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Correlation analysis of frustrated tunneling ionization
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We visualize frustrated tunneling ionization (FTI) using the correlation function analysis outlined in our
preceding works [I. Ivanov and K. T. Kim, J. Phys. B 55, 055001 (2022); Sci. Rep. 12, 19533 (2022)]. We
apply this technique to the hydrogen atom subjected to a strong laser field. Our analysis supports the basic
premises of the theory of FTI and demonstrates its sensitive dependence on the laser pulse duration and carrier
envelope phase.
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I. INTRODUCTION

Interaction of an atom with a strong laser field can lead
to population of highly excited Rydberg states. This process
was realized to be behind stabilization of atomic ionization
in an intense laser field. Because of the lack of adequate
lasers to study ground states of single-active-electron atoms,
the early experiments have been performed on low-lying Ryd-
berg states (see Gavrila [1] for a comprehensive review). The
situation has changed with the advent of superintense lasers.
Nubbemeyer et al. [2] demonstrated experimentally an effect
of strong-field tunneling without ionization on the ground
state of helium. They termed this effect a frustrated tunnel-
ing ionization (FTI). At a laser intensity of 1 × 1015 W/cm2,
Nubbemeyer et al. [2] observed a population of Rydberg
states with n = 8 and higher. This discovery has prompted a
stream of subsequent experimental and theoretical works (see,
e.g., [3–13]). Besides the fundamental interest, the creation of
highly excited metastable states in FTI has a potential for var-
ious applications [14–17]. In addition, these states can decay
to the ground state and produce coherent extreme ultravio-
let (EUV) radiation. Such radiation termed below-threshold
harmonic generation [9,18] or “FTI emission” [19,20] will be
valuable for EUV imaging [21].

The mechanism of FTI is best understood by comparing it
with another strong-field ionization phenomenon, high-order
harmonic generation (HHG) [see Fig. 1(a) in Yun et al. [19]
for pictorial illustration]. The photoelectrons that tunnel out
after the peak of the laser field recombine, after returning to
the parent ion, to the ground state leading to HHG. The FTI
electrons tunnel out during the peak of the laser field, oscillate
in the field near the parent ion, and then recombine to highly
excited Rydberg states.

Such a mechanism of FTI has been confirmed by various
modelings employing the strong-field approximation (SFA)
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[20] or classical trajectory Monte Carlo (CTMC) simulations
[7,12,22]. In the present paper, we offer yet another means to
visualize the FTI process. We present a correlation analysis of
FTI based on our preceding works [23,24]. Such an approach
allows us to solve the following difficult problem one encoun-
ters trying to extract information about temporal development
of ionization or FTI processes for times inside the laser pulse.
Quantum mechanics provides us with a total wave function
describing evolution of the system in the laser field. It is
not quite clear how to unambiguously single out the part of
the wave function describing ionized or FTI electrons from
this total wave function for the moments of time inside the
laser pulse, when the wave packets describing FTI or ionized
electrons and the initial ground state are not yet spatially
separated. Such a resolution of the total wave function in
several components lies at the heart of the well-known SFA
and Perelomov-Popov-Terent’ev (PPT) approaches [25]. One
should note, however, that the resolution of the total wave
function used in these theories is achieved at the price of
omitting certain terms from the total wave function and is not
quite rigorous, therefore. This omission, in particular, leads
to the well-known lack of the gauge invariance of the SFA or
PPT approaches [25].

A more detailed description of this issue can be found
in our preceding paper [24]. In that work we described a
procedure based on the analysis of correlations which allows
us to single out the wave packet describing ionized electrons
and applied this procedure to study strong-field ionization
process. In the present paper we apply this approach to an-
alyze the FTI process. This analysis, as we shall see, paints,
in the most graphical way, the picture of FTI as it develops
in real time. We apply this technique to the hydrogen atom
subjected to a strong laser field. This way we visualize the
birthplace and the trajectory of the FTI electrons. Our analysis
supports the basic premises of current understanding of the
FTI and demonstrates its sensitive dependence on the laser
pulse duration and carrier envelope phase (CEP).

The rest of the paper is organized as follows. In Sec. II
we introduce the correlation function and explore its physical
meaning and properties. In Sec. III we present and interpret
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FIG. 1. Pulse shapes and magnitudes |C̃(z0, t ;R, T1)| of the normalized correlation function (8) for single cycle pulses with different CEPs.
Time is measured in units of an optical cycle T = 2π/ω. White dashed lines show z coordinates of the crests of the FTI wave packets at the
end of the pulse.

our main numerical results. We conclude in Sec. IV by sum-
marizing our findings and outlining the further prospects of
the present paper.

II. THEORY

A. The correlation function

To calculate the correlation function we use a procedure
similar to the one we used previously in [23,24] to study

correlations between an electron’s coordinate and velocity in
the strong-field ionization process. We recapitulate briefly the
procedure, indicating the modifications we have to make to be
able to study the FTI process.

We consider the hydrogen atom interacting with a linearly
polarized laser pulse defined in terms of the vector potential:
E(t ) = − ∂A(t )

∂t , where

A(t ) = −êz
E0

ω
sin2

(
πt

T1

)
sin (ωt + φ), (1)
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where T1 = NcT is the total pulse duration and T = 2π/ω is
the optical cycle (OC) corresponding to the base frequency ω.
For the majority of the calculations reported below we will use
a single cycle pulse with Nc = 1. We will also present some
results for the multicycle pulses with Nc = 2–4. In Eq. (1) E0

is the peak field strength of the pulse, and φ is its CEP.
The evolution of the system is described by the time-

dependent Schrödinger equation (TDSE):

i
∂�(r, t )

∂t
= [Ĥatom + Ĥint (t )]�(r, t ). (2)

In Eq. (2) Hatom = p̂2

2 − 1
r is the field-free atomic Hamiltonian

and Ĥint (t ) is the interaction Hamiltonian describing atom-
field interaction which we take in the length gauge form:

Ĥint (r, t ) = r · E(t ), (3)

where E(t ) is the electric field of the pulse.
The goal of the present paper is to study the history of

the FTI electrons, i.e., the history of the electrons ending
in a Rydberg state at the end of the laser pulse. An appro-
priate tool for this paper will be, as we shall see below,
the correlation function describing correlations between two
quantum-mechanical operators: a projector P̂R on the man-
ifold of the atomic Rydberg states R, and a projector P̂z0 ,
projecting the coordinate wave function on a region of �z0

of the electron’s coordinate space centered around the point
r = (0, 0, z0). We will characterize the manifold R of the
hydrogen Rydberg states as a set of all the atomic levels with
principal quantum number n � 2. The projection operator P̂z0

has been defined in the calculations as P̂z0 = |φz0 (r)〉〈φz0 (r)|.
For |φz0 (r)〉 we use the Gaussian form: φz0 (r) = Ne−a(r−ezz0 )2

,
where N is the normalization factor and we use the value
a = 4 ln 2 for the parameter a. This parameter defines the
“resolution” with which we can look at the electron’s coor-
dinates, and it is approximately 1 a.u. of length for the choice
of the parameter a we made.

We will first provide a definition of the correlation func-
tion, and later explain its relevance to the problem we are
considering. We are interested in a two-time correlation
function, describing the correlation between the two events:
detection of the electron in a Rydberg state at the moment
t = T1 corresponding to the end of the pulse, and finding the
electron in a region �z0 at time t inside the laser pulse. Such
two-time correlation functions are most naturally introduced
in the Heisenberg picture of quantum mechanics [26–29]. We
use, therefore, Heisenberg representation for both projection
operators P̂R and P̂z0 :

P̂H
R(t ) = Û (0, t )P̂RÛ (t, 0),

P̂H
z0

(t ) = Û (0, t )P̂z0Û (t, 0), (4)

where Û (t, 0) is the evolution operator, describing the
quantum evolution of the system. The two-time correlation
function describing the correlations between the two events—
finding the electron in a Rydberg state belonging to the
manifold R at the moment t = T1 corresponding to the end
of the pulse, and finding the electron in a region �z0 at time t
inside the laser pulse—can now be defined as

C(z0, t ;R, T1) = 〈φ0|P̂H
z0

(t )P̂H
R(T1)|φ0〉, (5)

where φ0 is the initial state of the system which we assume to
be the ground state of the hydrogen atom. Once this formula
is obtained, we can go back to the Schrödinger representation
which is, of course, better suited for the practical calculations.
Using the transformation equations (4) we obtain

C(z0, t ;R, T1) = 〈�(t )|P̂z0Û (t, T1)P̂R|�(T1)〉, (6)

where Pz0 and P̂R are the time-independent projection op-
erators of the Schrödinger picture, and |�(t )〉 = Û (t, 0)|φ0〉
is the state vector describing the system in the Schrödinger
picture at the moment of time t . To actually compute the
correlation function in Eq. (6) we proceed as follows. We
propagate the TDSE (2) on the interval (0, T1) of the laser
pulse duration starting with an initial atomic state |�(0)〉 =
|φ0〉, thus obtaining the state vector |�(T1)〉 describing the
system at the end of the pulse. Acting with the Schrödinger
operator P̂R on this state vector we obtain a vector |�1(T1)〉 =
P̂R|�(T1)〉. We then propagate |�1(T1)〉 back in time on the
interval (t, T1) obtaining the vector |�1(t )〉, from which we
obtain |�2(t )〉 = P̂z0 |�1(t )〉. The correlation function (6) can
then be found by projecting |�2(t )〉 on the state vector |�(t )〉.

The TDSE was solved numerically using the procedure
we tested and described in detail in [30–32]. The proce-
dure relies on representing the coordinate wave function as
a series in spherical harmonics with quantization axis along
the pulse polarization direction. Spherical harmonics with
orders up to Lmax = 50 were used. The radial variable is
treated by discretizing the TDSE on a grid with the step size
δr = 0.05 a.u. in a box of the size Rmax = 200 a.u. Necessary
checks were performed to ensure that for these values of the
parameters Lmax and Rmax convergence of the calculations has
been achieved. The solution of the three-dimensional TDSE
was propagated both forward and backward in time using the
matrix iteration method [33].

B. Physical meaning of the correlation function

It is worthwhile to discuss expression (6) for the correlation
function in more detail to understand what information we
can hope to extract from it. Let us first consider a (somewhat
unrealistic) situation when the Heisenberg projection opera-
tors P̂H

z0
(t ) and P̂H

R(T1) in Eq. (5) commute. Their product in
Eq. (5) is then again a Hermitian projection operator. This
Hermitian projection operator is positively defined, and its
positive and real expectation value in Eq. (5) can be regarded
as an expression for the joint probability of the occurrence
of two events: detection of the electron in a Rydberg state
belonging to the manifold R at the moment t = T1 corre-
sponding to the end of the pulse, and finding the electron in a
region �z0 at time t inside the laser pulse. This interpretation
is a natural generalization, for the case of different times, of
the well-known fact that commuting Hermitian operators have
common system of eigenfunctions, and it provides a basis for
the introduction of the notion of the joint probability in quan-
tum mechanics [34–36]. If the operators in the definition of the
correlation function (5) only approximately commute, that is,
their commutator is in some sense small, the correlation func-
tion can still be interpreted as a joint probability distribution
since in this case the imaginary part of it is small and it is
almost everywhere positive. We used this interpretation of the
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correlation function in [24] to study the formation of the
lateral velocity distribution in tunneling ionization. For the
pair of the operators we consider presently, P̂H

z0
(t ) and P̂H

R(T1),
their commutator does not vanish even approximately, the
correlation function (5) is inherently complex valued, and
we cannot assign to it the meaning of the joint probability.
However, by its very definition, the correlation function still
provides information about correlation of the two events:
detecting the electron in a Rydberg state belonging to the man-
ifold R at the moment t = T1 corresponding to the end of the
pulse, and finding the electron in a region �z0 at time t inside
the laser pulse. To see what information we can extract from
this correlation function let us take a closer look at Eq. (6) for
the correlation function. Let us assume that the wave packet
	 which at the end of the pulse ends in the manifold R of
the Rydberg states is formed at the moment t0 inside the laser
pulse. The operator P̂R acting on the final-state wave function
�(T1) selects this wave packet 	(T1) from the total wave
function of the system. Next, the evolution operator Û (t, T1)
propagates it back in time till the time moment t giving us the
wave packet 	(t ). The action of the projection operator P̂z0

on this wave packet gives us a vector 〈φz0 |	(t )〉|φz0〉 with the
Gaussian |φz0〉 we specified above. The correlation function
(6) can, therefore, be written as

C(z0, t ;R, T1) = 〈�(t )|φz0〉〈φz0 |	(t )〉. (7)

For the Gaussian choice of |φz0〉 the two factors on the
right-hand side of Eq. (7) are the Weierstrass transforms [37]
of the vector, �(t ) is the total wave function of the system
at time t , and 	(t ) is the wave packet which ends up in
the manifold R of the Rydberg levels after the end of the
pulse. The Weierstrass transform is often used in the image
processing, and is, as can be seen from the definition, just
a Gaussian “smoothing” of the original function. The factor
〈�(t )|φz0〉 on the right-hand side of Eq. (7) is the Weierstrass
transform of �(t ). For not too high electric-field strengths
we consider presently, when depletion of the ground state is
small, this factor is concentrated in the region of small z0.
Knowing the correlation function for different z0 and t allows
us to obtain information about the more interesting second
factor 〈φz0 |	(t )〉 which is just the Weierstrass transform of
the FTI wave packet considered as a function of time t and
coordinate z. This factor gives us information about the spa-
tial development of the FTI wave packet in time. We divide,
therefore, the correlation function (7) by the factor 〈�(t )|φz0〉
and will concentrate below on the study of the normalized
correlation function:

C̃(z0, t ;R, T1) = C(z0, t ;R, T1)

〈�(t )|φz0〉
. (8)

Results of this study are presented in the next section.

III. RESULTS AND DISCUSSION

A. Single cycle pulse: CEP dependence

As we discussed above, the normalized correlation func-
tion is closely related to the time-dependent Weierstrass
transform of the FTI wave packet. The locations of the local
absolute maxima of this function for fixed moments of time
can be naturally interpreted as the instantaneous z coordinates
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FIG. 2. Population of Rydberg levels for a single cycle pulse with
peak field strength E0 = 0.0534 a.u., base frequency ω = 0.057 a.u.,
and different CEPs.

of the crest of the FTI wave packet. Thus, a study of the curves
in the (t, z) plane which the locations of the maxima follow in
time can be used to visualize the FTI wave-packet trajectories.

In Fig. 1 we present results of the calculation of the normal-
ized correlation function (8) for a single cycle pulse with the
peak field strength E0 = 0.0534 a.u. and ω = 0.057 a.u. with
different values of the CEPs. The prominent maxima lying on
the z axis near the maxima of the electric field of the pulses can
be interpreted as instants and locations of the birth of the FTI
wave packets. As one see from the figure, the FTI wave pack-
ets are born near the field maxima. This observation, which
we made by using a purely quantum-mechanical reasoning,
based on the study of the correlation function, agrees well
with the CTMC analysis [7,12]. The plots shown in Fig. 1
allow us to follow the evolution of the FTI wave packets after
the birth event. We can discern in Fig. 1 several sleeves in
the patterns of |C̃(z0, t ;R, T1)|, located at various distances
from the origin. The corresponding z values at the moment
t = T1 allow us to estimate which particular Rydberg states
are occupied at the end of the pulse. We can use for this
purpose the well-known formula for the average distance from
the origin in an n, l state of the hydrogen atom [38]:

r(n, l ) = [3n2 − l (l + 1)]/2. (9)

The results of the Rydberg state populations at the end of
the pulse are shown in Fig. 2 for different CEPs that we are
considering. These results are obtained by first projecting the
wave function at the end of the pulse on a corresponding
hydrogen state with the pair of the quantum numbers (n, l ).
In this way we obtain a set of the probabilities P(n, l ), each
P(n, l ) giving probability to find the electron in a Rydberg
state (n, l ) after the end of the pulse. By summing P(n, l ) over
all l we obtain the results shown in Fig. 2. The average dis-
tance at which the wave packet corresponding to the Rydberg
electrons with a given n may be found at the end of the pulse
can be estimated as

r̄n =
∑

l P(n, l )r(n, l )∑
l P(n, l )

. (10)
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FIG. 3. Magnitude |C̃(z0, t ;R, T1)| of the normalized correlation function (8) for multicycle pulses with number of cycles Nc = 1–4. Time
is measured in units of an optical cycle T = 2π/ω. White dashed lines show z coordinates of the crests of the FTI wave packets at the end of
the pulse at t = NcT .

We can see from Fig. 2 that for φ = 0 the maximum popula-
tion is attained for the Rydberg state submanifold with n = 4.
The simple formula (10) gives r̂n ≈ 21.5 a.u. for this case. On
the other hand, Fig. 1(a) shows that for φ = 0 there are two
well-discernible wave-packet birth events near the local-field
maxima at t ≈ 0.5T and 0.8T . The crest of the wave packet
born at t ≈ 0.5T terminates at the end of the pulse at the
point z ≈ 22.5 a.u. which is in very good agreement with
the simple estimate of the average distance that we presented
above using Eq. (10). The second sleeve in Fig. 1(a) which
originates at t ≈ 0.8T has smaller z values at the end of the
pulse and corresponds to the electrons trapped in the n = 2
Rydberg states which, as Fig. 2 shows, are also present with

appreciable probability. For these electrons the simple esti-
mate (10) gives an average distance of approximately 5 a.u.
which again agrees with the results shown in Fig. 1(a). This
difference in the final z values for the wave packets originating
at different field maxima is probably related to the different
spatial scales of the electron’s motion for the electrons re-
leased at different peaks of the laser pulse. It was found in
[2] that the maximum in the n distribution of the Rydberg
level population in the FTI process scales with the strength
of the electric field approximately as nmax ∝ √

E0/ω. This
simple qualitative dependence follows from the expression
E0/ω

2 for the electron’s excursion radius and the quadratic
n dependence of r(n, l ) in Eq. (9). We can use a similar line
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of arguments for the electrons released at different local peaks
of the electric field. For such electrons the scales of the spatial
motion are set by the effective electron excursion radii Eeff/ω

2

defined by an effective field strength on the interval of time
between ionization moment and the end of the pulse. In the
example shown in Fig. 1(a) we discussed above, this effective
field strength and consequently the spatial motion scale would
be smaller for the electrons released at t ≈ 0.8T than the
spatial scale for the electrons ionized at t ≈ 0.5T , leading to
generally smaller average electron-ion distance and smaller n
values for the Rydberg states populated at the end of the pulse.

Thus we see that the correlation function analysis we pre-
sented in Fig. 1 reproduces correctly the population of the
Rydberg states obtained at the end of the pulse. More impor-
tantly, this analysis gives us a glimpse into the past history of
the wave packets ending up in different Rydberg manifolds.

The correlation patterns for φ = π/4 [Fig. 1(b)] and φ =
π/2 [Fig. 1(c)] also show the picture that is consistent with
the final population distribution of the Rydberg states for these
CEPs shown in Fig. 2. Figure 2 shows that the Rydberg state
population in these cases is at maximum for the n = 2 mani-
fold, which agrees with the picture we see in Fig. 1. Finally,
for φ = 3π/4 Fig. 2 shows that the population maximum
at the end of the pulse is attained for the n = 3 Rydberg
manifold with corresponding estimate r̄n ≈ 12 a.u. for the
average spatial size of this manifold obtained using Eq. (10).
The correlation pattern in Fig. 1(d) tells us a similar story.
We see formation of a distinct sleeve in the correlation pattern
with the maximum intensity at about z ≈ −14 a.u. at the end
of the pulse. The correlation pattern, however, gives us more
information than just the population distribution at the end
of the pulse. It tells how this distribution evolved in time. In
particular, we see in Fig. 1(d) that the FTI wave packet which
ended in the n = 3 submanifold is born near the midpoint of
the pulse, but unlike the case of the zero CEP in Fig. 1(a) it is
born after the moment of the maximum field intensity.

B. Multicycle pulses

Figure 3 shows correlation patterns we obtain for
multicycle pulses for the pulses (1) with Nc = 1–4, E0

= 0.0534 a.u., ω = 0.057 a.u., and zero CEP. The plots show
that for the multicycle pulses several FTI wave packets are
born, each at the instant of time near a local maximum field
intensity. The distances from the parent ion at which these
wave packets find themselves at the end of the pulse generally
grow with the pulse duration. This observation is supported
by the results for the Rydberg state population after the end of
the pulse shown in Fig. 4, which were obtained by projecting
the final-state wave function of the system of various Rydberg
states. These results, in turn, agree with the observation made
in [12] that an increasing pulse duration depletes lower-lying
Rydberg states leading to the increase of the population of
the higher-lying Rydberg levels. It was argued in [12] that
the mechanism behind this depletion of low-lying Rydberg
states is the electron’s recollisions with a parent ion, which
occur sooner for low-n states [12]. Once a critical number
of optical cycles is exceeded, the electron can return to the
parental ion, experience recollision, and acquire sufficient en-
ergy to get ionized. It was shown in [12] that this mechanism
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FIG. 4. Population of Rydberg levels for multicycle pulses with
E0 = 0.0534 a.u., ω = 0.057 a.u., and different number of cycles.

becomes quite general, and acts independently of the partic-
ular pulse parameters for sufficiently long pulses, with some
possible deviations occurring for very small pulse durations
[12]. We do see such deviations in Figs. 3 and 4; in particular,
the populations of the low-lying Rydberg states with n � 4
are higher for Nc = 3 than for Nc = 2. Nevertheless, the most
notable feature seen in Fig. 4, the steady increase of the
population of the n = 5 states with growing pulse duration for
Nc � 2, agrees with the trend observed in [12]. This trend is
also visible from the correlation pattern in Fig. 3. The FTI
wave-packet trajectories in Figs. 3(b)–3(d) terminate at the
end of the pulse at the distance |z| ≈ 30 a.u. from the parent
ion, which agrees well with the average spatial size of the
low angular momentum states of the n = 5 manifold given
by Eq. (9). Correlation patterns for the multicycle pulses in
Fig. 3 agree, therefore, with the results in the literature as far
as the Rydberg level population after the end of the pulse is
concerned, also providing a glimpse at birth and development
of the FTI wave packets in time during the interval of the laser
pulse duration.

C. Dependence of the time of birth on the pulse
duration and the CEP

As one can see from Fig. 3, the FTI electrons tend to be re-
leased before the peaks of the electric field. This fact has been
noted before [12] on the basis of the semiclassical CTMC
analysis for the pulses with duration exceeding Nc = 4 OC.
Our results for the multicycle pulses agree with the CTMC
predictions. For the single cycle pulses with larger CEPs
(φ = π/2 and 3π/4), shown in Fig. 1, the pattern is different,
and FTI wave packets are born after the peaks of the electric
field. We believe that this is an effect of the ultrashort pulse
duration. To elucidate this question we performed a series
of CTMC calculations. These calculations followed closely
those reported in [12]; we will give, therefore, only a very
brief description of the theoretical procedure we employed.
To each electron’s trajectory released at a particular moment
t0 with initial conditions r0 and v0, we ascribe a weight factor
proportional to the Ammosov-Delone-Krainov (ADK) instan-
taneous ionization rate [40] W (t0, v0,⊥), where v0,⊥ is the
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TABLE I. Ratio R of the number of trajectories released before
and after the main maximum of the laser pulse for different CEPs φ

and pulse durations T1 = NcT . Peak field strength E0 = 0.0534 a.u.,
base frequency ω = 0.057 a.u.

φ Nc R

0 1 2.00
π/4 1 5.45
π/2 1 0.19
3π/4 1 0.64
0 2 3.40
0 3 2.83
0 4 1.71

velocity component perpendicular to the polarization direc-
tion. The parallel velocity component was, as is often assumed
in the CTMC calculations, put to zero. The initial coordi-
nates (x0, y0) in the perpendicular directions also had zero
values, while z0 was determined on the basis of the energy
conservation law in parabolic coordinates as was done in [12].
Classical trajectories with these initial conditions are propa-
gated in time in the combined field of the laser pulse and the
soft-core atomic Coulomb potential. The trajectories having at
the end of the pulse the electron’s energies above the ground
level and below the ionization threshold are considered as
the FTI electron trajectories. We calculate the ratio R of the
number of the trajectories (including the ADK weight factor)
released before and after the main maximum of the laser pulse
electric-field strength. The CTMC results thus obtained for the
CEPs and Nc values used in the quantum TDSE calculations
in Figs. 1 and 3 are summarized in Table I.

The CTMC results for the single cycle pulse in Table I
reveal essentially the same pattern as the TDSE results shown
in Fig. 1; for larger CEP values (φ = π/2 and 3π/4) FTI
wave packets tend to be born after the peaks of the electric
field. We checked that this effect is not very sensitive to the
particular form of the atomic potential employed in the CTMC
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FIG. 6. Population of Rydberg levels for single cycle pulses with
E0 = 0.0534 a.u., φ = 0, and different base frequencies ω.

calculations and is, therefore, probably a consequence of the
very short pulse duration.

D. Frequency dependence

In Fig. 5 we show correlation patterns we obtain chang-
ing the base frequency ω and keeping constant the peak
field strength E0 = 0.0534 a.u. and CEP value φ = 0 for the
driving pulse (1). Comparison of the results in Figs. 5 and
1(a) shows that the spatial size of the correlation pattern
shrinks in the z direction with increasing frequency. This
should lead to a corresponding decrease in population of the
higher-lying Rydberg states after the end of the pulse. One
can see from Fig. 6 that this is indeed the case. We show in
this figure the Rydberg state population distributions obtained
after the end of the pulse for these particular frequencies. This
trend of the diminishing of the spatial extension of the FTI
wave packets and the corresponding decrease of the popula-

FIG. 5. Magnitudes |C̃(z0, t ;R, T1)| of the normalized correlation function (8) for single cycle pulses with different base frequencies ω.
Time is measured in units of an optical cycle T = 2π/ω. White dashed lines show z coordinates of the crests of the FTI wave packets at the
end of the pulse.
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FIG. 7. z coordinates of the crests of the FTI wave packets at the
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fit z(T1) = A/ω2 (dashed line).

tion of the high-lying Rydberg states with growing frequency
probably is, as was suggested in [2], a consequence of the
diminishing of the electron excursion radius E0/ω

2. The ionic
Coulomb potential plays a very important role in the forma-
tion of the FTI, but the overall spatial scale of the electron
motion is set by the electric field and it shrinks as the fre-
quency increases. Figure 7 illustrates this statement. It shows
estimates for z(T1), the z coordinate of the FTI wave-packet
crest at the end of the pulse that we obtain from Figs. 1(a),
5(a), and 5(b). These estimates correspond to the peak strength
E0 = 0.0534 a.u. and base frequencies ω = 0.057, 0.045, and
0.07 a.u., respectively. One can see from Fig. 7 that the z(T1)
values we obtain from the correlation patterns in Figs. 1 and
5 agree reasonably well with the results given by a fitting
formula: z(T1) = A/ω2 with A = 0.0691.

IV. CONCLUSION

We presented a procedure allowing us to trace the past
history of the FTI electrons ending up in the atomic Rydberg
levels after the end of the driving laser pulse. The proce-
dure is based on a computation of the correlation between
the two observables: A and B. The observable A described
the electron’s detection in a Rydberg state at the end of the
pulse. A projection operator on the manifold of the Rydberg
levels was used to represent this observable. As an observable
B we used the electron’s coordinate at the moment of time t
inside the laser pulse. The theoretical arguments we presented
and the results of the numerical calculation show that the
correlation function analysis for these two observables allows
us to visualize the FTI process in detail. In particular, we were

able to detect the moments of birth of the FTI electrons and
see distinctly the spatial structure of atomic Rydberg levels
populated by these electrons.

We performed such a correlation analysis for different
driving pulse parameters, varying pulse CEP, frequency, and
duration. The results we obtained generally agree with the
previous semiclassical CTMC analysis [12], in particular re-
garding the role that the increasing pulse duration plays in
populating the higher-lying Rydberg levels. Our procedure
can, in fact, provide an important and useful ingredient for
the CTMC calculations: the initial conditions which CTMC
requires to propagate the trajectories in time. For the choice of
the observable B we made in the present paper, the correlation
analysis provides both the birth time of an FTI electron and
its coordinate at the instant of birth. We note that observable
B need not necessarily be the electron’s coordinate. It can
just as well be the electron’s velocity, for example. Using
our approach, we may, therefore, obtain information about
the FTI electron’s velocity at the birth moment. We plan to
perform such an analysis of the FTI combining both present
quantum-mechanical procedure and the semiclassical CTMC
in the future.

As we mentioned above, we are not restricted in choosing
the coordinate operator for the observable B in applications
of our procedure. Nor are we obliged to use the projection
operator on the manifold of the Rydberg levels to represent
observable A. Our procedure is flexible enough to allow dif-
ferent choices of the observables suitable to study various
ionization phenomena. In the works [23,24] we used a pro-
jection operator on the continuous spectrum of the field-free
atomic Hamiltonian for the observable A. The observable A in
this case is the event of atomic ionization and our procedure
allows us to obtain a glimpse of the ionization dynamics.
Other choices of A are possible. By adding the photon de-
grees of freedom to the problem which can be done using the
numerical technique we described in [39], we may require A
to represent a physical situation with an electron in a ground
atomic state and an emitted harmonic photon. This choice
would enable us to take a glimpse at the development of the
HHG. We plan to perform such a calculation in the future.

ACKNOWLEDGMENTS

This work was supported by the Institute for Basic Science
under Grant No. IBS-R012-D1. Computational works for this
research were performed on the Institute for Basic Science
(IBS) Supercomputer Aleph in the IBS Research Solution
Center. I.A.I. wishes to thank the Australian National Univer-
sity for hospitality.

[1] M. Gavrila, J. Phys. B: At. Mol. Opt. Phys. 35, R147 (2002).
[2] T. Nubbemeyer, K. Gorling, A. Saenz, U. Eichmann, and W.

Sandner, Phys. Rev. Lett. 101, 233001 (2008).
[3] U. Eichmann, T. Nubbemeyer, H. Rottke, and W. Sandner,

Nature (London) 461, 1261 (2009).
[4] N. I. Shvetsov-Shilovski, S. P. Goreslavski, S. V. Popruzhenko,

and W. Becker, Laser Phys. 19, 1550 (2009).

[5] E. A. Volkova, A. M. Popov, and O. V. Tikhonova, J. Exp.
Theor. Phys. 113, 394 (2011).

[6] H. Liu, Y. Liu, L. Fu, G. Xin, D. Ye, J. Liu, X. T. He, Y.
Yang, X. Liu, Y. Deng et al., Phys. Rev. Lett. 109, 093001
(2012).

[7] A. S. Landsman, A. N. Pfeiffer, C. Hofmann, M. Smolarski, C.
Cirelli, and U. Keller, New J. Phys. 15, 013001 (2013).

043106-8

https://doi.org/10.1088/0953-4075/35/18/201
https://doi.org/10.1103/PhysRevLett.101.233001
https://doi.org/10.1038/nature08481
https://doi.org/10.1134/S1054660X09150377
https://doi.org/10.1134/S1063776111080127
https://doi.org/10.1103/PhysRevLett.109.093001
https://doi.org/10.1088/1367-2630/15/1/013001


CORRELATION ANALYSIS OF FRUSTRATED TUNNELING … PHYSICAL REVIEW A 107, 043106 (2023)

[8] U. Eichmann, A. Saenz, S. Eilzer, T. Nubbemeyer, and W.
Sandner, Phys. Rev. Lett. 110, 203002 (2013).

[9] W.-H. Xiong, X.-R. Xiao, L.-Y. Peng, and Q. Gong, Phys. Rev.
A 94, 013417 (2016).

[10] H. Zimmermann, S. Patchkovskii, M. Ivanov, and U. Eichmann,
Phys. Rev. Lett. 118, 013003 (2017).

[11] J. Dubois, S. A. Berman, C. Chandre, and T. Uzer, Phys. Rev.
Lett. 121, 113202 (2018).

[12] L. Ortmann, C. Hofmann, I. A. Ivanov, and A. S. Landsman,
Phys. Rev. A 103, 063112 (2021).

[13] M. Liu, S. Xu, S. Hu, W. Becker, W. Quan, X. Liu, and J. Chen,
Optica 8, 765 (2021).

[14] M. Baker, A. J. Palmer, W. R. MacGillivray, and R. T. Sang,
Nanotechnology 15, 1356 (2004).

[15] Z.-T. Lu, P. Schlosser, W. Smethie, N. Sturchio, T. Fischer,
B. Kennedy, R. Purtschert, J. Severinghaus, D. Solomon, T.
Tanhua et al., Earth-Sci. Rev. 138, 196 (2014).

[16] A. Facon, E.-K. Dietsche, D. Grosso, S. Haroche, J.-M.
Raimond, M. Brune, and S. Gleyzes, Nature (London) 535, 262
(2016).

[17] B. Ohayon, J. Chocron, T. Hirsh, A. Glick-Magid, Y.
Mishnayot, I. Mukul, H. Rahangdale, S. Vaintraub, O. Heber,
D. Gazit et al., Hyperfine Interact. 239, 57 (2018).

[18] Y. Zhao, Y. Zhou, J. Liang, Z. Zeng, Q. Ke, Y. Liu, M. Li, and
P. Lu, Opt. Express 27, 21689 (2019).

[19] H. Yun, J. H. Mun, S. I. Hwang, S. B. Park, I. A. Ivanov, C. H.
Nam, and K. T. Kim, Nat. Photonics 12, 620 (2018).

[20] J. H. Mun, I. A. Ivanov, H. Yun, and K. T. Kim, Phys. Rev. A
98, 063429 (2018).

[21] C. A. Brewer, F. Brizuela, P. Wachulak, D. H. Martz, W.
Chao, E. H. Anderson, D. T. Attwood, A. V. Vinogradov,

I. A. Artyukov, A. G. Ponomareko et al., Opt. Lett. 33, 518
(2008).

[22] J. Xu, Y. Zhou, Y. Li, A. Liu, Y. Chen, X. Ma, X. Huang, K.
Liu, Q. Zhang, M. Li et al., New J. Phys. 24, 123043 (2022).

[23] I. Ivanov and K. T. Kim, J. Phys. B: At. Mol. Opt. Phys. 55,
055001 (2022).

[24] I. Ivanov and K. T. Kim, Sci. Rep. 12, 19533 (2022).
[25] S. V. Popruzhenko, J. Phys. B: At. Mol. Opt. Phys. 47, 204001

(2014).
[26] E. J. Heller, J. Chem. Phys. 68, 2066 (1978).
[27] E. J. Heller, Acc. Chem. Res. 14, 368 (1981).
[28] V. Engel, Chem. Phys. Lett. 189, 76 (1992).
[29] M. Praprotnik and D. Janežič, J. Chem. Phys. 122, 174103
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