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Roles of laser ellipticity in attoclocks
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We study ionization of atoms in strong elliptically polarized laser fields numerically and analytically. We focus
on the effects of laser ellipticity on the offset angle in the photoelectron momentum distribution. This angle is
considered to encode the time information of tunneling ionization in attoclock experiments. The calculated offset
angle increases with the decrease of ellipticity, but the momentum along the major axis of laser polarization
related to this angle changes slowly, in agreement with experiments. With a Coulomb-included strong-field
model, the scaling laws for the ellipticity dependence of this angle and relevant momentum components are
obtained, and the ellipticity dependence of Coulomb-induced ionization time lag encoded in this angle is also
addressed.
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I. INTRODUCTION

The development of ultrafast and ultrastrong laser tech-
nology provides the opportunity for probing the motion of
an electron inside an atom or a molecule at its natural
scale [1–7]. Relevant probing procedures use photoelectron
spectra [8,9] or harmonic spectra [10,11] generated by the
strong interaction between the laser and matter. An atto-
clock is such a procedure which uses the offset angle in the
photoelectron momentum distribution (PMD) generated by
ionization of the gas target in strong elliptical laser fields
to probe tunneling dynamics [12–14]. Many actual and nu-
merical experiments on attoclocks have been performed for
different targets and laser parameters [15–21]. Some inter-
esting parameter-dependent phenomena have been revealed.
For example, it was shown that the offset angle increases with
the decrease of laser intensity [22]. This typical phenomenon
has attracted much theoretical attention in recent years. Many
efforts have been devoted to developing applicable Coulomb-
included strong-field models to quantitatively explain this
phenomenon. Relevant studies provide deep insights into dif-
ferent aspects of strong-laser-induced tunneling, including the
time delay of the tunneling electron under the barrier [22],
nonadiabatic effects [23], and classical scattering [24] at the
tunnel exit.

Besides laser intensity, the laser wavelength and ellipticity
can also play a nontrivial role in attoclocks. Due to the uncer-
tainty in calibrating the laser intensity in experiments, studies
on ellipticity-dependent phenomena in attoclocks provide a
beneficial complement to intensity-dependent ones [23]. Re-
cent experiments have reported ellipticity-resolved studies on
momentum distributions generated by strong-field ionization
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of He [25,26]. These studies focus on the influence of the
Coulomb potential on the longitudinal momentum spread of
the electron wave packet at the tunnel exit [25] and on the mo-
menta related to the offset angle in the PMD [26]. It has been
shown that the studied Coulomb effects are more remarkable
for cases of small ellipticity than cases of high ellipticity. In
comparison with studies on laser intensity, systematic experi-
mental and theoretical studies on the effects of laser ellipticity
and wavelength on attoclocks are relatively fewer at present.

In this paper we study ionization of the He atom in strong
elliptically polarized laser fields theoretically. By changing
the laser ellipticity at different laser wavelengths, we explore
the ellipticity-related effects on the offset angle in the PMD.
This angle is the main observable which is used to deduce
the time-domain information on tunneling in attoclocks. Our
simulations are performed through the numerical solution of
the time-dependent Schrödinger equation (TDSE), and we
describe single-electron ionization dynamics in both two-
dimensional (2D) and three-dimensional (3D) cases.

Our results show that when the laser ellipticity increases,
the offset angle becomes smaller. For a certain ellipticity, this
angle is larger for shorter laser wavelengths. By contrast, for
the momentum components related to the offset angle, the
component along the major axis of laser polarization (denoted
px in this paper) is not sensitive to the ellipticity and the
wavelength, suggesting that these angle-related phenomena
arise from the dependence of the momentum component along
the minor polarization axis (denoted py here) on ellipticity
and wavelength. These ellipticity-dependent phenomena are
well described by a strong-field response-time model which
attributes the complex Coulomb effect to an ionization time
lag (i.e., the response time of the electron to light). With this
model, we are able to quantitatively analyze the roles of ellip-
ticity in the momentum (px, py) and the offset angle, as well as
in the Coulomb-induced ionization time lag which is related
mainly to the momentum component px and is encoded in the
offset angle.
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II. THEORY METHODS

Numerical methods. In our simulations, we choose the He
atom as the target. In the single-active electron approximation
and the length gauge, the Hamiltonian of the model He system
interacting with a strong laser field can be written as (in atomic
units of h̄ = e = me = 1)

H (t ) = H0 + E(t ) · r. (1)

Here, H0 = p2/2 + V (r) is the field-free Hamiltonian, and
V (r) = −Z/

√
r2 + ξ is the Coulomb potential with effective

charge Z and the soft-core parameter ξ . The term E(t ) denotes
the electric field of the laser. In 2D cases, we use Z = 1.45 and
ξ = 0.5. With these parameters, the ionization potential of the
model system reproduced here is Ip = 0.9 a.u. In 3D cases,
those parameters are Z = √

2Ip ≈ 1.34 and ξ = 0.071.
In elliptically polarized cases, the electric field E(t )

used here has the form of E(t ) = f (t )[�exEx(t ) + �eyEy(t )],
with Ex(t ) = E0 sin(ωt ) and Ey(t ) = E1 cos(ωt ), where E0 =
EL/

√
1 + ε2 and E1 = εEL/

√
1 + ε2. Here, EL is the maximal

laser amplitude corresponding to the peak intensity I , ε is the
ellipticity, ω is the laser frequency, and f (t ) is the envelope
function. The term �ex (�ey) is the unit vector along the x (y)
axis. We use trapezoidally shaped laser pulses with a total
duration of 15 cycles which are linearly turned on and off for 3
optical cycles and then kept at a constant intensity for 9 addi-
tional cycles. The TDSE of i�̇(r, t ) = H (t )�(r, t ) is solved
numerically using the spectral method [27] with a time step of
�t = 0.05 a.u. In 2D cases, we use a grid size of Lx × Ly =
409.6 × 409.6 a.u. with space steps of �x = �y = 0.4 a.u.
In 3D cases, the grid size is Lx × Ly × Lz = 358.4 × 358.4 ×
51.2 a.u. with �x = �y = 0.7 a.u. and �z = 0.8 a.u.. The
numerical convergence is checked by using a finer grid.

In order to avoid the reflection of the electron wave packet
from the boundary and obtain the momentum-space wave
function, the coordinate space is split into inner and outer re-
gions with �(r, t ) = �in(r, t ) + �out (r, t ) by multiplication
using a mask function F (r). In 2D cases, the mask func-
tion has the form F (r) = F (x, y) = cos1/2[π (rb − r f )/(Lr −
2r f )] for rb � r f and F (x, y) = 1 for rb < r f . Here, rb =√

x2 + y2/ε2, and r f = 2.1xq, with xq = E0/ω
2; Lr/2 = r f +

50 a.u., with Lr � Lx. The above procedure considers the
fact that the quiver amplitude of the ionized electron differs
for different laser parameters and for the x and y directions.
In 3D cases, the mask function is F (r) = F1(x, y)F2(z). The
expression for F1(x, y) is similar to that for F (x, y) used in the
2D cases. The expression for F2(z) is F2(z) = cos1/2[π (|z| −
rz )/(Lz − 2rz )] for |z| � rz and F2(z) = 1 for |z| < rz. Here,
rz = 19.2 a.u. is the absorbing boundary along the z direction.
In the inner region, the wave function �in(r, t ) is propagated
with the complete Hamiltonian H (t ). In the outer region, the
time evolution of the wave function �out (r, t ) is carried out
in momentum space with the Hamiltonian of the free electron
in the laser field. The mask function is applied at each time
interval of 0.5 a.u., and the obtained fractions of the outer
wave function are added to the momentum-space wave func-
tion �̃out (r, t ) from which we obtain the PMD. Then we find
the local maximum in the upper half plane of the PMD, and
the offset angle θ is obtained with the local maximum.

Analytical methods. To analytically study the ion-
ization of atoms in strong elliptical laser fields, we
use a model called the tunneling-response-classical-motion
(TRCM) model which gives an applicable description of
the intensity-dependent offset angle [28]. The TRCM arises
from strong-field approximation (SFA) [29] but considers the
Coulomb effect [30–32].

SFA description. First, according to the SFA with the
saddle-point method [9,29], strong-field ionization is charac-
terized by tunneling, and each photoelectron drift momentum
p has a corresponding tunneling-out time t0, in agreement with
the following mapping relation:

p ≡ p(t0) = v(t0) − A(t0). (2)

Here, A(t ) is the vector potential of the electric field E(t ).
The tunneling-out time t0 is the real part of the complex
time ts = t0 + itx that satisfies the saddle-point equation [p +
A(ts)]2/2 = −Ip. Without considering the Coulomb potential,
the tunneling-out time t0 also corresponds to the ionization
time at which the electron is free. The term v(t0) = p + A(t0)
denotes the exit velocity of the photoelectron at the exit posi-
tion (i.e., the tunnel exit) r0 ≡ r(t0) = Re{∫ t0

ts
[p + A(t ′)]dt ′}

[32]. This velocity reflects the basic quantum effect of tun-
neling. The momentum-time pair (p, t0) has been termed the
electron trajectory. The corresponding complex amplitude for
the trajectory (p, t0) can be expressed as c(p, t0) ∼ eb. Here,
b is the imaginary part of the quasiclassical action S(p, ts) =∫

ts
{[p + A(t ′)]2/2 + Ip}dt ′, with ts = t0 + itx [29].
TRCM description. Around the tunnel exit r0 = |r0|, which

is about 10 a.u. away from the nucleus for the general laser
and atomic parameters used in experiments, the high-energy
bound eigenstate of H0 has large probability amplitudes. The
TRCM therefore assumes that for an actual atom with long-
range Coulomb potential, at the tunnel exit r(t0), the tunneling
electron with the drift momentum p predicted by SFA is still
located in a quasibound state. This state is characterized by an
electron wave packet consisting of high-energy bound eigen-
states of H0 and approximately agrees with the virial theorem.
A small period of time τ is needed for the tunneling electron
to evolve from the quasibound state into an ionized state. Then
it is free at time ti = t0 + τ with the Coulomb-included drift
momentum p′. This time τ can be understood as the response
time of the electron to light in laser-induced photoelectric
effects and manifests as the Coulomb-induced ionization time
lag in strong-field ionization [33,34]. The mapping between
the drift momentum p′ and the ionization time ti in the TRCM
is expressed as

p′ ≡ p′(ti ) = v(t0) − A(ti ). (3)

Angle formula. The offset angle θ in the PMD is related
to the most probable route (MPR), which corresponds to the
momentum having the maximal amplitude in the PMD. For
the MPR, the tunneling-out time t0 of the photoelectron agrees
with the peak time of the laser field. This angle θ satisfies the
following relation:

tan θ = p′
x/p′

y = Ax(ti )/[Ay(ti) − vy(t0)]. (4)

The above expression considers the fact that for the MPR
vx(t0) = 0. By neglecting vy(t0), the adiabatic version of the
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above expression is also obtained. That is,

tan θ ≈ Ax(ti )/Ay(ti ). (5)

The adiabatic version is applicable for γ 	 1, with γ =
w

√
2Ip/E0 being the Keldysh parameter [35]. It was used in

[36] to deduce the lag τ of the asymmetric system HeH+ and
was termed the Coulomb-calibrated attoclock (CCAC). In the
CCAC, while considering ti = t0 + τ and ωt0 = π/2 for the
MPR, we can further obtain the following relation:

tan θ ≈ tan(ωτ )/ε ≈ θ ≈ ωτ/ε (6)

for a small angle θ . With the above expressions, when the lag
τ = ti − t0 is obtained analytically or numerically, one can
further obtain the offset angle θ . In turn, when the angle θ

is obtained in experiments or TDSE simulations, one can also
deduce the lag τ from this angle.

Lag formula. According to the assumptions in the TRCM
model, at the tunneling-out time t0, the electron is still lo-
cated in a quasibound state ψb which approximately agrees
with the virial theorem. The average potential energy of this
state is 〈V (r)〉 ≈ V (r(t0)), and the average kinetic energy
is 〈v2/2〉 = n f 〈v2

x /2〉 ≈ −V (r(t0))/2. This Coulomb-induced
velocity |vx| ≈ √|V (r(t0))|/n f reflects the basic symmetry
requirement of the Coulomb potential in the electronic state.
A time lag τ is needed for the tunneling electron to acquire
an impulse from the laser field in order to break this sym-
metry. Then for the MPR, the lag τ can be evaluated with
the expression τ ≈ √|V (r(t0))|/n f /E0. Here, n f = 2, 3 is the
dimension of the system studied, and the exit position r(t0)
is determined by the saddle points, as discussed above. For
a hydrogenlike atom in the form of the Coulomb potential
V (r) = −Z/r, by neglecting the field Ey(t ) in the solution
of the saddle-point equation, an approximate expression for
τ can also be obtained. That is,

τ ≈
√

Zω2/
[
n f E3

0 (
√

γ 2 + 1 − 1)
]
. (7)

For real 3D cases such as in experiments, the value of the
effective charge Z can be evaluated with Z = √

2Ip. For the
2D TDSE, the value of Z can be chosen to be that used in
simulations. Similarly, an approximate expression for vy(t0)
can also be obtained. That is,

vy(t0) = [ε
√

2Ip/arcsinh(γ ) − E1/ω] sin ωt0. (8)

By inserting Eqs. (7) and (8) into Eq. (4), we can analytically
evaluate the offset angle θ . In this paper, we call the above
manner for obtaining θ the TRCM. Similarly, by inserting
Eq. (7) into Eq. (6), the adiabatic prediction of the angle θ can
also be obtained, and this method can be called the CCAC.

PMDs. In the TRCM treatment, by assuming that for
an arbitrary SFA electron trajectory (p, t0), the Coulomb
potential does not influence the corresponding complex
amplitude c(p, t0), we can obtain the TRCM amplitude
c(p′, ti ) for the Coulomb-included electron trajectory (p′, ti)
directly from the SFA one with c(p′, ti ) ≡ c(p, t0) at τ ≈√|V (r(t0))|/n f /|E(t0)|. This TRCM therefore allows analyt-
ical evaluation of the Coulomb-included PMD without the
need to solve Newton’s equation including both the electric
force and the Coulomb force. The TRCM prediction of the
PMD for He is presented in the right column of Fig. 1.

FIG. 1. PMDs of He obtained with the 2D TDSE (left column)
and TRCM (right) at different laser ellipticities ε. Laser parameters
are I = 7 × 1014 W/cm2 and λ = 1000 nm. The laser ellipticity is as
shown. The offset angle θ related to the momentum with the maximal
amplitude in PMD is also indicated in each panel.

III. RESULTS AND DISCUSSION

Two-dimensional cases. We first present our comparisons
of the TDSE and TRCM in 2D cases which allow us to explore
a wide parameter region. In Fig. 1, we present PMDs of He
obtained with the TDSE and TRCM in strong elliptical laser
fields with different ε. The offset angle in the PMD of the
TDSE decreases with the increase of ellipticity, as seen in the
left column of Fig. 1. This decreasing trend is well reproduced
by the TRCM, as seen in the right column of Fig. 1. For a
relatively large ellipticity of ε � 0.6, the TRCM offset angle
in the PMD is also in quantitative agreement with the corre-
sponding TDSE one. For the case of ε = 0.4 in the first row of
Fig. 1, the TRCM result is about 4◦ larger than the TDSE one,
suggesting that the TRCM is more applicable for the case of
relatively large ellipticity. We will return to this point later.

Roles of ε. In Fig. 2, we further show comparisons of the
offset angle and the momentum (px, py), which is associated
with this angle and has the maximal amplitude in the PMD,
for diverse laser ellipticities and wavelengths. Without loss of
generality, in this paper, we consider the cases of the momen-
tum (px, py) to be located in the first quadrant of the PMD
with px > 0, py > 0.

First, for the momentum py along the minor axis of polar-
ization, one can see from Fig. 2(a) that the TDSE and TRCM
results agree well with each other. The TDSE and TRCM
predictions of px along the major axis of polarization deviate
remarkably from each other for the case of small ellipticity
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FIG. 2. Comparisons of the drift momentum (px, py) related to
the MPR and the offset angle θ for the 2D TDSE and TRCM from
Eq. (4) at different laser ellipticities ε and wavelengths λ. The laser
intensity is I = 7 × 1014 W/cm2.

ε � 0.4 and become close to and coincident with each other
for intermediate and larger ellipticities, as seen in Fig. 2(b).
Accordingly, in Fig. 2(c), the angles predicted by the TDSE
and TRCM also show a remarkable difference for small el-
lipticity and agree with each other at larger ellipticity with
ε � 0.5. This remarkable difference between the TRCM and
TDSE could arise for the following reason. For small elliptic-
ity, an ionized electron wave packet related to a rescattering
electron trajectory can interfere with a wave packet related to a
direct-ionization electron trajectory [9]. This interference will
influence the amplitude of the PMD and therefore influence
the identification of the offset angle. These influences are not
considered in the TRCM.

It is also worth noting that in Fig. 2, for the region of 0.6 �
ε � 0.95, in which the TRCM works well, the momentum
px decreases slowly with the increase of ellipticity. By con-
trast, the momentum py increases remarkably with increasing
ellipticity. One therefore can expect that in this region,
the dependence of the momentum py on ellipticity plays a
more important role in the ellipticity dependence of the offset
angle θ ≈ px/py.

Scaling laws. With the TRCM, we can also obtain different
scaling laws for the dependence of momentum components
px and py on the ellipticity ε. Using Eq. (5) for the adiabatic
approximation that is applicable for a small Keldysh param-
eter, we have py ≈ Ay(t0) ≈ εE0/ω and px ≈ Ax(ti ) ≈ E0τ ≈√|V (r(t0))|/n f . By considering V (r) = −Z/r, r(t0) ≈ Ip/E0,
and E0 = EL/

√
1 + ε2, we also have

px ≈
√

ZEL/(n f Ip

√
1 + ε2) = A(1 + ε2)−1/4 (9)

FIG. 3. Comparisons of the time lag τ for the 2D TDSE, CCAC,
and TRCM from Eq. (7) at different laser ellipticities ε and wave-
lengths λ. The TDSE results are obtained by finding the peak time
of the instantaneous ionization rate. The CCAC results are obtained
by deducing the lag τ from the TDSE offset angle θ with τ ≈ εθ/ω

from Eq. (6). The laser intensity is I = 7 × 1014 W/cm2.

and

py ≈ εEL/(ω
√

1 + ε2) = Bε(1 + ε2)−1/2. (10)

Here, A ≡ A(EL, Ip) = √
ZEL/(n f Ip), with Z = √

2Ip, which
is independent of the frequency ω, and B ≡ B(EL, ω) =
EL/ω, which is independent of the ionization potential Ip.
Then we obtain the scaling laws for the momentum (px, py)
with

px ∼ (1 + ε2)−1/4, py ∼ ε(1 + ε2)−1/2. (11)

For the parameter region with 0.3 � ε � 1 explored in this pa-
per, we have 0.98A � px � 0.84A and 0.29B � py � 0.71B,
which indicate the slow decrease of px and the remarkable
increase of py with the increase of ε observed in Figs. 2(b)
and 2(a), respectively. Equations (9) and (10) also shed light
on the different responses of px and py to the laser wavelength
λ seen in Fig. 2.

With Eqs. (9) and (10), we can also obtain the scaling law
for the ellipticity-dependent angle θ with θ ≈ px/py and py =
0. That is,

θ ≈ C(1 + ε2)1/4ε−1 ∼ (1 + ε2)1/4ε−1. (12)

Here, C ≡ C(EL, Ip, ω) = ω
√

Z/(n f IpEL ). Equation (12) pro-
vides an explanation for the ellipticity-wavelength-related
phenomena in Fig. 2(c).

Considering px ≈ E0τ and Eq. (9), we can also obtain the
relevant scaling law for the lag τ . That is,

τ ≈ D(1 + ε2)1/4 ∼ (1 + ε2)1/4. (13)

Here, D ≡ D(EL, Ip) = √
Z/(n f IpEL ). Equation (13) shows

that the lag slowly increases with increasing ellipticity and
can be used to analyze ellipticity-dependent phenomena for
the lag τ , as shown in Fig. 3.

Let us discuss the derivation of the scaling laws. First,
according to the TRCM, we can obtain the general expression
for momenta px and py, as shown in Eq. (3). Then we can
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deduce the scaling laws of momenta px and py and angle θ

for the most probable electron trajectory (i.e., the MPR). The
MPR is related to the peak time t0 of the fundamental field
Ex(t ) and implies the condition vx(t0) = 0. Recent studies
have reported that for large Keldysh parameters (larger than
1), the PMD shows remarkable photon rings [37–39] and the
offset angles in different rings differ from each other [38].
For our cases of high laser intensities and long wavelengths
corresponding to small Keldysh parameters (smaller than 1),
the rings are not resolvable, and we focus our discussion on
only the MPR.

Second, the adiabatic condition of vy(t0) ≈ 0 is also con-
sidered for the case of py which holds when the Keldysh
parameter is far less than 1. Then we arrive at Eq. (5),
from which we can obtain the additional expressions px ≈
Ax(t0 + τ ) ≈ E0τ ≈ √|V (r(t0))|/n f and py ≈ Ay(t0 + τ ) ≈
εE0/ω. These expressions consider the TRCM lag formula
τ ≈ √|V (r(t0))|/n f /E0 above Eq. (7) and produce the scaling
laws in Eqs. (11) and (12). Because for the MPR and small
values of the Keldysh parameter the exit position agrees with
the relation r(t0) ≈ Ip/E0 independent of the laser frequency,
the above expressions for px and py show that when the value
of py depends strongly on the laser frequency (wavelength),
the value of px is not sensitive to that, in agreement with the
observation in Fig. 2.

Third, the lag formula τ ≈ √|V (r(t0))|/n f /E0 in the
TRCM is determined by the basic laser and atomic parameters
and is independent of the observable. Substituting the relation
r(t0) ≈ Ip/E0 into the above expression for τ , we also arrive
at the scaling law in Eq. (13). As this lag cannot be directly
measured in experiments, it can be deduced from an observ-
able, such as the angle θ according to the mapping in Eq. (4)
or the approximate one in Eq. (6). It is worth noting that for
small ellipticity ε, the interference of the rescattering electron
and the direct electron will remarkably affect the PMD (as
discussed in Fig. 2) and therefore affect the resolution of
the offset angle as well as the time deduced from the angle.
However, the rescattering plays a small role in this lag itself.
As shown in Fig. 3, the lag calculated with Eq. (7) is similar
to that evaluated with TDSE simulations.

Time lag. In Fig. 3, we further compare the ionization
time lags obtained with different methods. Unlike the offset
angle, which is related to the PMD and therefore can be
directly measured in experiments, the lag is related to the
instantaneous ionization property of the laser-driven system,
which is not easy to probe in experiments. However, in TDSE
simulations, this lag can be evaluated by approximately calcu-
lating the instantaneous ionization rate. Specifically, we first
find the time ti which corresponds to the maximal value of
the instantaneous ionization rate P(t ) = dI (t )/dt [33]. Here,
I (t ) = 1 − ∑

n |〈n|�(r, t )〉|2 is the instantaneous ionization
yield, |n〉 is the bound eigenstate of the field-free Hamiltonian
H0, and |�(r, t )〉 is the TDSE wave function of H (t ). We
consider only the first several bound eigenstates with n =
0, 1, 2, . . . , 5. The upper limit of n, nu, is determined by the
eigenenergy Enu+1 of the (nu + 1)th eigenstate, approximately
agreeing with the semiclassical analysis. That is, Enu+1 ≈
V (r(t0)). Then the lag τ is obtained with τ = ti − t0, where t0
is the neighboring peak time of the laser field, agreeing with
|Ex(t0)| = E0. We mention that the value of ti evaluated here

depends on the number n′ = nu + 1 of bound states excluded
from |�(r, t )〉. Our simulations show that when the number
n′ is larger, the time lag obtained is also larger. However,
despite this dependence, the appearance of a nonzero τ at
different numbers n′ suggests that at a certain time t0, the
electronic wave packet which leaves the ground state does
not appear at the continuum state instantly, and therefore, the
maximal ionization rate also does not appear at the peak time
of the laser field. In particular, as shown in the following,
with a definition of ionization similar to the TRCM, the TDSE
prediction of τ is comparable to the TRCM one.

In addition to comparing the TDSE results to the TRCM
predictions in Eq. (7), we also compare them to the CCAC
predictions in Eq. (6) with τ ≈ εθ/ω, where the offset angle
θ is obtained from the PMD of the TDSE.

First, we can observe from Fig. 3 that the TDSE results for
the lag τ increase with the increase of ellipticity. In addition,
the TDSE results for different wavelengths at a certain value
of ellipticity are comparable when ε � 0.6, and they begin to
differ somewhat from each other for ε > 0.6, with the case of
shorter wavelengths showing larger τ . The trends for both the
parameter regions ε � 0.6 and ε > 0.6 are well reproduced
by the TRCM. In particular, the quantity of the TDSE lag
is comparable to the TRCM one, with a difference smaller
than 10 as. These ellipticity-dependent phenomena for the
angle θ can also be understood with Eq. (13). It should be
noted that Eq. (13) is independent of the laser wavelength
λ, but the TDSE and TRCM results in Fig. 3 show a weak
dependence on λ for larger ε. The reason is that Eq. (13) uses
the approximation r(t0) ≈ Ip/E0, which neglects the effect of
the laser wavelength. By comparison, Eq. (7), which is used
to obtain the TRCM results shown here, includes the influence
of λ ∼ 1/ω.

Second, the CCAC results differ from the TDSE and
TRCM ones for ε � 0.6 and get close to them for ε > 0.6.
Since the CCAC lag τ is obtained with the TDSE offset
angle, the angle differences between the TDSE and TRCM
in Fig. 2(c) for smaller ellipticity also shed light on the cor-
responding lag differences between the CCAC and TRCM in
Fig. 3.

Third, unlike the remarkable difference between the TDSE
and TRCM for the momentum component px at smaller ε seen
in Fig. 2(b), the predictions of TDSE and TRCM for the lag
are comparable at different ellipticities in Fig. 3. This suggests
that the TRCM is capable of providing a good description of
time-resolved ionization dynamics at different laser elliptic-
ities. The offset angle and the momentum px related to this
angle are possibly influenced by other effects such as quantum
interference between different electron trajectories at small
ellipticity [9]. As a result, the comparison between the TDSE
and TRCM for this angle or the momentum px could also be
influenced.

Three-dimensional cases. In Fig. 4, we further compare
the predictions of the TRCM to the results of the 3D TDSE
and experiments. It is worth noting that with Eq. (7), this lag
is smaller in the 3D cases than in the 2D ones with similar
laser and atomic parameters, and so is the offset angle. From
Fig. 4(a), we can see that the results for the TRCM, 3D TDSE,
and experiments for py agree well with each other. They show
that the value of py increases remarkably with the increase
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FIG. 4. Comparisons of the drift momentum (px, py) related to
the MPR and the offset angle θ for experiments [26], the 3D TDSE,
and the TRCM from Eq. (4) at different laser ellipticities ε. In (c),
the experimental offset angles are obtained with θ ≈ arctan(px/py ).
Laser parameters are I = 8 × 1014 W/cm2 and λ = 788 nm.

of ellipticity. For the case of px in Fig. 4(b), the results for
the TRCM and 3D TDSE are also in good agreement with
each other for ε � 0.45 but differ somewhat from each other
for ε < 0.45. They also differ from the experimental results
for different ellipticities with a difference of �px ≈ 0.07 a.u.
Despite this difference, all of the results in Fig. 4(b) show that
the value of px almost does not change with the increase in el-
lipticity, similar to the 2D cases. The comparisons in Fig. 4(c)
for the offset angle are somewhat similar to the cases for px

in Fig. 4(b), but the angle curves show a clear decreasing
trend with the increase in ellipticity in Fig. 4(c). Although the
TRCM and 3D TDSE results are also consistent with each
other for ε � 0.45, they are somewhat higher than the exper-
imental ones, with a difference of about 1◦ to 2◦. The above
ellipticity-dependent phenomena can also be well understood
with the scaling laws in Eqs. (11) and (12). The difference
between the TDSE and model results and experiments may
partly arise from the uncertainty in the laser intensity used in
experiments. Experiments for more targets are highly desired
to further validate these ellipticity-dependent phenomena.

IV. FURTHER DISCUSSION OF TIME LAG

In the general attoclock procedure [40], the offset angle θ is
considered to include two parts: θdelay, which is related to the
tunneling time delay, and θref , which arises from the Coulomb-
induced deflection when the tunneling electron moves far
away from the nucleus. In our theory, the whole offset angle
θ is related to the Coulomb-induced ionization time lag τ ,
as shown by Eq. (6), and therefore, the tunneling time delay
could also be the one included in this lag.

The reasons for calling this lag the Coulomb-induced ion-
ization time lag are as follows.

(1) In our previous TDSE and model studies [33,41], the
maximal instantaneous ionization velocity does not appear at
the peak time t0 of the laser field. Instead, it appears at a
time ti = t0 + τ with a lag τ to t0. By contrast, for a short-
range potential, this lag disappears. So we call this lag the
Coulomb-induced ionization time lag. Using this lag concept,
we find that many complex strong-field phenomena can be un-
derstood easily [33,34,36,42,43], so we consider that this lag
reflects an intuitive and essential physical time, namely, the
response time of an electron inside an atom to light in strong-
field ionization, or, quantum mechanically, the response time
of the electronic wave function to a strong-field ionization
event.

(2) Based on TDSE results, we propose a theory to quan-
titatively describe this lag which is called the TRCM [28].
In the TRCM, this lag is defined as the measurable time
of the strong three-body interaction between the electron,
Coulomb, and laser, which can be determined at the boundary
between quantum and classical. Specifically, in the TRCM,
it is considered that when the electron appears at the tunnel
exit r(t0) at the peak time t0 of the laser field, it is not free
instantly. Instead, the electron is located in a quasibound state
which approximately agrees with the virial theorem. This
quasibound state can be further treated as a quasiparticle with
a velocity component vx induced by the Coulomb potential.
This velocity vx satisfies the relation |vx| ≈ √|V (r(t0))|/n f

and disappears for a short-range potential. Its direction points
to the parent nucleus and is opposite the direction of the
exit-position vector at t0. An impulse E0τ = −vx with the in-
teraction time τ = |vx|/E0 is needed for the tunneling electron
to offset the velocity vx induced by the Coulomb potential.
When the time is greater than ti = t0 + τ , the influence of
Coulomb potential can be neglected, and the electron is free.

(3) The above discussion shows that the Coulomb effect
related to the presumed velocity vx is responsible for the lag τ

of the ionization time ti = t0 + τ relative to the tunneling-out
time t0 in the TRCM. In addition, the picture of this lag in
the TRCM agrees with that in the TDSE simulations, and
the quantity of this lag in the TRCM also agrees with the
TDSE one (see Fig. 3), so we also call this lag the Coulomb-
induced one as in the TDSE simulations. The derivation of
the formula for this lag in the TRCM shows that this lag
can also be understood as the intuitive response time of the
electron bounded by the Coulomb potential in laser-induced
tunneling ionization. So we call the lag τ the time of the strong
three-body interaction, the Coulomb-induced ionization time
lag, and the response time of laser-induced photoemission.
These terms for this lag emphasize different aspects of
this lag.

Using the lag calculated by basic laser and atomic pa-
rameters, the experimental observable (e.g., the offset angle)
can also be deduced with a simple mapping in the TRCM,
as shown by Eq. (4). The TRCM is able to quantita-
tively reproduce a series of recent attoclock experimental
curves [17,20,22,23] by providing a consistent physical pic-
ture for phenomena observed in the experiments. So we
consider that this lag, which reflects the essential response
time, is general for strong-field ionization of atoms and
molecules.
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V. CONCLUSION

In summary, we have studied the ionization of He in
strong elliptical laser fields with different laser ellipticities
and wavelengths numerically and analytically. We have com-
pared the TDSE results to predictions of a Coulomb-included
strong-field model called the TRCM and to experiments. The
calculated offset angle in the photoelectron momentum dis-
tribution decreases with the increase of laser ellipticity, in
agreement with the experimental measurement and the model
prediction. This phenomenon can be understood by analyzing
the ellipticity dependence of the momentum components re-
lated to this angle, px and py. When the component px along
the major axis of the laser polarization is not sensitive to
ellipticity, the component py along the minor one increases
remarkably with increasing ellipticity. With the TRCM model,
the scaling laws of the momentum (px, py) and the an-
gle θ to the ellipticity ε were also given and explain the

ellipticity-dependent phenomena for these two momentum
components and this angle. Because the momentum com-
ponent px is closely associated with the Coulomb-induced
ionization time lag, we also further discussed the dependence
of this lag on ellipticity. We evaluated this lag with different
methods, including the TDSE method, the TRCM method,
and a mix of the TDSE and TRCM called the CCAC. These
different methods give similar ellipticity-dependent results for
the lag τ at larger ellipticity, indicating that one can deduce
this lag from the offset angle measured in attoclock experi-
ments.
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