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generation process from a quantum-trajectory perspective
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It is argued that the dynamic core-electron polarization (DCEP) in polar molecules primarily affects harmonic
processes at the ionization step only. This manifestation can also be understood in view of the strong-field
assumption that the parent ion’s potential becomes irrelevant when the electron is accelerated in the continuum-
energy region. However, the scenario becomes vastly different, especially in the case of long-wavelength lasers
as shown in this paper, where we demonstrate a complete physical picture of the DCEP on the harmonic process
from asymmetric carbon monoxide (CO) molecules comprising the propagation step. To do so, we develop
a visualization method for the harmonic process with and without DCEP based on Bohmian mechanics. As
tracer particles evolving along quantum trajectories, Bohmian trajectories provide an intuitive picture of the
harmonic process from the CO molecules. Remarkably, when the change of the harmonic intensity with respect
to the DCEP inclusion cannot be explained by the instantaneous ionization rate, the Bohmian trajectories can
attribute this change to the difference in the number of returning events and returning time of the electron after
the propagation stage. By analyzing the dynamics of individual Bohmian trajectories (the acceleration and the
time-frequency profile), we show that the DCEP alters nonlocally the innermost trajectories, which encode all
the dynamics of the harmonic process. This insight into the DCEP effect necessitates a careful reinvestigation
into other strong-field physics theories on the role of the target over the propagation stage.

DOI: 10.1103/PhysRevA.107.043103

I. INTRODUCTION

When atoms or molecules are subjected to an intense ul-
trashort laser, they might emit high-frequency photons in a
process called high-order harmonic generation (HHG) [1–3].
This is a frequency up-conversion process because a long-
wavelength (e.g., near- or midinfrared) laser can generate a
soft x-ray spectrum through the nonlinear response of the
target [4,5]. Intuitively, this process can be separated into
three sequential stages for a valence electron: (i) ionization,
(ii) propagation, and (iii) recombination, which are described
semiclassically in the three-step model [6,7] assuming the
strong-field approximation. For more detail about the descrip-
tion that underlies most of the strong-field phenomena and
its vast development and recent applications, see Ref. [8] and
references therein. Going beyond the strong-field approxima-
tion, one can approach the problem through ab initio methods
to obtain exact numerical wave functions for calculating
HHG. However, directly solving the Schrödinger equation,
the time-dependent Schrödinger equation (TDSE) method,
is only feasible for one- and two-electron systems [9–17].

*lethicamtu@tdtu.edu.vn
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Nevertheless, the TDSE method combined with the single-
active-electron (SAE) model for the multielectron potential
has been successfully applied to many multielectron systems
and reduces computational resources significantly [7,18–24].

In strong-field physics, it is widely accepted that only the
electron of the highest occupied molecular orbitals interacts
with the laser field and plays the dominant role. However, the
multielectron effects are found to be important in some cases.
Particularly in the last ten years, dynamic core-electron po-
larization (DCEP), a cation polarization induced by the laser,
has been important in describing the strong-field processes of
some multielectron systems, such as calcium (Ca) and argon
(Ar) atoms [25,26], carbon monoxide (CO) [27–31], carbon
dioxide (CO2) [32,33], carbonyl sulfide (OCS) [34], and car-
bon disulfide (CS2) [33] molecules. Moreover, we recently
figured out that DCEP is not a correction term but plays an
essential role for HHG from CO molecules [35]. In this case,
DCEP modulates both the intensity and phase of harmonics,
making the even-to-odd harmonic ratio more consistent with
the experimental data [36,37].

In theoretical studies of HHG, DCEP’s trace has just been
revealed clearly in the “final” results—the high-energetic pho-
ton spectra. When carefully comparing the two scenarios with
and without DCEP, the origin of the difference in the harmonic
intensity is attributed to the ionization rate [28] or, more
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precisely, the instantaneous ionization rate at a specific ioniza-
tion instant [30]. This result is expected because the electron
movement in the continuum region is not much influenced
by the parent ion Coulomb interaction as well established
within the tunneling ionization regime [6,7,38–41]. However,
this picture of the DCEP effect may be incomplete by not
considering the effect of DCEP on the propagation phase,
particularly under long-wavelength lasers.

If based on the well-known “ansatz” first proposed in
Ref. [42], the harmonic intensity is factorized into the re-
combination dipole matrix element and a complex continuum
electron-wave-packet amplitude. The latter factor encodes
both the ionization and continuum electron-wave-packet ac-
celeration. By measuring the HHG spectra from different
noble gases, the authors of Ref. [39] showed that the complex
continuum electron-wave-packet amplitude strongly depends
on both the target ground-state energy and the laser pulse. This
evidence can be easily understood based on the Ammosov-
Delone-Krainov theory [43], where ionization depends only
on the target ground-state energy and the laser intensity. More-
over, in the conventional strong-field approximation [6,7],
the excursion in the continuum of electron wave packets is
only governed by the laser field, ignoring the effect of the
ion potential. However, it is known that the inclusion of the
Coulomb potential may be inevitable in the strong-field pro-
cesses [44,45]. Additionally, when taken into account, DCEP
also causes a polarization potential [27,30,46] which may
have a considerable and thus non-negligible impact in the
propagation stage. Recently, exploiting the multiconfigura-
tion time-dependent Hartree-Fock method [47], the authors
have studied the multielectron dynamics of CO molecules
in multicolor lasers. By analyzing temporal profiles of the
configuration-interaction (CI) coefficients, the rising in inten-
sity of some harmonics for the two-color laser is attributed
to increase of the CI coefficient corresponding to the con-
figuration of excitation from the ground-state configuration.
Also, with specific laser parameters in that case, the excursion
amplitude of the ionized electron is quite small (11 a.u.),
indicating that the ion core effect on the liberated electron
cannot be ignored.

Bohmian mechanics [48] is an alternative and complemen-
tary quantum approach for studying strong-field processes
with an intuitive picture in terms of electron trajectories.
Based on the concept of individual trajectories associated
with the probability amplitude and their emission times, the
Bohmian trajectory (BT) can complement the direct analysis
of electron density obtained by the numerical TDSE method.
By solving the guiding equation with wave functions extracted
directly from the TDSE with the time-dependent laser field
and fully integrated target ion binding potential, the BT has
been exploited in various problems, such as HHG [49–52]
and laser-driven electron dynamics [53–60]. Recently, the BT
has also been used to explore HHG in solids [61], and the
tunneling process in attoclock experiments [62]. Based on the
well-defined trajectories in space and time, Bohmian mechan-
ics can provide the electron dynamics during the ionization
process [60] and can be used to justify the tunnel exit point
from where a classical trajectory starts its excursion in the
continuum region of a given model [62]. Regarding HHG, we
believe that the BT is also a powerful tool to investigate the

origin of the DCEP effect on the harmonic process. However,
this method has been implemented just for one-dimensional
(1D) problems with a soft-Coulomb potential [49–51,53–56],
a short-range Yukawa potential [60], or a Mathieu-type poten-
tial [61]. Therefore, we will first upgrade the BT method to
be compatible with more complex asymmetric molecules and
then adopt it for our purpose.

In this paper, we aim to visualize the effect of DCEP on
the harmonic process of CO molecules by the dynamics of
Bohmian trajectories. We especially focus on cases where the
change of harmonic intensity is not correlated to that of the
instantaneous ionization rate. This situation signifies the role
of DCEP on the propagation phase, which is discussed in a
few works in the literature, such as Ref. [47]. Furthermore,
by analyzing the accelerations of individual trajectories and
the ensembles thereof, we figure out the “central” trajectory,
which can decode all harmonic processes’ dynamics under a
specific set of laser parameters. Our study yields a complete
picture of the DCEP effect incorporating the propagation step.
This insight may challenge the premise that the DCEP con-
tributes only to the ionization and recombination steps.

The rest of the paper is organized as follows. In Sec. II, we
present the theoretical method, including solving the TDSE,
getting the Bohmian trajectories, and obtaining the ionization
and the harmonic spectra. In Sec. III, we show the results of
an exemplified case where the DCEP manifests its effect in the
propagation step. Then we unravel the underlying mechanism
of the harmonic process through the dynamics of Bohmian
trajectories. We finish our investigation in Sec. IV, in which
we briefly summarize the main results obtained.

II. THEORETICAL METHOD

A. TDSE + SAE calculation

Using the traditional Bohmian scenario to analyze the
strong-field process of a system in a laser field re-
quires the electron wave functions; thus, the first task is to
solve the TDSE describing the laser-matter interaction as

i
∂

∂t
�(r, t ) = [Ĥ0(r) + Ĥint (r, t )]�(r, t ). (1)

Here, Ĥ0 = −∇2/2 + VSAE(r) is the field-free Hamiltonian of
the system with the molecular potential VSAE(r) constructed
using the single-active-electron potential model [21,22].
Without losing generality, we assume the CO molecule is per-
fectly oriented along the z axis, with the C atom placed at the
positive and the O atom at the negative parts (zC = 1.215 a.u.
and zO = −0.917 a.u.). Also, the ionization potential energy
of the CO molecule should match the experimental value Ip =
−0.514 a.u. given in Ref. [63], so we choose two empirical
parameters of the LBα model [64] as α = 1.15 and β = 0.05.

The second term on the right-hand side of Eq. (1) is
Ĥint (r, t ) = VL(r, t ) + VP(r, t ) consisting of two parts: (i) the
interaction potential between the active electron and the laser
electric field E(t ) in the length gauge VL(r, t ) = r · E(t ) and
(ii) the polarization potential caused by the DCEP [27,46]:

VP(r, t ) = − [α̂cE(t )] · r
r3

. (2)
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Because VP(r, t ) is divergent at the origin, the cutoff for
VP(r, t ) is fulfilled at a position rc where the polarization field
cancels the laser electric field, i.e., VP(rc, t ) + VL(rc, t ) ≈ 0.
When r � rc, the electron is approximately field free [46].
In this paper, E(t ) is linearly polarized in the yz plane and
hereby makes an orientation angle θ with the molecular axis.
The polarization response of a certain target ion in the laser
field is characterized by its polarizability, α̂c. For the CO
molecule modeled as described above, the nonzero compo-
nents of static polarizability of the core electrons are αcxx =
αcyy = 6.72 and αczz = 12.22 taken from Ref. [29]. It should
be noted that, using the DCEP, the results of ionization and
HHG from the TDSE [29,30] are comparable to the full
calculations from the time-dependent Hartree-Fock method
[27,28] and the even-to-odd harmonic ratio [35] can match
very well with the experiments [36,37]. These evidences in-
dicate the static polarizability is accurate enough to describe
the multielectron effect modeled by the DCEP. In fact, this
is also sensible because the dynamic polarizability of CO+
changes very slightly compared to the static polarizability.
For example, in the case of 1000 nm, its components in the
x (y) and z directions are increased by about 0.37 and 1.23%,
respectively. With a longer wavelength (smaller frequency),
the dynamic polarizability is very close to the static one.

We solve the Schrödinger equation (1) by the basis-set ap-
proach, expanding the time-dependent wave function �(r, t )
in terms of the eigenfunctions �m

n (r) of the Hamiltonian Ĥ0

as

�(r, t ) =
∞∑

m=−∞

∞∑
n=1

Cm
n (t )�m

n (r). (3)

Here, Cm
n (t ) are the time-dependent coefficients which can be

obtained by the fourth-order Runge-Kutta scheme. In turn,
the basis-set functions in spherical coordinates for a linear
molecule �m

n (r) are constructed by B-spline functions for the
radial part [65] and spherical harmonics for the angular part
[22,30].

Noting that because spurious transitions to the extraneous
energy region may appear from the very high energy in the
numerical calculation, which also significantly increases the
computational overhead, the series by the quantum numbers
of n and m in Eq. (3) is truncated at the value corresponding
to the energy En

m, which is suitable for a certain strong-field
process [65], such as harmonic generation or laser-induced
electron diffraction [66,67]. Specifically, at the present stage,
we consider the harmonics only at two opposite orientation
angles: parallel and antiparallel to the laser polarization de-
noted as θ = 0◦ and 180◦. This consideration collapses the
series of m to the initial value, m = 0. Therefore, the com-
plete basis set is determined only by the series of n. Other
simulation parameters are provided in the next section.

B. Bohmian trajectory

Bohmian mechanics is based on the idea that the dynamics
of a particle is described by a set of trajectories whose evolu-
tion is described by a guiding wave function �. Consequently,
Bohmian trajectories are solutions of the guiding equation,

which reads as

dr
dt

= Im
∇�

�
. (4)

From this equation, we can see that the Bohmian tra-
jectory can be used to monitor the flow of probability
density. To ensure the Bohmian trajectory correctly de-
scribes this flow, we use the traditional approach as in
Refs. [49–52,54,55,57,58,60] based on the time-dependent
wave function � from the TDSE method given in Sec. II A.
Because the particle trajectories are guided by the wave
function, it means that one just needs to solve the above equa-
tion where the wave function (probability density) is nonzero.

Under the linearly polarized laser, the angular momentum
projection onto the polarization direction of the laser field
is conserved, meaning that the system will remain at the
initial state of m. Particularly, in our case where m = 0, the
wave function � does not depend on the azimuthal angle
ϕ anymore, and the gradient of the wave function is taken
with respect to the radial distance r and polar angle ϑ only.
Therefore, the dynamics equation of the BT is now equivalent
to a set of three one-dimensional equations as follows:

dr

dt
= Im

(
1

�

∂�

∂r

)
, (5a)

dϑ

dt
= − sin ϑ

r2
Im

(
1

�

∂�

∂ cos ϑ

)
, (5b)

dϕ

dt
= 0. (5c)

We now solve Eqs. (5) for Bohmian trajectories. From
Eq. (5c), we have ϕ(t ) = const. Because the azimuthal angle
ϕ does not change, the trajectories lie in the plane, consisting
of the initial radius vector (at t = t0) and the z axis. The
set of coupled ordinary differential equations (5a) and (5b)
can be solved numerically by the fourth-order Runge-Kutta
algorithm.

The Bohmian trajectories are set to start from the rest, lo-
cated around the atoms C and O. In principle, there are infinite
trajectories. However, because we solve the equations on the
grid, and the initial positions are considered as infinitesimal
areas 
 j (t0), the number of trajectories is finite; thus, we
need to weigh each trajectory based on the distribution func-
tion of the electronic probability density in the ground state
|�(r, t = t0)|2. Each trajectory now has an associated weight
w j , which also determines the contribution of the jth trajec-
tory to the harmonic spectrum. The value of the weight w j can
be calculated by generalizing the 1D formula in Ref. [54] to
the two-dimensional case as

w j =
∫


 j (t0 )
r2drd (cos ϑ )|ψ (r, cos ϑ, t0)|2, (6)

where ψ = �/
√

2π due to the symmetry of a linear molecule.
Here, the infinitesimal area 
 j (t0) is given by

r j (t0) − δr j

2
<r < r j (t0) + δr j

2
,

ϑ j (t0) − δϑ j

2
<ϑ < ϑ j (t0) + δϑ j

2
.
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C. Ionization rate and high-order harmonic spectrum

The instantaneous ionization rate can be calculated as in
Ref. [68] by the formula

�(t ) = −d[ln Pb(t )]

dt
, (7)

where Pb(t ) is the survival probability at the bound states,
Pb(t ) = ∑

n,m
Em

n <0
|〈�m

n (r)|�(r, t )〉|2, with Em
n being the energy

values of the states �m
n , i.e., the eigenvalues of the Hamilto-

nian Ĥ0.
The intensity of a given harmonic order corresponding to

frequency ω can be obtained by the Fourier transform as

H (ω) = |F{a(t )}|2, (8)

where

a(t ) = d2〈�|z|�〉
dt2

(9)

is the dipole acceleration calculated from the expected value
of the induced dipole 〈z〉. In the frame of Bohmian mechanics,
the dipole acceleration is calculated by the formula a(t ) =∑

j w ja
j
BT(t ), where

a j
BT(t ) = d2z j

BT(t )

dt2
(10)

is the acceleration of interested Bohmian trajectories z j
BT(t ).

III. BOHMIAN-TRAJECTORY-BASED VISUALIZATION
OF DCEP EFFECT ON HIGH-ORDER

HARMONIC PROCESS

A. Case study of HHG intensity and ionization rate mismatch

First, we remind the reader that in our previous study
[30] the DCEP’s effect on the enhancement or suppression
of HHG intensity in the cutoff region is ascribed to the en-
hancement or suppression of the instantaneous ionization rate
around a specific instant t∗

i . When released at this instant,
the electron can recombine and emit the photon with the
highest frequency—the cutoff order. This result shows the
predominant role of the ionization step of the DCEP effect
on the harmonic process. However, in that study with a laser
of 800 nm, the electron’s excursion time is about 2.67 fs
(110 a.u.), which may be relatively short to reveal the DCEP
signature in the continuum-energy region. This guess inspires
us to examine the universal property of the DCEP effect on the
harmonic process of CO molecules by changing various laser
parameters, such as the wavelength and number of optical
cycles. As a result, we discover some cases and present in
this section one case study in which the orientation angle is
θ = 0◦ and the laser parameters are chosen to exemplify the
mismatch between the variation of interested harmonic-order
intensity and the corresponding instantaneous ionization rate.
We show that the DCEP in this case does not apparently affect
the ionization rate at t∗

i , but the corresponding harmonic-order
intensity—the cutoff intensity with DCEP is higher than that
without DCEP.

We should note that the parameter γ = √
2Ip ω0/E0 de-

fined by Keldysh [38] is kept to 0.77 to ensure the harmonic
process takes place with the same ionization mechanism when

varying the laser parameters. This value of the Keldysh pa-
rameter is the same as in our previous study [30], in which we
figured out the correlation between the changes in ionization
rate and harmonic intensity. The notations ω0 and E0 are
respectively the frequency and peak amplitude of the laser
pulse.

The electric field has the sine-squared envelope as

E (t ) = E0 sin2

(
πt

τ

)
sin(ω0t + φ), (11)

with τ and φ being the time duration and carrier-envelope
phase. To highlight the DCEP effect, we utilize the ultrashort
pulse consisting of three optical cycles (τ = 3 τ0 where τ0 =
2π/ω0) and φ = −π/2. The laser wavelength and intensity
are respectively 1000 nm (ω0 = 0.046 a.u.) and 1.3 × 1014

W/cm2 (E0 = 0.061 a.u.) to remain γ = 0.77. With these
laser parameters, we perform calculations within the simula-
tion box of Rmax = 150 a.u., which is more than five times the
excursion amplitude of an electron moving in the laser electric
field, rq = E0/ω

2
0. To avoid the nonphysical reflection near the

box edge, we apply the cos1/8 mask function [69] turning on
from rab = 120 a.u. To construct the basis set for the wave
function �(r, t ), we use 300 B-spline functions and 76 spher-
ical harmonics. The series of n is expanded up to the states
with energy about 17.5Up, where the ponderomotive energy
of the electron Up = E2

0 /(4ω2
0 ), and then the time-dependent

wave function Eq. (3) is the expansion of 12 041 bases.
Within SAE and SAE plus DCEP (SAE + P), the HHG

spectra in this section are obtained from the dipole accel-
eration Eq. (9), and the ionization rates are obtained from
Eq. (7). The results are demonstrated in Fig. 1(a) showing
that the harmonic cutoff ends at about the 43rd order (de-
noted as H43), which is in good agreement with the cutoff
law Ip + 3.17Up [2,3,6,7]. Furthermore, the HHG intensity
at around the cutoff (H43–H44) for the case with DCEP is
about 4.8–5.36 times higher than that without DCEP. If the
DCEP only affects the HHG intensity via the ionization rate
at t∗

i as stated in the previous study [30], the enhancement of
the HHG intensity in the cutoff region when including DCEP
indicates that the ionization rate at t∗

i increases under effect of
the DCEP. However, it is not the case as shown in Fig. 1(c).

To know �(t∗
i ), we first need to determine the instant t∗

i
based on the kinetic-energy maps as a function of the ioniza-
tion time by the electron trajectory concept given in Ref. [6].
Please note that, for more accuracy, an improved model,
such as including the Coulomb potential [70,71], should be
considered. It has been shown that the Coulomb-corrected
ionization times are shifted to earlier values with the shift
timescale in order of tens of attoseconds (≈0.014τ0–0.023τ0,
where τ0 ≈ 2.67 fs in these studies [70,71]). Thus, the esti-
mation of ionization time from the classical model [6] is exact
enough for the purpose of the present paper. From the obtained
map (gray circles) shown in Fig. 1(b), one can determine the
ionization instants corresponding to the recombination event
which releases the photons in the cutoff region. Specifically,
the ionization instants are around t∗

i = 1.03τ0, marked by the
vertical dashed lines in Figs. 1(b) and 1(c). Figure 1(c) shows
apparently that the ionization rate at t∗

i without DCEP equals
that with DCEP. So, for the 1000-nm laser in the present paper,
which drives the ionized electron in the continuum-energy

043103-4



DYNAMIC CORE-ELECTRON-POLARIZATION EFFECT ON … PHYSICAL REVIEW A 107, 043103 (2023)

FIG. 1. HHG spectra (a) and ionization rates (c) of the CO
molecule exposed to the laser pulse of 1000 nm, τ = 3 τ0, and φ =
−π/2 at θ = 0◦. The results are obtained by solving numerically the
TDSE within the single-active-electron framework (denoted as SAE
by the thick black lines) and with the DCEP effect by adding the po-
larization potential Eq. (2) (denoted as SAE + P by the thin red lines)
as Refs. [27,46]. For a clearer connection between the ionization
instant and the emitted photon frequency, we plot the classical kinetic
energy Ek as a function of time in panel (b). The vertical dashed lines
mark the ionization instant t∗

i = 1.03 τ0. If released at this instant
t∗
i , the electron can emit (at recombination instant after returning)

a photon with frequency marked by the horizontal dashed line. The
vertical dotted lines specify the ionization instant ti = 1.58 τ0 that is
responsible for a lower-frequency photon denoted by the horizontal
dotted line.

region about 3.31 fs (137 a.u.), the ionization rates due to
the effect of DCEP cannot fully explain the variation of the
harmonic intensity. It implies that the variation may come from
the propagation step, which results in the different trajectories
turning back the parent ion.

To verify this, we will perform the Bohmian trajectories
and present them in the next section. But before that, it is
important to discuss briefly the ground that is also a quali-
tative explanation of our standpoint: the Newtonian form of
a Bohmian particle evolving in time. If considering the law
of motion for acceleration, one will get the Bohm-Newton
equation of motion

d2r
dt2

= −∇[Veff (r, t ) + Q(r, t )], (12)

with Veff (r, t ) = VSAE(r) + Vint (r, t ) being the classical po-
tential, with Q(r, t ) = − 1

2
∇2R

R being the quantum potential
if the wave function is expressed as �(r, t ) = R(r, t )eiS(r,t ),
with the amplitude R and phase S being real functions.
Equation (12) is the equivalent version of the guiding equa-
tion [Eq. (4)] in case the constraint of initial momentum,
p(t0 = 0) = ∇S(r, t0 = 0)|r0 , is granted [48]. Regarding the
initial positions, they are different from a classical model
where the electron is prescribed classically by the Newton

equation after tunneling, so the initial position is assumed
at the tunnel exit point that is classically expected at Ip/E0

[38] or simply assumed approximately at the origin [6].
In Bohmian mechanics, the initial positions are distributed
according to the probability density. When considering the
DCEP effect, besides VL(r, t ), Vint (r, t ) has the addition of
VP(r, t ). Thus, the polarization potential affects the particle
trajectory by entering explicitly into the equation and implic-
itly via the modification of the wave function in Q(r, t ).

The Bohm-Newton equation implies that a long duration
can amplify a small difference at initial time between the two
cases: with and without VP(r, t ). It seems pretty weird because
the excursion amplitude of the electron under longer wave-
length is greater, while VP(r, t ) becomes smaller with larger
distance (as the scale of 1/r2). However, the system starts
evolving from the initial state with the electron distributing
near the core (see in detail below) where the polarization po-
tential is not small. So, the laser pulse with longer wavelength
can drive the ionized electron for a longer propagation time,
making the pathway difference between two model calcula-
tions manifest clearer.

B. Intuitive picture via Bohmian trajectories for DCEP effect:
Predominant role of the propagation stage

Using Eqs. (5a), (5b), and (5c) with the time-dependent
wave function obtained from numerically solving the TDSE,
we launch an ensemble of 9440 trajectories with the initial
positions (t0 = 0) specified by 80 values of angle ϑ ∈ (0, π )
and 118 values of r ∈ [0.886, 15.0] a.u. It should be first
mentioned that the meshes of r and ϑ variables are discretized
nonuniformly by the Gaussian quadrature rule so that the
meshes around the nuclei are densest. Then, we limit our
consideration by this specific region of r because the weight
w j is diminutive (less than 10−12) for r(t0 = 0) > 15.0 a.u.
Besides, for r(t0 = 0) < 0.886 a.u., the electron just moves
back and forth between the two nuclei [54] and does not
contribute to the harmonic process. Moreover, when applying
the cutoff for VP(r, t ), a portion of the trajectories starts from
the region inside the cutoff point. If based on the confinement
in configuration space, one may say that these trajectories
would stay in bound states if their displacement is less than the
exit point, which is classically expected at Ip/E0 [38]. How-
ever, in quantum mechanics, we should study the dynamics
of the HHG process through the dynamics—accelerations of
individual Bohmian trajectories and ensembles thereof. For
illustration, in Fig. 2, we present only 1280 trajectories with
r ∈ [1.556, 8.057] a.u., enough to demonstrate the general
picture of our analysis. With this subset, one can still distin-
guish the individual trajectories with a large displacement in
the two cases: SAE and SAE + P. As the number increases,
the trajectories will become gradually a continuous grayscale.
Concerning the lower value of the radial range, we do not
show the trajectories with r(t0 = 0) smaller than this value
because they do not give a spectrum with a well-defined
cutoff.

As we can see in Fig. 2, subjected to the laser pulse whose
period τ0 also defines the time scale, the first ionized-electron
bunch departs at around 1 τ0 toward the positive z direction,
while the second bunch at around 1.5 τ0 moves toward the
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FIG. 2. Bohmian trajectories calculated with the time-dependent
wave function obtained by the TDSE method within SAE (a) and
SAE + P (b). The grayscale represents the weight of each trajectory
in logarithmic scale, i.e., log10 w j . Panels (c) and (d) are the enlarge-
ment of the inner region close to the core.

negative z direction. When the laser electric field reverses its
direction, the electron is driven backward. In general, each
bunch can revisit the parent ion after about 0.3 τ0–0.7 τ0. This
excursion time corresponds to the short electron trajectories in
the electron concept proposed by Ref. [6]. From another side,
Figs. 1(a) and 1(b) show that the electron ionized at around
t∗
i = 1.03 τ0 contributes to the harmonic intensity near the

cutoff. In contrast, the electron ionized at around ti = 1.58 τ0

contributes to the harmonic intensity in the low-energy region.
Therefore, with the purpose of exploring the origin of the
HHG intensity variation in the cutoff region where the mis-
match occurs, we are naturally interested in the dynamics of
the first ionized-electron bunch only.

The Bohmian trajectories in Figs. 2(a) and 2(b) clearly
show that the electron can revisit the parent ion with differ-
ent pathways depending on whether the effective potential
Veff(r, t ) includes the polarization term VP(r, t ) or not. Indeed,
the number of trajectories with high weight (dark gray) re-
turning around tr = 1.7 τ0 in Fig. 2(b) is visibly larger than
that in Fig. 2(a). Specifically, by counting, the number of
the Bohmian trajectories returning in the recombination time
interval 1.6 τ0–1.8 τ0 in Fig. 2(b) is roughly twice more than
that in Fig. 2(a). This can lead to the intensity of the harmon-
ics emitted around tr = 1.7 τ0 when including DCEP being
higher than that when ignoring DCEP regardless of the same
ionization rate at t∗

i = 1.03 τ0.
Besides the groups of Bohmian trajectories described

above, a swarm of trajectories still localizes near the core
(|z| � 7 a.u.), as depicted in Figs. 2(c) and 2(d). They are the
so-called innermost trajectories. Accordingly, the trajectories
making the excursion far away from the core (|z| > 7 a.u.)
are called the outermost ones. As figured out in Ref. [51], the
outermost trajectories will contribute to the overall HHG in-
tensity, while the innermost trajectories define the structure of
the harmonic spectra. It indicates that the larger the number of
outermost trajectories is, the higher the HHG intensity is. So,
in our case, with the larger number of peripheral trajectories,
especially in the interval tr = 1.6 τ0–1.8 τ0, the HHG intensity
in the cutoff region with the inclusion of DCEP is higher than
without the DCEP.

More specifically, the number of the outermost trajectories
in the first ionized-electron bunch is about 35 and 42% of the

total number of trajectories (4720 trajectories in the positive z
axis) in the case of SAE and SAE + P, respectively. It means
that visibly the DCEP effect causes about 7% difference in
electron pathways that results in approximately twice more
returning events responsible for the cutoff-energy region. This
supports that the DCEP effect is mostly via the propagation
step rather than the ionization one in this case. Up to this,
intuitively and qualitatively, the general picture of Bohmian
trajectories can explain the enhancement of HHG intensity
when taking DCEP into account.

However, for more convincing evidence of the statement,
we now discuss two things here. First, because the trajecto-
ries carry the weights, instead of the number of outermost
(departure) trajectories or of returning (arrival) trajectories
in a given time interval, we need to consider the numbers
associated with w j which are referred to as weighted numbers,
N = ∑

j w j . Interestingly, the ratio of the weighted numbers
of the returning trajectories in the time interval of 1.6τ0–1.8τ0

between SAE + P and SAE cases is about 5.0, which is very
consistent with the ratio of the HHG intensity around the
cutoff, 4.8–5.36. Meanwhile, the ratio of the weighted num-
bers of the outermost trajectories between SAE + P and SAE
cases is about 4.33. It cannot fully explain the enhancement
of HHG intensity around the cutoff of the SAE + P model.
Second, it differs from the case of 800 nm [30], in which the
ratios of the weighted numbers between SAE + P and SAE of
the outermost trajectories and of the returning trajectories are
respectively about 3.87 and 3.94. Both numbers can explain
the enhancement of about four times HHG intensity around
the cutoff (the 35th order). The nonidentical numbers in the
case of 1000 nm (4.33 vs 5.0) indicate that the “arrangement”
of the swarm of trajectories at the departure loses its order
with a long evolution in time. In other words, these are the
evidence of the DCEP effect on the propagation stage.

To complete our investigation, in the further analysis we
show that the BT can reproduce quantitatively the HHG
spectrum based on individual trajectories and the ensem-
bles thereof. Due to the inherent nonlocality of the Bohmian
trajectory—any changes in the flow of the wave function far
from the core are transferred nonlocally to the inner region
via the phase of the wave function [50,51]—the main feature
of the HHG spectrum can be represented by innermost tra-
jectories. So, we will discover the role of different Bohmian
trajectories in the HHG spectrum in the next subsection.

C. Quantitative Bohmian trajectory analysis

For atoms, the central trajectory holding all essential in-
formation to obtain the HHG spectrum is the one with the
initial position z(t0 = 0) = 0, where the atoms are located
[50,51]. In this sense, the central trajectories have yet to be
shown for molecules, especially asymmetric ones. So, in this
section, we first identify the central trajectories, which have
a high contribution to the HHG spectrum and contain all
the dynamic process information. In other words, the central
trajectories should have the greatest weight and can reproduce
the main feature of the harmonic spectrum from the TDSE.
The role of other trajectories will then be uncovered through
the buildup of ensembles of interested Bohmian trajectories
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FIG. 3. Weights of the Bohmian trajectories in logarithmic scale,
i.e., log10 w j . The arrows show two local maxima near the positions
of C and O.

and time-frequency profiles. Along with these analyses, the
nonlocality of the BT will be also evinced.

1. Central trajectories and the DCEP effect
via electron propagation

To reveal the central trajectory, we scan the area sur-
rounding the locations of C and O, which have the greatest
probability of finding the electron. By thoroughly examining
the frequency domain of BTs calculated by Eqs. (10) and
(8), we realize that among the innermost BTs with initial
positions (at t0 = 0) surrounding the C’s and O’s locations,
two trajectories are possible to encode all dynamic informa-
tion of the harmonic process. The first one is the trajectory
with r = 2.106 a.u. and cos ϑ = 0.94, near the C atom in the
positive z axis, which is called BT(P). In the same manner,
the second one is BT(N), denoted for the trajectory with
r = 1.556 a.u. and cos ϑ = −0.969, near the O atom located
in the negative part of the z axis. For illustration, we plot the
calculated trajectory weights in Fig. 3 with indicated initial
positions for the trajectories BT(P) and BT(N).

Plotted in Fig. 4(a), the two trajectories BT(P) and BT(N)
oscillate in time with different frequencies and amplitudes
upon including DCEP. We note that the weight of BT(N) is
roughly one order of magnitude smaller than that of BT(P).
However, we will compare their contributions to the HHG
intensity below just by careful calculations besides looking
at the weights.

To get insights into the high-order harmonic process and
the DCEP impact, we will study the dynamics through the
acceleration of the Bohmian trajectory and its frequency
domain—the HHG spectrum. It is worth recalling that when
looking into a dipole acceleration two features determine the
main features of the HHG spectrum: (i) its oscillation period
defining emitted photon frequency and (ii) its oscillation am-
plitude defining photon intensity.

We first look into the HHG dynamics through the accelera-
tions of BTs(P) and BTs(N) calculated by Eq. (10) and shown
in Figs. 4(b) and 4(c). For the first aspect, the oscillation

FIG. 4. (a) Bohmian trajectories with the initial positions near
the C and O atoms, denoted as BT(P) and BT(N), respectively,
obtained from the SAE (thick black lines) and SAE + P (thin red
lines) models. (b, c) Acceleration of BT(P) (thin cyan lines) and
BT(N) (thick orange lines) for SAE and SAE + P.

period, one can see that the accelerations for both BTs(P)
(with and without DCEP) oscillate fast—high frequency—
in the time interval of 1.6 τ0–1.8 τ0, which is highlighted
by the gray rectangles in Fig. 4. Within this time inter-
val, the oscillations have the same period of τB ≈ 0.023 τ0

which corresponds to the frequency of 43 ω0—the cutoff
order. Meanwhile, the accelerations of BTs(N) with rel-
atively large amplitude oscillate within the time window
1.9 τ0–2.3 τ0 slower with an oscillation period of about τB ≈
0.048 τ0–0.033 τ0, which is responsible for the emitted low-
energy photons in the frequency range of about 21 ω0–30 ω0.
Since we are interested in the cutoff region, we can ignore the
contribution of BTs(N).

The above discussion for the trajectories in the inner-
most region is consistent with the intuitive picture given in
Sec. III B for the outermost trajectories, visualized in Fig. 2.
Indeed, the emitting time (1.6 τ0–1.8 τ0) of harmonics in the
cutoff region from the innermost trajectories coincides with
the returning time range of the majority of outermost tra-
jectories in the first group. Also, the second ionized-electron
group [BTs(N)] is ignored for both the outermost and inner-
most regions. It is evidence of the nonlocal property of the
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FIG. 5. Acceleration (a) and HHG (b) from the Bohmian trajec-
tory with the maximum value of w j , denoted as BT(P) (thin cyan
lines), and from the sum of BT(P) and BT(N), denoted as BT(P+N)
(thick orange lines) for the case of SAE + P. For convenience to
compare, the results from the TDSE are plotted by the dotted black
lines.

Bohmian trajectory: the innermost trajectories also contain the
dynamics of the outermost trajectories. We will discuss the
nonlocality of the BT in Sec. III C 3.

Turning to the second aspect of the acceleration, we can
see that the oscillation amplitudes of BTs with DCEP differ
from those without DCEP. Especially in the time interval of
1.6 τ0–1.8 τ0, where the acceleration oscillates fast (with τB ≈
0.023 τ0), the oscillation amplitude of SAE + P is higher than
that of SAE. Consequently, the harmonic intensity in the
cutoff region with DCEP is higher than that without DCEP.
Therefore, from these analyses about oscillation period and
amplitude, one can see that the dynamics—the acceleration—
of BT(P) encodes the dynamic information of the process, and
the role of DCEP occurring through electron propagation is
apparent.

2. Representativeness of the central trajectories via the ensembles
analysis

Besides the acceleration of the Bohmian trajectory, we
move on to its frequency domain—the HHG spectrum to af-
firm the representative role of the central trajectory BT(P).
Figure 5(a) presents the accelerations by Eq. (10) for three
cases: (i) from the central trajectory BT(P) (thin cyan line),
(ii) from the two trajectories BT(P) and BT(N), denoted as
BT(P+N) (thick orange line), and (iii) from the TDSE calcu-
lation (dotted black line). One can see that the contribution
of BT(N) only slightly corrects the oscillation amplitude of
the acceleration of BT(P+N) in the time range of about
1.95 τ0–2.1 τ0, where the oscillation has a period of about
0.051 τ0–0.041 τ0. As a result, the calculation from the ac-
celerations by Eq. (8) and shown in Fig. 5(b), the harmonic

FIG. 6. Same as Fig. 5 but for two ensembles of 40 trajectories
with r = 2.106 a.u. and cos ϑ corresponding to ϑ ∈ (0◦, 90◦) at t0 =
0 (thin cyan lines), and 39 trajectories with cos ϑ = 0.94 and r ∈
[1.62, 5.0] a.u. at t0 = 0 (thick orange lines).

spectrum from BT(P+N) is almost identical to that from
BT(P) in the plateau region near the cutoff, larger than 35 ω0.
In other words, the harmonic process mainly occurs at the C
end, represented by the central trajectory BT(P).

Figure 5(b) also shows that the HHG spectrum from the
central trajectory BT(P) has the same plateau structure (en-
ergy higher than 35 ω0) as that from the full TDSE calculation.
We note that the representativeness of the central trajectory
BT(P) is demonstrated here on the harmonic structure of the
plateau region near the cutoff only but not the HHG inten-
sity value, correct with the factor of ≈105. Additionally, we
consider the ensembles of trajectories around and including
BT(P) and show the results in Fig. 6, for instance, the accel-
erations and HHG spectra for two cases: (i) 40 trajectories
with initial positions at r = 2.106 a.u. and 40 values of cos ϑ

corresponding to ϑ ∈ (0◦, 90◦) and (ii) 39 trajectories with
cos ϑ = 0.94 and 39 values of r ∈ [1.62, 5.0] a.u. These cases
are denoted as BT(40Ps) and BT(39Ps) and compared with
the TDSE results. The figure shows that the harmonic spectra
increase in intensity (with the multiplier factor of 500 to fit the
HHG spectrum from the TDSE calculation) but maintain the
harmonic structure near the cutoff as previous. The picture
remains the same if including more innermost BTs(P) into
the calculation but with the multiplier factor decreased, par-
ticularly equal to 1.78 when considering almost all innermost
trajectories which have a typical harmonic structure with an
apparent cutoff, about 2060 trajectories. These results support
the idea of the central trajectory BT(P), meaning it keeps all
dynamics of the harmonic process near the cutoff. To recover
the full HHG plateau, including the low-energy region, we
should consider more trajectories in the negative side of the
z axis, i.e., BTs(N).
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FIG. 7. Time-frequency profile of the acceleration of the BTs(P)
in two cases: (a) rab = 120 a.u. and (b) rab = 30 a.u. illustrated for
the case of SAE + P. The color code indicates the HHG intensity in
logarithmic scale.

In this subsection, all calculations are performed for the
case SAE + P. The results are similar for the SAE case
because the representativeness of the central trajectory is com-
mon regardless of whether it is with DCEP or not (see the
Appendix). Indeed, the harmonic intensity ratio at around
the cutoff (H43–H44) from BT(P) in SAE + P and SAE is
about 4.74, which is consistent with the ratio from the TDSE
calculation (given the ratio of 4.8–5.36). This emphasizes the
representativeness of the central trajectory BT(P).

3. Bohmian trajectory nonlocality

Now, we show other evidence of nonlocality of the BT by
presenting the time-frequency profiles of the accelerations of
BTs(P) obtained by Eq. (10), and illustrate for the case of
SAE + P. For the SAE case, the physical picture is totally
similar. To obtain the time-frequency map, we perform the
Morlet wavelet transform [72,73] and exhibit the results in
Fig. 7.

Figure 7(a) is the time-frequency map of BT(P) obtained
when the time-dependent wave function is solved with rab =
120 a.u. One can see that although BT(P) localizes near the
core, its time-frequency map reveals both short (left color
arches) and long (right color arches) trajectories. In other
words, the central trajectories can reflect the dynamics of the
harmonic process. This result again emphasizes the central
trajectory’s role and leads to a natural question about the role
of the outermost trajectories.

To address that question, we explore the time-frequency
map of BT(P) when moving the absorption boundary from
rab = 120 a.u. to near the excursion amplitude of the electron,
rab = 30 a.u. ≈ rq, shown in Fig. 7(b). By doing that, the

long electron trajectories, whose excursion time is longer than
0.7 τ0, can be filtered out [74]. We can see that the time-
frequency map in Fig. 7(b) now exhibits only the left color
arches, i.e., only the retention of the short electron trajectories.
Obviously, this illustrates that the change of the outermost
trajectories, which results from the different probability den-
sity |�(r, t )|2, transmits and alters nonlocally the innermost
trajectories via the phase of the wave function [50,51].

Interestingly, calculated from the TDSE acceleration
[Eq. (9)] when absorbing the long electron trajectories, the
harmonic intensity at around the cutoff (H43–H44) decreases
about 1.74–1.8 times. This is the nearly exact amount missed
when considering only the innermost trajectories, 1.78, as
given in the previous subsection. This result affirms that the
outermost trajectories contribute nonlocally to the HHG in-
tensity.

IV. CONCLUSION

In this paper, we first exemplify a case in which the DCEP
effect manifests differently from the well-accepted mecha-
nism at the ionization step. Then, using Bohmian trajectory
analysis developed for three-dimensional linear molecules,
we can explain qualitatively and quantitatively the effect of
DCEP. Specifically, we show that the DCEP has nontrivial
effect on the propagation stage, visibly increasing the num-
ber of returning events even though it does not affect the
ionization step significantly. The result is an enhancement of
HHG intensity near the cutoff compared to the computation
without DCEP regardless of the same ionization rate in the
two models.

FIG. 8. Acceleration (a) and HHG (b) for the case of SAE from
BT(P) with thin solid cyan lines, and from two ensembles as in Fig. 6:
BT(40Ps) with dashed orange lines, and BT(39Ps) with thick solid
pink lines. The results from the TDSE are plotted by the dotted black
lines.
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Furthermore, by tracing the dynamics of individual
Bohmian trajectories, we identify the central trajectory hold-
ing all the dynamic information of the harmonic process in
this case. The representativeness of this central trajectory can
be clearly seen through the various ensembles of innermost
Bohmian trajectories. Apart from that, the nonlocality of the
Bohmian trajectory is also demonstrated through the time-
frequency profile of the central trajectory.

We note that the wavelength of 1000 nm is the critical
value where the mismatch between the instantaneous ioniza-
tion rate and the corresponding HHG intensity starts to be
revealed at some specific orientation angle such as θ = 0◦.
With longer wavelengths, such as 1600 nm (not shown) which
results in longer time excursion, the manifestation of DCEP in
the propagation step is more predominant.
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APPENDIX: ACCELERATIONS AND HHG SPECTRA
FROM BOHMIAN TRAJECTORIES IN THE SAE CASE

In this Appendix, we present the acceleration and its
Fourier transform—the HHG spectrum of the Bohmian tra-
jectory guided by the wave function from the TDSE within
SAE approximation.

By looking at the accelerations of BT(P), BT(40Ps), and
BT(39Ps) and the corresponding HHG spectra shown in
Fig. 8, one can see that, similar to the case of SAE + P in
Sec. III C 2, BT(P) can reproduce the main features of the
HHG spectrum, especially in the cutoff region. The larger
ensembles are needed for the quantitative agreement in the
low-energy region of the HHG.
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