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Theoretical analysis of high-order harmonic generation in liquids by a semiclassical method
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The study of high-order harmonic generation in liquid-state materials is still in its infancy. Quantitative models
are highly required to understand the mechanisms. Here we develop a semiclassical method to investigate the
ultrafast electron dynamics in liquids under monochromatic and two-color laser fields in momentum space. By
assuming that different k values are decoupled, we construct a quasienergy band for the liquid model and give the
group velocity of the ionized electrons under the driving field. It successfully predicts the caustic enhancement of
the liquid harmonic spectrum. We also find that the cutoff of the liquid harmonic spectrum is determined by the
k-dependent band gap. Our results provide a different perspective for analyzing the nonlinear and nonperturbative
liquid-state harmonic generation.
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I. INTRODUCTION

High-order harmonic generation (HHG) in condensed mat-
ter induced by intense lasers is an attractive phenomenon
[1,2]. It has been utilized as a tool for the observation and
manipulation of ultrafast electron dynamics [3–5] and the all-
optical reconstruction of the energy band structure in crystals
[6–9]. The origin of crystal HHG includes intraband Bloch
oscillations [10–12] and interband polarizations [13–17], and
the latter leads to the appearance of plateaus in HHG spectra,
which can be well described by the three-step model [18,19]:
(i) birth of electron-hole pairs, (ii) acceleration of electron-
hole pairs under the laser field, and (iii) recombination of
electron-hole pairs and radiation of high-order harmonics.

Recently, HHG from liquids opened a new avenue for
tracking ultrafast liquid-state dynamics [20–25]. The maxi-
mum coherent travel distance [26] and the cask theory [25]
were introduced to account for the dependence of the max-
imum high-order harmonic radiation energy on the laser
intensity and wavelength. However, due to the complexity of
liquids, current theories of liquid HHG still lack an efficient
description for the semiclassical trajectory of electrons, that
is, the ionized-electron motion under the driving field. In addi-
tion, a novel phenomenon in the HHG spectrum of liquid-state
water is that the first plateau cutoff energy is independent of
laser parameters [24], which is never seen in either gas or solid
HHG.

Semiclassical trajectory is a crucial tool for analyzing the
spectra of gas and solid HHG and was successfully applied to
predict the cutoff frequency [19,27–29] and the interference
fringe [30–33] for the HHG spectrum, which is expected to
extend to liquid HHG. The ionized electrons in liquids are
affected by both the driving field and the Coulomb interaction
of the surrounding atoms. Thus, like in solids, we need the
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group velocity to describe the mean trajectory of electrons
in liquids. The radial distribution function (RDF) is a crucial
fingerprint of liquids. It is fixed for the same material at
equilibrium; therefore, the behavior of laser-driven electrons
satisfies specific statistical laws when the Born-Oppenheimer
approximation is employed. In other words, the RDF of
liquids contains statistical information about the electronic
structure, which may be used to construct the dispersion re-
lation of the electron and give the group velocity of electrons
under the driving field.

In the present work, based on the tight-binding (TB)
model, the harmonic generation from a one-dimensional
liquid model is studied by numerically solving the time-
dependent Schrödinger equation (TDSE) in real space and
analyzed with a semiclassical calculation. We first present the
dependence of cutoff energy for liquid HHG spectrum on the
laser intensity and wavelength by our model. Then we show
the feasibility of analyzing liquid HHG by the semiclassical
theory from the following two points. (i) The cutoff frequency
of the harmonic spectrum is determined by the k-dependent
band gap. (ii) The caustics enhancement pattern in the liquid
HHG spectrum, which is quite sensitive to the semiclassi-
cal trajectory, is successfully predicted by the semiclassical
theory.

This paper is organized as follows. In Sec. II, the theo-
retical model and basic equations are presented. The results
are reported and discussed in Sec. III, and a brief summary
is presented in Sec. IV. Atomic units (a.u.) are always used
unless otherwise specified.

II. METHOD

A. Structure and basic equations

We use a statistical random atomic-chain model to simulate
the liquid HHG process [26]. The schematic of a simple two-
band TB model for the atomic chain is shown in Fig. 1(a)
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FIG. 1. (a) Schematics of the one-dimensional liquid model. The
filled and unfilled circles at the jth atom site (x j) represent two
orbitals of the same atom, |ψa j〉 and |ψb j〉, respectively. uj and v j

are the hopping integral from atom j to j + 1 and their value is
determined by the atomic spacing r j = x j+1 − x j [see Eq. (2)]. d0 is
the transition dipole moment between two states for the same atom.
(b) The histogram of the distance between all atom pairs.

and more details of the statistical random model can be found
in Ref. [26]. In this model, the electronic structure of the
atomic chain can be represented as a linear combination of
two atomic orbitals per atom |φa, j〉 and |φb, j〉 [see in Fig. 1(a)].
Thus, the time-dependent Hamiltonian of the two-band TB
model in real space has the following form:

H (t ) =�a

N∑
j=1

a†
j a j + �b

N∑
j=1

b†
jb j +

N−1∑
j=1

u j (a
†
j a j+1 + H.c.)

−
N−1∑
j=1

v j (b
†
jb j+1 + H.c.) − F (t )

N∑
j=1

x j (a
†
j a j + b†

jb j )

− d0F (t )
N∑

j=1

(a†
j b j + H.c.), (1)

where N denotes the hopping range and x j labels the jth atom
site. a j (b j) is the annihilation operator referring to the valence
(conduction) band; �a and �b are the on-site energies of the
two bands. d0 = 〈φa, j |x|φb, j〉 is the transition dipole moment
between different states for the same atom [see blue arrows in
Fig. 1(a)], which is independent of the atomic spacing. F (t )
is the electric field of the laser, with F (t ) = F0 cos(ω0t ) f (t ),
where f (t ) is trapezoidal with five cycles at peak intensity
(3-5-3). uj (v j) is the hopping integral between |φa, j〉 (|φb, j〉)
and |φa, j+1〉 (|φb, j+1〉). Specifically, to achieve short-ranged
hopping, we adopt a modified scaling such that

u(r) = u0 exp [−(r − r0)/8],

v(r) = v0 exp [−(r − r0)/8].
(2)

Here, uj = u(r j ) and v j = v(r j ), where r j = x j+1 − x j . The
spacing r j between two adjacent atoms satisfies the trun-
cated normal distribution with an average spacing r0 and the

corresponding distribution function of atomic spacing is
shown in Fig. 1(b), which reflects the short-range order and
long-range disorder of liquids [34,35].

The field-free Hamiltonian has 2N eigenstates |ψi(t =
0)〉 = ∑

j (φ
i
a, ja

†
j + φi

b, jb
†
j )|0〉 with i = 1, 2, . . . , 2N , where

φm, j is the value of the electronic wave function in the atomic
orbital |φm, j〉 (m = a, b and j = 1, 2, . . . , N) and |0〉 is a vac-
uum state. In the simulation of liquid HHG, we consider that
the electrons initially occupy the first N bound eigenstates.
The TDSE is solved for |ψi(t )〉 by applying the fourth-order
Runge-Kutta method with a time step �t = 0.0093 a.u.

Considering the disorder of the atoms in liquids, we aver-
age the HHG spectra of M random short atomic chains instead
of a single long atomic chain. The HHG spectra obtained
by this treatment converge faster and were employed in our
previous work [36]. Here, each random short atomic chain has
the same statistical distribution function of atomic spacing.
Then the current for the mth chains reads

Jm(t ) = − d

dt

N∑
i=1

〈
ψm

i (t )
∣∣x∣∣ψm

i (t )
〉
. (3)

Thus the spectrum of HHG can be written as the absolute
square of the Fourier-transformed (FT) current

I (ω) = 1

M

∣∣∣∣∣
∑

m

F[Jm(t )]

∣∣∣∣∣
2

. (4)

In the simulation of liquid HHG, we follow the authors of
Ref. [26] and choose r0 = 10 a.u. It is close to the average
spacing of liquid ethanol (about 8.7 a.u.) and liquid iso-
propanol (about 9.5 a.u.) at room temperature. The bandwidth
of the conduction band is generally larger than that of the
valence band and here we set their ratio to 3, that is, v0 = 3 u0.
The on-site energy for the valence band is �a = 0 a.u. and
for the conduction band is �b = 0.75 a.u. While we choose
v0 = 0.17 a.u., the band gap of our model is about 0.3 a.u. and
close to the band gap of common liquids, such as liquid water
(about 0.32 a.u.). The value of the transition dipole moment d0

does not affect the plateau cutoff energy of the HHG spectrum,
and here we set d0 = 0.7 a.u. However, our findings are not
specific to this choice of model parameters.

B. k space

We transform the TDSE from the real space to k space for
analyzing the mechanism of liquid HHG. To achieve this pur-
pose, we introduce the transform a†

j = 1√
N

∑
k exp(−ikx j )a

†
k

together with K = k − A(t ), and then the time-dependent
Hamiltonian can be rewritten as

H̃ (t ) =
∑
K,K ′

{[�a fS (κt , κ
′
t ) + fu(κt , κ

′
t )]a†

K aK ′

+ [�b fS (κt , κ
′
t ) − fv (κt , κ

′
t )]b†

K bK ′

− d0F (t )[ fS (κt , κ
′
t )a†

K bK ′ + H.c.]}, (5)

where κt = K + A(t ). The structure factors

fS (k, k′) = 1

N

∑
j

ei(k−k′ )x j , (6)
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FIG. 2. Dependence of structure factors (a) fS (k, k′ = 0) and
(b) fu(k, k′ = 0) on k value for N = 104, 105, 106, 107 (from top
to bottom), respectively. (c) The quasienergy band structure of our
one-dimensional liquid model. (d) Fourier transformation of the con-
duction band.

and

fh(k, k′) = 1

N

∑
j

h je
−i(k′−k)x j+ikr j + c.c., (7)

where h = u, v and the vector potential A(t ) =
− ∫ t

−∞ F (τ )dτ .
The structure factors fS (k, k′ = 0) for several N are shown

in Fig. 2(a) except for the point k = 0 where the value is 1,
independent of N . Here we note that fS (k, k′ = 0) decreases
as N increases. For every tenfold increase in N , fS (k, k′ = 0)
becomes about one-third of the original. The case of fu is
similar to that of fS and is shown in Fig. 2(b). So for a large
N , coupling between different k values can be approximately
regarded as a perturbation and ignored, that is, fS (k, k′) ≈ δk,k′

and

fh(k, k′) ≈ fh(k)δk,k′

= δk,k′

N

∑
j

h je
ikr j + c.c.

=
∫

h(r) exp(ikr)g(r)dr∫
g(r)dr

δk,k′ + c.c., (8)

where the hopping term h j = h(r j ) (h = u, v), and g(r) is the
spacing distribution function for nearest-neighbor atom pairs,
namely, the first peak in Fig. 1(b).

With the above approximations, Eq. (5) no longer depends
on the arrangement of atoms in the statistical random chain
but instead on g(r). Thus, the probability amplitude αv (K, t )
for the valence band and αc(K, t ) for the conduction band in k
space are coupled in the fashion

i
∂

∂t

(
αv (K, t )
αc(K, t )

)
=

(
εv (κt ) −F (t )d0

−F (t )d0 εc(κt )

)(
αv (K, t )
αc(K, t )

)
, (9)

where the valence band εv (k) = �a + fu(k) and the conduc-
tion band εc(k) = �b − fv (k) are the two quasienergy bands

of Eq. (1) and shown in Fig. 2(c). Both quasienergy bands
are symmetric with respect to k = 0. Compared with the
crystalline band structure, those of the liquid system are non-
periodic and the amplitude decays with increasing |k|, which
is mainly determined by g(r) and the hopping term. In the
region where |k| > 6π/r0, the two quasienergy bands can be
regarded as flat bands, which represent the localized electron
wave function in liquids. A broad peak at the average distance
r0 of the Fourier-transformed conduction band in Fig. 2(d) is
due to the only consideration of the nearest-neighbor hopping
and the nearest-neighbor atomic spacing with a truncated nor-
mal distribution.

Here, the solution of Eq. (9) is independent of the number
of atomic chains M. The indirect transition is prohibited in
Eq. (9), i.e., the electron transitions in different bands can
only occur at the same k value. The transition dipole moment
between the valence and conduction bands is independent of
k values and is a constant d0. Hence, the interband current for
a single K reads

Jer (K, t ) = −d0
∂[α∗

v (K, t )αc(K, t ) + c.c.]

∂t
, (10)

and the intraband current reads

Jra(K, t ) = −[|αv (K, t )|2 pv (κt ) + |αc(K, t )|2 pc(κt )], (11)

where pm(k) = ∂εm(k)/∂k. The total HHG spectrum can be
written as I (ω) = |F{∑K [Jra(K, t ) + Jer (K, t )]}|2.

We notice that Eq. (9) has the same form as the TDSE using
the Houston states in crystals [15,37]. Following the semiclas-
sical method developed for atomic and solid HHG [18,38,39],
we introduce the transform αm = exp[−i

∫ t
−∞ εm(κτ )dτ ]βm

(m = c, v). Then Eq. (9) can be rewritten as

β̇v (K, t ) = iF (t )d0 exp [−iS(K, t )]βc(K, t ), (12)

β̇c(K, t ) = iF (t )d0 exp [iS(K, t )]βv (K, t ), (13)

where S(K, t ) = ∫ t
−∞ εg(κτ )dτ and εg = εc − εv . We define

the off-diagonal density matrix element � = β∗
v βc, and the

corresponding differential equation

�̇(K, t ) = iF (t )d0 exp[iS(K, t )](|βv|2 − |βc|2). (14)

|βv|2 − |βc|2 describes the population difference between the
valence and conduction bands. For the convenience of anal-
ysis, the Keldysh approximation [40] (|βv|2 − |βc|2 ≈ 1) is
adopted and then inserted into Eq. (10). We have the interband
harmonic

Jer (ω) =
∫ ∞

−∞
dk

∫ ∞

−∞
dte−iωt

∫ t

−∞
dt ′

× G(t ′)e−iS(k,t ′,t ) + c.c., (15)

where G(t ′) = ωd2
0 F (t ′) and the classical action S(k, t ′, t ) =∫ t

t ′ εg[k − A(t ) + A(τ )]dτ .

III. RESULT AND DISCUSSIONS

This work focuses on the spectral cutoff and enhancement
in liquid HHG. For our theoretical model described in Sec. II,
we adopt the number of atomic chains M = 100 and each
chain has N = 512 atoms. For the laser parameters used in
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FIG. 3. (a) HHG spectra for laser intensities I0 = 2 TW/cm2

(blue triangles), 3 TW/cm2 (black filled cycles), and 5 TW/cm2

(red squares), respectively. (b) HHG spectra for laser wavelengths
λ = 800 nm, 1200 nm, and 2000 nm (from top to bottom), re-
spectively. Dependence of HHG cutoff on (c) electric strength and
(d) wavelength. The dashed slashes are obtained by linear fit and the
horizontal dashed lines are the average of the plateau data points.
The inflection point of (c) electric strength or (d) wavelength are
determined by the intersection of two dashed lines of the same color.

the numerical simulations, we verify that the HHG spectrum
above the band gap remains almost unchanged if M or N is
doubled.

A. Dependence of spectral cutoff on laser parameters

The HHG spectra for the carrier wavelength λ = 800 nm
are shown for several laser field intensities in Fig. 3(a). As
we can see, the spectral cutoff of HHG increases signifi-
cantly when the laser intensity increases from 2 TW/cm2 to
3 TW/cm2. Whereas the spectral cutoff seems to saturate de-
spite continuing to increase the laser intensity to 5 TW/cm2.
Figure 3(c) further demonstrates the dependence of the cut-
off energy on the electric field strength for λ = 800 nm and
λ = 1000 nm. Obviously, the relationship between the cut-
off frequency (�c) and F0 can be divided into two parts:
one is that �c has a positive correlation with F0 and the
other is that �c is independent of F0. The inflection point
for λ = 800 nm is F0 ≈ 0.010 a.u. and for λ = 1000 nm it
is F0 ≈ 0.0084 a.u. That is, the larger the wavelength, the
smaller the field strength of the inflection point.

To further demonstrate the effect of laser parameters on the
cutoff energy, the HHG spectra for I0 = 2 TW/cm2 are shown
for several carrier wavelengths in Fig. 3(b). The correspond-
ing wavelength dependence of the spectral cutoff is shown
in Fig. 3(d). Similar to the field-strength-dependent cutoff
energy, the spectral cutoff increases with the wavelength in-
crease until saturation. The threshold value of wavelength is
about 1540 nm for I0 = 1 TW/cm2 and about 1150 nm for
I0 = 2 TW/cm2.

It should be reiterated that we are concerned with
the cutoff of the HHG spectrum plateau rather than the

FIG. 4. (a) HHG spectra obtained by solving Eq. (9) (red dashed
line). The black solid line is the same as the red squares in
Fig. 3(a) for comparison. (b) HHG spectra corresponding to each
k-value component in the red dashed line in (a). The white unfilled
cycles are predicted by εg(|k| + A0 ). The red dashed lines represent
the position of |k| = A0.

maximum harmonic radiation energy �max [24–26]; for ex-
ample, �max = 37 ω0 when I0 = 5 TW/cm2. �max will be
affected by the second conduction band if we consider more
bands. Therefore, discussing �max is not meaningful in this
work. In addition, we noted that the maximum cutoff energy
is about 1.2 a.u. Specifically, the values of vector potential
A0 for all inflection points in Figs. 3(c) and 3(d) are close,
about 0.18 ± 0.01 a.u. This value is relatively close to half of
π/r0 (0.16 a.u.), while those in crystal HHG is π/r0 [19]. This
inspires us that the spectral cutoff of the liquid HHG can be
revealed in k space.

The HHG spectrum obtained by solving Eq. (9) for I0 =
5 TW/cm2 and λ = 800 nm is shown in Fig. 4(a) with the
red dashed line and the red squares in Fig. 3(a) is shown
again in Fig. 4(a) with solid black line for comparison. As
we can see, the HHG spectra in k space have the same spectral
structure as those in real space for the part where the spectrum
energy is above the band gap. Specifically, they have the same
cutoff frequency. That is, Eq. (9) can be used to analyze HHG
spectrum in liquids.

The HHG spectrum in Fig. 4(a) (red dashed line) is the
coherent superposition of the HHG spectrum for all k values.
To analyze the source of the spectral cutoff, we show the
HHG spectra resulting from each k value in Fig. 4(b). The
two red dashed lines indicate k = ±A0, and the high-order
harmonics for the initial k value in this interval dominate the
total HHG spectrum. This is because the energy gap at point
k = 0 is minimal. The electron-hole pairs are mainly born
around that point and the motion range of electron-hole pairs
in k space are [k − A0, k + A0]. In addition, the band gaps as a
function of |k| + A0 are indicated by the white unfilled circles
in Fig. 4(b), which agree well with the spectral cutoff energy
for a single k value. Thus, when 2A0 < π/r0, the cutoff energy
of the total HHG spectrum can be described by the spectrum
for k = ±A0, namely, εg(2A0). That is, the threshold of the
vector potential can be considered as half of π/r0.

B. Caustic enhancement

The harmonic spectrum above the minimum band gap is
dominated by interband harmonics and can be described by
Eq. (15). Similar to the treatment in the original recollision
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FIG. 5. (a) HHG spectra obtained by solving the real-space
TDSE for phase delays ϕ = (a) 0.6π , (b) 0.7π , (c) 0.8π , and
(d) 0.9π , respectively. The red dashed lines and the blue dashed-
dotted line represent the position of spectral caustics predicted by
semiclassical calculations and the spectral cutoff, respectively. The
selected parameters of the fundamental field are F0 = 0.0053 a.u.
(corresponding to the peak intensity of 1 TW/cm2), frequency ω0 =
0.03 a.u., and ratio R = 0.8.

model [18,38], we assume that G(t ′) is a slowly varying term.
Applying the stationary phase method to the integration of
Eq. (15), the electron-hole recollision model in liquids can be
described by saddle-point conditions

∂S(k, tb, tr )

∂k
=

∫ tr

tb

∂εg[k − A(tr ) + A(τ )]

∂k
dτ = 0, (16a)

∂S(k, tb, tr )

∂tb
= εg[k − A(tr ) + A(tb)] = 0, (16b)

∂S(k, tb, tr )

∂tr
= εg(k) = �, (16c)

where � is the harmonic energy, tb and tr represent the birth
and recombination times of the electron-hole pairs, respec-
tively.

To clarify the role of the semiclassical picture revealed by
Eqs. (16a) to (16c) in the liquid HHG, we study the caustic
enhancement of HHG which results from the coalescence
of multiple branches of electron-hole trajectories [41–43]. A
two-color laser field

A(t ) = F0

ω0

[
sin(ω0t ) + R

2
sin(2ω0 + ϕ)

]
f (t ), (17)

is used here so that the caustic enhancement can be observed
clearly and the caustic point in HHG spectrum can be adjusted
by the phase delay ϕ.

Figures 5(a) to 5(d) show HHG spectra for several phase
delays, which are obtained by solving the real-space TDSE,

namely, Eq. (1). As the phase delay changes from 0.6π to
0.9π , the harmonic order corresponding to the maximum
value of the spectral plateau changes from 35th to 24th. The
red dashed lines represent the position of the spectral caustics
predicted by Eqs. (16a) to (16c) and d�/dtb = 0 [43]. As
shown in Figs. 5(a) to 5(d), the caustic points predicted by
the semiclassical calculation agree well with the enhancement
in the harmonic spectra. Here, we need to point out that the
caustic point in the semiclassical calculation represents the
maximum recombination energy, not the cutoff frequencies of
the harmonic spectrum. The cutoff frequency is about 40th-
order harmonic and independent of phase delay [see the blue
dashed-doted line in Figs. 5(a) to 5(d)]. That is, the maximum
recombination energy is always less than or equal to the cutoff
energy, and the liquid HHG spectrum below the maximum
recombination energy in the plateau can be described by the
semiclassical theory.

IV. CONCLUSION

We numerically simulate and analyze the HHG spectrum
in a simple but meaningful one-dimensional liquid model. In
contrast to solving for the liquid cluster from time-dependent
density function theory [44], this model provides the oppor-
tunity to neglect the weakly coupled terms so as to give an
analytical expression of the harmonic spectrum in k space. It
is advantageous for the analysis of liquid HHG mechanisms.
After the establishment of the model, approximations are
taken only in the k-space calculation. We show that the HHG
spectrum obtained from the k-space calculation is similar in
structure to that obtained from the real-space calculation in
the spectral plateau and has the same cutoff frequency. In ad-
dition, we introduce the atomic spacing distribution function
into the Hamiltonian of k space and give the quasienergy band
structure and group velocity for the electron in liquids.

The results presented in this work reveal the dependence
of cutoff in liquid HHG spectra on the laser parameters and
demonstrate that applying solid-phase high-harmonic spec-
troscopy to liquids is possible. For example, we note that the
cutoff frequency in the plateau of the liquid HHG spectrum
is determined by the k-dependent band gap. By adjusting the
phase delay of the two-color laser fields, the liquid HHG spec-
trum exhibits a distinct caustics enhancement pattern, similar
to the solid HHG. Meanwhile, the position of spectral caustics
contains the quasienergy band-structure information, which
may provide a way to reconstruct the k-dependent band gap
by spectral caustics [9]. Further work is needed to study the
competition of different mechanisms in liquid HHG.
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