
PHYSICAL REVIEW A 107, 043110 (2023)

Partial measurements of the total field gradient and the field-gradient tensor
using an atomic magnetic gradiometer
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Magnetic gradiometers have wide practical and academic applications, and two important types of field
gradient observables are the total field gradient and field gradient tensor. However, measurements of the field
gradient tensor have not been the focus of previous researches on atomic magnetic gradiometers. In this work,
we develop an atomic magnetic gradiometer based on two separately optically pumped atomic ensembles in a
Herriott-cavity-assisted atomic cell. This gradiometer shows versatile operation modes and functions, and we
demonstrate them in measurements of both types of field gradient observables.
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I. INTRODUCTION

In the outdoor searches of objectives that are magnetic or
magnetizable, magnetic field gradients usually originate from
the targets while the background field gradient is normally
negligible [1]. Therefore, the field gradients contain valuable
information about the targets. Moreover, with the help of
differential detections, the measured field gradient is largely
free of noises and drifts in the background field. In addition,
the field gradient is relatively less sensitive to the sensor
orientation compared with direct vector-field measurements
[2]. For these reasons, systems measuring the field gradients,
magnetic gradiometers, have been widely used in underwater
explorations [3], geological surveys [2,4–6], space science
[7], magnetic anomaly navigations [8], and bioimaging [9,10]
applications.

There are two types of field gradients that can be measured
by magnetic gradiometers. One is the total field gradient ∇B,
where B is the total magnitude of the field. The other one
is the field gradient tensor ∇B, with B = ∑

i Bir̂i. According
to basic electromagnetic relations, there are five independent
elements in the field gradient tensor in free space. Though
both types of field gradients share the same aforementioned
advantages in different applications, the field gradient tensor
contains richer information, and the measurement results of
the field gradient tensor are more convenient for geophysical
interpretations [1,11].

Currently, practical magnetic gradiometers are mainly
based on superconducting quantum interference devices
(SQUIDs) and fluxgates, both of which can measure vector
components of the bias field. People started to pay attention to
the field gradient tensor in the 1970s [12,13], and there have
been great developments in this field over the past two decades
[2,14–19]. However, each type of sensor has its own problems.
While the SQUID-based gradiometers are relatively bulky
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and heavy due to the additional dewar to maintain the low-
temperature environment, the fluxgate-based gradiometers are
not sensitive and stable enough.

Atomic magnetometers are characterized by high field
sensitivity [20] and potential for miniaturization [21], which
make them promising for magnetic gradiometer applications.
When the bias field is low, atomic magnetometers can work in
the spin-exchange-relaxation-free (SERF) regime. Since the
SERF magnetometers have the ability to detect vector compo-
nents of the field, gradiometers based on this technology can
measure elements of the gradient tensor [22–25]. In the more
common cases where the bias field is on the order of 10μT,
atomic magnetometers usually work in the scalar mode, and
the corresponding gradiometers have only been demonstrated
to detect elements of the total field gradient [9,10,26,27].

In this work, we develop an atomic magnetic gradiometer
based on two separated 85Rb Bell-Bloom magnetometers in a
single multipass cell, and demonstrate that this sensor can be
used in multiple ways to measure both the total field gradient
and gradient field tensor elements in the presence of a bias
field. Following this introduction, Sec. II introduces theoreti-
cal background of this work, Sec. III describes the Bell-Bloom
scalar magnetometry and two modes of the gradiometer to
partially measure the total field gradient, Sec. IV describes
two modes of the gradiometer measuring multiple elements
of the field gradient tensor, and Sec. IV concludes the paper.

II. THEORETICAL BACKGROUND

A. Notations of the field gradients

Considering that the background field is B0 and the field
from the target is Ba, the total field difference between the
cases with and without the target is

�Bs = |B0 + Ba| − B0, (1)

and the vector field difference is �Bv = Ba. A key difference
between these two parameters is that �Bv satisfies the Laplace
equation, while this is not always true for �Bs [1].
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In cases where Ba � B0, �Bs ≈ B̂0 · Ba, with B̂0 as the
unit vector of B0. Then the total field gradient is G = ∇(�Bs),
with the component of G along the ri axis as

Gi = ∂�Bs

∂ri
≈ ∂ (B̂0 · Ba)

∂ri
=

∑
j

B̂0 · r̂ jBa, ji, (2)

where Ba, ji = ∂Ba, j/∂ri is an element of the gradient tensor
Ba. According to Maxwell equations, in free space there are
only five independent gradient tensor elements of Ba: Ba,xx,
Ba,yy, Ba,xy, Ba,xz, and Ba,zy. The analytic functions formed
by Gi are useful to quantitatively interpret the potential-field
data in two-dimensional [28] and three-dimensional spaces
[29,30]. More sophisticated relations between Ba,i j and Gi can
be found using Fourier and Hilbert transformations [31].

B. Bell-Bloom optical pumping

Bell-Bloom optical pumping [32] is an efficient method
to directly generate transverse atomic polarization. The dy-
namics of the electron spin polarization P is described by the
Bloch equation [33,34]:

dP
dt

= γ P × B + 1

Q(P)
[ROP(s − P) − Rd P], (3)

where γ is the atomic gyromagnetic ratio, Q(P) is the nuclear
spin slowing down factor, ROP is the optical pumping rate,
s is the photon spin of the light beam, and Rd is the atom
depolarization rate in the absence of light. For a pump beam
which is amplitude modulated at a frequency ω, the optical
pumping rate can be expressed as

ROP = a0 +
∞∑

n=1

an cos(nωt − αn), (4)

where ai is the corresponding coefficient of the Fourier ex-
pansion series of ROP. When the pump beam is on resonance
with the Rb D1 transition and ω is close to the atomic Lar-
mor precession frequency ωL, a substantial transverse atomic
polarization can be built.

For a special configuration where the bias field is along the
z axis, and the pump beam propagates along the x direction,
the component of the atomic polarization modulated at ω can
be expressed as [35,36]

Px + iPy = sa1

2[R + iQ(P)(ωL − ω)]
e−i(ωt−α1 ), (5)

where R = Rd + a0. If the linearly polarized off-resonant
probe beam propagates along the y axis, the rotation of the
probe beam polarization due to the photon-atom interaction is
proportional to the real part of Py in Eq. (5) [37],

Re(Py) = sa1

2

[ −R sin(ωt − α1)

R2 + Q2(P)(ωL − ω)2

− Q(P)(ωL − ω) cos(ωt − α1)

R2 + Q2(P)(ωL − ω)2
. (6)

For a more general case, the bias field is along an arbitrary
direction, so that the angle between the bias field and the
pump beam direction (x axis) is ψx, and the angle between
the projection of the bias field on the y-z plane and the y axis

is θyz. The component of the atomic polarization modulated at
ω along the y axis is [35]

Py = sa1d sin ψx

2

[ −R cos(ωt − α1 − β )

R2 + Q2(P)(ωL − ω)2

+ Q(P)(ωL − ω) sin(ωt − α1 − β )

R2 + Q2(P)(ωL − ω)2

]
, (7)

where d = √
cos2 ψx cos2 θyz + sin2 θyz, and β =

sin−1(sin θyz/d ).
Therefore, if the driving signal for modulating the pump

beam amplitude is used to demodulate the signal due to the
probe beam polarization rotation, we will get Lorentzian and
dispersion line shapes in the demodulation outputs with suit-
able phase choices.

C. Effect of a half-wave plate on the probe beam

For a linearly polarized probe beam with the polarization
tilted from the x axis by an angle of θ , its polarization can
be expressed by the Jones vector as Pi = (cos θ, sin θ ) [38].
Suppose that it passes two polarized atomic ensembles suc-
cessively, and the polarization of the probe beam is rotated
by α and β due to the interaction between photon and atoms
in each ensemble, respectively. Then, the polarization of the
transmitted probe beam is

Po = R(β )R(α)Pi = [cos(θ + α + β ), sin(θ + α + β )], (8)

where R is the two-dimensional rotation matrix.
If we put a half-wave plate (fast axis along the x axis)

between the two atomic ensembles, then the polarization of
the transmitted probe beam is modified to

Po = R(β )HR(α)Pi = [cos(θ + α − β ), sin(θ + α − β )],
(9)

where H is the Jones matrix for the half-wave plate. It can be
concluded from the equation above that the probe beam differ-
entially detects the two polarized atomic ensembles separated
by this half-wave plate.

III. PARTIAL MEASUREMENT OF THE TOTAL
FIELD GRADIENT

The sensor used in this work is shown in Fig. 1(a). A key
element of this sensor is a Herriott-cavity-assisted vapor cell
[35,36], which is made by the anodic bonding technique, and
filled with enriched 85Rb atoms and 150 Torr N2 gases. The
cavity consists of two cylindrical mirrors with a curvature of
100 mm, a diameter of 12.7 mm, and a thickness of 2.5 mm.
The distance between the two mirrors is 19.3 mm, and the
relative angle between their symmetrical axes is 52.2◦. This
cell is placed on a three-dimensionally-printed optical plat-
form and heated to a temperature around 85 ◦C by running an
ac current through ceramic heaters. This magnetometer sensor
sits in the middle of five-layer mu-metal shields. Solenoid
coils and two sets of orthogonal cosine-theta coils [39] inside
the innermost shield are used to control the bias field, and
extra coils are added to control the field gradient.

Both the pump and probe beams for the sensor are gen-
erated from distributed-Bragg-reflector diode lasers, and fiber
coupled to the sensor platform. The pump laser, resonant with
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FIG. 1. (a) Gradient magnetometer. λ/2: half-wave plate, λ/4:
quarter-wave plate. (b) Electrical signal processing of a Bell-Bloom
scalar magnetometer. DAQ: data acquisition.

Rb D1 transition, is power modulated by an acoustic-optical
modulator (AOM) with a modulation frequency of ω and a
duty cycle of 20%, and then is split into two separated beams
before being independently sent to the sensor. Both pump
beams are circularly polarized and enter the cell from the
x direction, with the same beam diameter of 5 mm and a
separation between the beam centers of 1.2 cm. There is a hole
with a diameter of 2.5 mm in the center of the front mirror of
the multipass cell, and a linearly polarized probe beam with a
beam power of 1.6 mW and a blue detuning of 50 GHz from
the D1 line enters and exits the cavity from the same hole
with 21 reflections inside the cavity. The polarization of the
transmitted probe beam is analyzed by a polarization beam
splitter (PBS) and a pair of differential photodiode detectors
(PDs). All electrical signals pass through a printed circuit
board (PCB), which is attached to the sensor. A shielded cable
is used to transfer most of the electrical signals to the control
electronics.

When one of the pump beams is blocked, the sensor works
as a scalar magnetometer. The current signals from PDs are
converted to voltage signals by transimpedance amplifiers
(TIA), and are demodulated by a lock-in amplifier (LIA) as
shown in Fig. 1(b). As the pump beam amplitude modulation
frequency ω is scanned across the Larmor precession fre-
quency ωL, the in-phase and out-of-phase outputs from LIA
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FIG. 2. (a) Demodulation outputs as a function of ω, and the
lines are fitting functions using Eq. (10). (b) Normalized ampli-
tude (|a1 + a2|/|a1 + a2|max) and slope (|c1 + c2|/|c1 + c2|max) of the
magnetometer signal as a function of pump beam detuning, where
the resonance point is found out by fitting an absorption profile of a
linearly polarized beam. In both plots, the cell temperature is 80 ◦C,
the pump beam power is 2.25 mW, and the bias field is 5.0μT along
the z direction.

show a Lorentzian and a dispersion line shape, respectively
[see Fig. 2(a)]. Due to the fact that the probe beam converges
and diverges many times inside the Herriott cavity, the line
shapes from the probe signal normally cannot be described by
a function with a single line width [40]. From the experience,
we find that the data can be well fitted by a sum of two
Lorentzian or dispersion functions [36,40],

f1(ω) =
2∑

m=1

am

(
�m
2

)2

(ω − ω0)2 + (
�m
2

)2 + b1,

f2(ω) =
2∑

m=1

cm

(
�m
2

)2
(ω − ω0)

(ω − ω0)2 + (
�m
2

)2 + b2. (10)

Here, we can qualitatively understand that the two fitting
functions correspond to dividing the beam patterns inside
the cavities into two groups according to beam sizes. The
fitting results of a group of in-phase and out-of-phase sig-
nals are consistent with each other. Both the amplitude of
the in-phase resonant response [ f1(ω0) = a1 + a2] and the
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slope of the out-of-phase resonant response [|∂ f2(ω)/∂ω| =
|c1 + c2|] can be used to characterize the scalar magnetometer
signal.

When scanning the pump beam detuning while keeping
other parameters the same, we find that the largest mag-
netometer signal appears at a pump beam detuning around
2 GHz, as shown in Fig. 2(b). Here, the atomic transition
resonance frequency refers to the one pressure shifted com-
pared with the case without buffer gases [41], which is the
same in the rest of the paper. Since the full width of the Rb
D1 transition is pressure broadened to be around 4 GHz [41]
due to the buffer gas, we can neglect the hyperfine splittings
of the Rb 5P1/2 state (∼0.4 GHz). The ground hyperfine
splitting is 3.0 GHz, and the transition resonance point [zero
detuning point in Fig. 2(b)] corresponds to the laser fre-
quency in between the transitions |5S1/2, F = 2〉 → |5P1/2〉
and |5S1/2, F = 3〉 → |5P1/2〉. In cases where the pump beam
is blue detuned, the laser is prone to drive the former transi-
tion; when the pump beam is red detuned, the laser is prone
to drive the latter transition. Considering the redistribution of
atoms due to spin-exchange collisions and quenching effects,
there are more atoms populated in the ground dark state (a
stretched state of |5S1/2, F = 3〉) when the lower hyperfine
states are resonantly driven [42]. However, due to the light
shift effect induced by the off-resonant pump beams, we still
choose to keep the pump beam on resonance with Rb D1
transition in normal operations.

When the other pump beam is unblocked, there are two iso-
lated Bell-Bloom scalar magnetometers inside the same cell,
considering the fact that the diffusion distance of atoms within
the atomic depolarization time is much less than the separation
between the two magnetometers. Since both magnetometers
share the same probe beam, the signals of the magnetometers
add up if the pump beam polarizations are the same, and the
signals are subtracted if the pump polarizations are opposite.
The latter case, which is shown in the left part of Fig. 3(a),
corresponds to a magnetic gradiometer. Since this gradiometer
is built on the scalar magnetometers, it can only detect the total
field gradients.

Moreover, the separation between the pump beams is along
the y direction, and the sensor using the demodulation pro-
cesses in Fig. 1(b) can only measure Gy. This conclusion
is true for all bias field directions, and in this section, we
demonstrate the measurements of Gy by setting the bias field
along the z axis for convenience. As indicated by Eqs. (6)
and (7), we can directly read the gradiometer signal from
the out-of-phase output, which shows a linear dependence
on Gy [see Fig. 3(b)]. While the powers of the two beams
should be identical in the ideal case, they are different within
10% in practice due to slight difference in various experi-
mental conditions for the two beams, such as the difference
in beam sizes and the transmission conditions of the cell
window. In the experiment, we fixed the power of one pump
beam, tuned the power of the other beam, and optimized
the subtraction result from the gradiometer [26]. The gra-
dient field sensitivity on Gy is measured to be 42 fT/(cm
Hz1/2) over the frequency range of 15–40 Hz, as shown in
Fig. 3(c). In this work, the sensitivity results are calculated
from the power spectral density of the data using the Hanning
window.
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FIG. 3. (a) Two configurations for the atomic gradiometer. (b and
c) Gradiometer response to Gy and gradiometer sensitivity, respec-
tively. The data for the normal cavity are taken with a bias field of
5.0μT along the z axis, each pump beam power around 5.5 mW,
and a cell temperature of 85 ◦C. The data for the cavity with a
half-wave plate are taken with the same parameters except that the
cell temperature is 80 ◦C. The dashed lines in (b) are linear fitting
results, and the two horizontal lines in (c) denote the average noise
level in the range of 15–40 Hz.

From the discussions in Sec. II C, we can realize the mag-
netic gradiometer with a different configuration. As shown in
the right part of Fig. 3(a), both pump beams have the same
polarization while a true zero-order half-wave plate is added
in the center of the multipass cell [36], which helps to realize
a differential detection of the two polarized atomic ensem-
bles. This configuration has an advantage over the previous
one in that it can eliminate common-mode noise from the
light shift, if the pump beam frequency is detuned from the
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resonance. In practice, the gradient field sensitivity of Gy in
this configuration is measured to be 90 fT/(cm Hz1/2) over
the frequency range of 15–40 Hz. The fact that the latter
configuration shows worse sensitivity results is probably due
to two facts: (i) the working temperature of the half-wave plate
limits the maximum cell temperature [36], and (ii) the quality
of the half-wave plate degrades in the heated environment, and
in turn the quality of the beam polarization degrades as the
number of passes of the beam through the plate (22 times in
maximum) increases.

IV. PARTIAL MEASUREMENT OF THE FIELD
GRADIENT TENSOR

To measure the field gradient tensor, the sensor needs to
have the ability to distinguish different vector components
that contribute to the total field magnitude. One convenient
way to reach this goal is to add modulation fields at different
directions [43–45] and use the frequencies or phases of the
modulation fields to selectively measure and control the field
gradient tensor elements. In this way, while keeping compo-
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FIG. 4. (a) Signal processing of measuring elements of the field
gradient tensor, where the sensor in the center of the coil system
corresponds to the atomic gradiometer with the same configuration
as the left one in Fig. 3(a). (b) Out-of-phase output of LIA1 as a
function of Bzy, with a bias field of B = (x̂ + ŷ + ẑ)5.8 μT, a cell
temperature of 85 ◦C, and each pump beam power around 5.5 mW.

nents in Fig. 1(b) as the hardware for the first part of the data
processes, we need extra LIAs for successive demodulations
as shown in Fig. 4(a). We choose the pump beam configura-
tion on the left of Fig. 3(a) for this application.

While the pump beam powers are modulated at the Lar-
mor frequencies, according to Eq. (7), adding a field gradient
modifies ωL, and in turn affects the ω − ωL term in the de-
nominator of the equation. However, the value of the in-phase
output is independent of the sign of the additional field gra-
dient. Therefore, as shown in Fig. 4(b), the in-phase output
of the first LIA [LIA1 in Fig. 4(a)] is a symmetric function
of Bzy with a bias field of B = (x̂ + ŷ + ẑ)5.8μT. This result
is similar to the case of a magnetometer based on a single
circularly polarized beam [22], where the transmission power
of the beam is a symmetric function of the transverse field. In
the analogy, we can adopt the closed-loop operation scheme
in Ref. [22] to measure the field gradient tensor elements. For
example, we apply a modulation field with a frequency of ωd

to the Bzy coils. The signals that are simultaneously modulated
at ω and ωd are extracted by successive demodulations, whose
final out is proportional to the bias value of Bzy. By passing
this output to a proportional-integral (PI) controller with a
setting point of zero and feeding back on the Bzy coils, we can
constantly null the bias value of Bzy in the place of the sensor.
The feedback value from the PI output is converted to the
value of Bzy using the current-to-field calibration factor of the
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gradient coil, which is measured by a fluxgate, and recorded
as the gradiometer output.

Using the scheme described above, we apply modulation
fields on Bxy, Byy, and Bzy coils, all of which share similar
amplitudes around 10 nT/cm, but have different modulation
frequencies, ranging from 175 to 297 Hz. To calibrate the
cross-talk between either two of the above three channels
that measure the field gradient tensor elements, we operate
both channels in the closed-loop mode, scan the current in the
gradient field coil for one channel, and record the response of
the other channel. In this way, the cross-talk between channels
is calibrated to be less than 0.3%. As shown in Fig. 5(a), the
closed-loop gradient field sensitivities for these three elements
are 0.67, 0.89, and 0.87 pT/(cm Hz1/2) over the frequency
range of 5–10 Hz.

Another way to realize the same functions is to apply the
modulation fields along the bias field coils, instead of the
gradient field coils, while keeping the other parts unchanged.
Compared with the former method, this configuration avoids
gradient field modulations which reduce the atomic depolar-
ization time. The experimental parameters are the same as
in the aforementioned method, except that amplitudes of the
modulation fields applied on the three-axis bias-field coils
are around 50 nT. The cross-talks between channels in this
case are calibrated to be less than 0.2%, and the closed-loop
gradient field sensitivities for Bxy, Byy, and Bzy are improved to
0.35, 0.49, and 0.34 pT/(cm Hz1/2) over the frequency range
of 5–10 Hz, as shown in Fig. 5(b).

V. CONCLUSION

In summary, we have developed a versatile Herriott-cavity-
assisted atomic gradiometer, using two Bell-Bloom optical
pumping beams and a single probe beam. We demonstrated
its applications in measuring some elements of the total field
gradient and the field gradient tensor.

Currently, the sensor sensitivities on the field gradient
components are mainly limited by the noises from the pump
beams, which can be eliminated using a pulsed pump-probe
scheme [10,26,46]. Because the two pump beams for the
sensor are placed in parallel along the y axis in this paper,
the sensor can only measure the field gradient elements re-
lated to the y axis. For a full measurement of the total field
gradient and the gradient tensor, we can add more pairs of
pump beams in parallel along the x and z directions for dif-
ferential detections of atomic ensembles in these two axes, or
add more gradiometers with different orientations so that the
sensitive directions of such gradiometers can cover all three
axes.
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