ

(−1)J−MJ 〈JMJ , J − MJ |k0〉2N + 1

2J + 1

∑
�,�

〈N�, S�|J�〉2〈θ |J�MJ〉〈J�MJ |θ〉

= 2N + 1

2J + 1

∑
�,�

〈N�, S�|J�〉2
∑
MJ

(−1)J−MJ 〈JMJ , J − MJ |k0〉〈θ |J�MJ〉〈J�MJ |θ〉

= 2N + 1

2J + 1

∑
�,�

〈N�, S�|J�〉2
∑
MJ

(−1)J−MJ 〈JMJ , J − MJ |k0〉(−1)MJ−�

√
2J + 1

4π
D(J )

−MJ −�

√
2J + 1

4π
D(J )

MJ �

= 2N + 1

4π

∑
�,�

(−1)J−�〈N�, S�|J�〉2
∑
MJ

〈JMJ , J − MJ |k0〉(−1)−MJ+�D(J )
−�−MJ

(−1)MJ−�D(J )
�MJ

= 2N + 1

4π

∑
�,�

(−1)J−�〈N�, S�|J�〉2〈J�, J − �|k0〉D(k)
00

= 2N + 1

4π

∑
�,�

(−1)J−�〈N�, S�|J�〉2〈J�, J − �|k0〉Pk (cos θ ), (C6)

where Pk (cos θ ) is a Legendre polynomial of rank k. The fifth equality uses the relationship of the sums of products of the D
matrix [67].

APPENDIX D: RECONSTRUCTION OF THE DENSITY MATRIX FROM THE STATE MULTIPOLE MOMENTS AT t = 0

The total density matrix is retrieved from state multipole moments by using Eq. (20). We assume that the coefficient C(F0,MF )
F1

is
set real and to be consistent to Eq. (2), (i.e.); its sign is positive or negative when F0 + F1–MF –S is even or odd, respectively. For
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(F0, MF ) = (3/2,±3/2), the total density matrix is equal to the partial density matrix ρ
(3/2,±3/2)
F1,F2

. For (F0, MF ) = (1/2,±1/2),
the excitation to F = 5/2 is forbidden because of the selection rule �F = ±1. Thus, for (F0, MF ) = (3/2,±1/2), the total
density matrix elements with (F1, F2) = (1/2, 5/2), (3/2,5/2), and (5/2,5/2) are equal to the partial density matrix elements.
Next, all of the coherences for (F0, MF ) = (1/2,±1/2), (3/2,±1/2) are assumed to be same, and their value is set as x as in
Eq. (D1). Then, the first term of Eq. (D1) can be transformed to Eq. (D2). The second and third term of (D1) are also rearranged
in Eqs. (D3) and (D4). The relationships between the total and the partial matrix elements are given as Eqs. (D5)–(D7). Unknown
7 parameters (x, ρ

(1/2,±1/2)
1/2,1/2 , ρ

(1/2,±1/2)
3/2,3/2 , ρ

(1/2,±1/2)
1/2,3/2 , ρ

(3/2,±1/2)
1/2,1/2 , ρ

(3/2,±1/2)
3/2,3/2 , ρ

(3/2,±1/2)
1/2,3/2 ) are determined by the seven simultaneous

equations (D1)–(D7). Finally, x = 0.89 and all of the partial density matrix elements ρ
(F0,MF )
F1,F2

are reconstructed as shown in
Table IV. ∣∣∣ρ (3/2,±1/2)

1/2,3/2

∣∣∣√
ρ

(3/2,±1/2)
1/2,1/2 ρ

(3/2,±1/2)
3/2,3/2

=

∣∣∣ρ (3/2,±1/2)
1/2,5/2

∣∣∣√
ρ

(3/2,±1/2)
1/2,1/2 ρ

(3/2,±1/2)
5/2,5/2

=

∣∣∣ρ (3/2,±1/2)
3/2,5/2

∣∣∣√
ρ

(3/2,±1/2)
3/2,3/2 ρ

(3/2,±1/2)
5/2,5/2

=

∣∣∣ρ (1/2,±1/2)
1/2,3/2

∣∣∣√
ρ

(1/2,±1/2)
1/2,1/2 ρ

(1/2,±1/2)
3/2,3/2

= x, (D1)

ρ
(3/2,±1/2)
1/2,3/2 = xC(3/2,±1/2)

1/2 C(3/2,±1/2)∗
3/2 = x

ρ
(3/2,±1/2)
1/2,5/2 ρ

(3/2,±1/2)
3/2,5/2

ρ
(3/2,±1/2)
5/2,5/2

, (D2)

ρ
(3/2,±1/2)
1/2,1/2 = C(3/2,±1/2)

1/2 C(3/2,±1/2)∗
1/2 =

(
ρ

(3/2,±1/2)
1/2,5/2

)2

x2ρ
(3/2,±1/2)
5/2,5/2

, (D3)

ρ
(3/2,±1/2)
3/2,3/2 = C(3/2,±1/2)

3/2 C(3/2,±1/2)∗
3/2 =

(
ρ

(3/2,±1/2)
3/2,5/2

)2

x2ρ
(3/2,±1/2)
5/2,5/2

, (D4)

ρ
(1/2,±1/2)
1/2,1/2 = ρ1/2,±1/2,1/2,±1/2 − ρ

(3/2,±1/2)
1/2,1/2 , (D5)

ρ
(1/2,±1/2)
3/2,3/2 = ρ3/2,±1/2,3/2,±1/2 − ρ

(3/2,±1/2)
3/2,3/2 , (D6)

ρ
(1/2,±1/2)
1/2,3/2 = ρ1/2,±1/2,3/2,±1/2 − ρ

(3/2,±1/2)
1/2,3/2 . (D7)
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