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The Dirac equation for H2
+ is solved numerically by expansion in a basis set of two-center exponential

functions, using different kinetic balance schemes. Very high precision (27 to 32 digits) is achieved, either
with the dual kinetic balance, which provides the fastest convergence, or without imposing any kinetic balance
condition. An application to heavy molecular ions is also illustrated. The calculation of relativistic sum rules
shows that this method gives an accurate representation of the complete Dirac spectrum, making it a promising
tool for calculations of QED corrections in molecular systems.
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I. INTRODUCTION

The relativistic two-center Coulomb problem plays a fun-
damental role in molecular physics, similarly to the one-center
problem in atomic physics. It is also of interest for appli-
cations in two distinct regimes. First, the lightest molecular
ions H2

+, HD+, and so on, are studied experimentally [1–3]
and theoretically [4,5] with high precision. A precise solution
of the two-center Dirac equation can be used to develop the
theory further through nonpertubative calculations of QED
corrections to improve determinations of fundamental con-
stants [6] and constraints on additional forces beyond the
Standard Model [1,7,8]. Second, in the strong-field regime,
quasi-molecules formed in collisions of highly charged heavy
ions are unique tools to explore phenomena related to the
instability of the QED vacuum [9,10]. Precise energy level
calculations in these systems, including QED corrections
[11,12], are useful to guide experimental efforts.

Substantial progress in the numerical resolution of the two-
center Dirac equation was achieved recently. The relativistic
energy of H2

+ was calculated with 20-digit accuracy in two
independent works, one by Kullie and Schiller using the finite
element method [13] and in our previous work [14] using an
iterative method [15].

Although it would be natural to think that those results are
already sufficient, there is actually a strong interest in going
even further in the perspective of performing nonperturbative
calculations of QED corrections in the hydrogen molecular
ions, in particular, the one-loop self-energy, which is currently
the main source of theoretical uncertainty [4,5]. Indeed, the
calculation of the one-loop self-energy in a weak binding field
(i.e., low nuclear charges) suffers from a serious loss of nu-
merical precision because of strong cancellations occurring in
the renormalization procedure, hence the need for extremely
accurate wave functions and energies [16].

Furthermore, calculations of QED corrections require
knowledge of the Dirac Green’s function, thus a numer-
ical representation of the entire spectrum of the Dirac

Hamiltonian. A numerical method that provides only a sin-
gle eigenstate at each execution, such as those presented in
[13,14], might prove impractical for this purpose, and it is
more desirable to use an expansion of the wave functions in a
finite basis set. The Dirac equation is then transformed into an
eigenvalue problem that can be fully diagonalized, allowing
for numerical evaluation of the Green’s function [17].

Various types of basis sets have been used to expand the
four-component Dirac wave function of the two-center prob-
lem [18–26], such as Gaussians [20,22,23], Slater orbitals
[21], or B splines [24,25]. In this work, we use a basis set of
pure two-center exponentials [27], similar to that used in our
previous work [14]. Compared to, e.g., a Gaussian basis set,
it allows for a better representation of the singular behavior of
the wave function in the vicinity of the (point-like) nuclei.

The main issues encountered when solving the Dirac equa-
tion in a basis expansion are the so-called variational collapse
[28] (when variational optimization is used) and the presence
of spurious states in the forbidden region between the lowest
positive-energy eigenvalue and the highest negative-energy
one [29]. Several strategies were developed to avoid these
problems [21,28–36]. One of them is the use of a min-max
variational principle [21,30,31], which, however, necessitates
the resolution of a computationally expensive nonlinear eigen-
value problem. The most widely used approach is the kinetic
balance, whereby some relationship between the spinor com-
ponents of the basis functions is imposed. The earliest and
most popular version of this idea is the restricted kinetic bal-
ance (RKB) [33,34], which guarantees that the kinetic energy
for positive-energy states is correct in the nonrelativistic limit.
An important refinement is the dual kinetic balance (DKB)
[36,37] that was shown to avoid spurious states in the central
field case. In the DKB, positive- and negative-energy states
are described on an equal footing, which is a favorable feature
for the evaluation of QED corrections that involve sums over
the entire spectrum. Nevertheless, a rigorous mathematical
study of the spurious state problem showed that their absence
is not fully guaranteed in any of the above approaches for a
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pure Coulomb attractive potential [29]. On the other hand,
their presence is not an insurmountable problem in practical
calculations as they can be identified and eliminated [24,38].

In this work, we investigate two different approaches. First,
we solve the Dirac equation in the absence of any kinetic
balance condition, an approach we shall call “no kinetic bal-
ance” (NKB), and second, we use a DKB basis set [36]. In
addition, we performed calculations using the RKB, which
are described in Appendix A. By analyzing the convergence
of our numerical results, we show that both the NKB and
DKB approaches implemented with an exponential basis set
improve the accuracy of relativistic energy levels by several
orders of magnitude with respect to [13,14].

In the perspective of performing nonperturbative QED cal-
culations, it is not sufficient to study the precision of the
energy of the ground state or first few excited states; one
should rather assess to which extent the discrete spectrum ob-
tained by diagonalizing the Dirac Hamiltonian in a finite basis
set represents its actual spectrum. To this end, we evaluate
several sum rules [38], demonstrating the suitability of our
approach to construct a numerical approximation of the Dirac
Green’s function.

II. MATRIX REPRESENTATION
OF THE DIRAC EQUATION

We write the Dirac equation in atomic units (h̄ = m = e =
1) as

HDψ = Eψ, ψ =
(

ϕ

χ

)
, (1a)

HD = (β − I4)c2 + cαp + V =
(

V cσp
cσp V − 2c2

)
, (1b)

where HD is the Dirac Hamiltonian and ψ is the four-
component wave function, composed by the large ϕ and small
χ components. In Eq. (1b), β and α are the Dirac matrices,
σ the Pauli matrices, and I4 is the 4 × 4 identity matrix. The
Coulomb potential V is given by

V = −Z1

r1
− Z2

r2
, (2)

where Z1, Z2 are the nuclear charges and r1, r2 the distances
from each nucleus to the electron. Note that the rest mass
energy c2 has been subtracted from the energy in Eq. (1b).

The large (small) components of the wave functions can
be expanded in a basis set {gμ} ({ fμ}) with linear coefficients
Aμ (Bμ):

ϕ =
2N∑

μ=1

Aμgμ, χ =
2N∑

μ=1

Bμ fμ, (3)

where the functions fμ and gμ have opposite parities. Here, we
adopted notations similar to those of [39]. ϕ and χ comprise
two spinor components, so that N is the number of terms in
the expansion for a single spinor component.

Kinetic balance conditions consist in imposing some rela-
tionship between the basis functions gμ and fμ. The matrix
representation of the Dirac equation depends on the chosen
condition. Following [39], we give below this representation

for the NKB and DKB schemes. Expressions for the RKB are
given in Appendix A.

A. No kinetic balance

With the ansatz (3), the Dirac equation (1) writes, in matrix
form,(

VLL c�LS

c�SL VSS − 2c2SSS

)(
A
B

)
= E

(
SLL 0
0 SSS

)(
A
B

)
, (4)

where the matrix elements are given by

VLL
μν = 〈gμ|V |gν〉, VSS

μν = 〈 fμ|V | fν〉, �LS
μν = 〈gμ|σp| fν〉,

�SL
μν = 〈 fμ|σp|gν〉, SLL

μν = 〈gμ|gν〉, SSS
μν = 〈 fμ| fν〉. (5)

B. Dual kinetic balance

The DKB combines the RKB [see Eq. (A1)] and “inverse
kinetic balance” [39] prescriptions to ensure the correct de-
scription of both positive- and negative-energy states in the
nonrelativistic limit. The wave function is expanded as(

ϕ

χ

)
=

2N∑
μ=1

[
Aμ

(
gμ

1
2c σp gμ

)
+ Bμ

(− 1
2c σp fμ

fμ

)]
. (6)

The Dirac equation is then written in matrix form as(
TLL + VLL + 1

4c2 WLL 1
2c WLS

1
2c WSL VSS − 2TSS + 1

4c2 WSS − 2c2SSS

)(
A
B

)

= E

(
SLL + 1

2c2 TLL 0
0 SSS + 1

2c2 TSS

)(
A
B

)
, (7)

where the matrix elements are given by

TLL
μν = 〈gμ|p2/2|gν〉, VLL

μν = 〈gμ|V|gν〉,
WLL

μν = 〈gμ|σpV σp|gν〉, SLL
μν = 〈gμ|gν〉,

WLS
μν = 〈gμ|σpV − V σp − T σp| fν〉,

WSL
μν = 〈gμ|V σp − σpV − σpT | fν〉,

TSS
μν = 〈 fμ|V | fν〉, VSS

μν = 〈fμ|V|fν〉,
WSS

μν = 〈 fμ|σpV σp| fν〉, SSS
μν = 〈fμ|fν〉. (8)

III. REAL EXPONENTIAL BASIS SET
AND NUMERICAL DETAILS

We use a basis set of real exponential functions [14,27]

g(i)
μ (r) = eim(i)φr|m(i)|(e−αμr1−βμr2 ± e−βμr1−αμr2 ), (9)

with μ = 1, . . . , N . The index i = 1, 2 represents the spinor
component; the projection of the spin (s) on the internuclear
axis z is sz = 1/2 (−1/2) for i = 1(2). φ is the angle of rota-
tion around z, and r the distance from this axis to the electron.
m is an eigenvalue of lz, l being the orbital momentum. For
example, for a state of jz = 1/2 (j = l + s), m takes on the
value 0 for i = 1 and 1 for i = 2. The sign in the right-hand
side is equal to (−1)m( j)

for gerade states and −(−1)m( j)
for

ungerade states. The basis functions for the small components
fμ are identical to gμ, except for the fact that they are of
opposite parity.
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TABLE I. Convergence of the ground-state energy of H2
+ at R = 2.0 with the DKB basis set, using different values of the maximal

exponent included in the basis, αmax. Bold figures are converged. The value Eref , which is used to estimate the error |E − Eref | in Figs. 1 and 2,
is given in the last line. Values with αmax � 1010 and ni � 80 were obtained using 150 digits of numerical precision.

ni αmax = 108 αmax = 1010

30 −1.102 641 581 032 577 164 089 813 929 495 −1.102 641 581 032 577 164 089 813 916 081 035
40 −1.102 641 581 032 577 164 118 170 109 212 −1.102 641 581 032 577 164 118 170 109 063 546
50 −1.102 641 581 032 577 164 118 125 368 536 −1.102 641 581 032 577 164 118 125 368 576 888
60 −1.102 641 581 032 577 164 118 125 002 656 −1.102 641 581 032 577 164 118 125 002 692 652
70 −1.102 641 581 032 577 164 118 124 999 924 −1.102 641 581 032 577 164 118 124 999 973 845
80 −1.102 641 581 032 577 164 118 124 999 916 −1.102 641 581 032 577 164 118 124 999 958 261
90 −1.102 641 581 032 577 164 118 124 999 920 −1.102 641 581 032 577 164 118 124 999 957 680
100 −1.102 641 581 032 577 164 118 124 999 921 −1.102 641 581 032 577 164 118 124 999 957 654

αmax = 1011

120 −1.102 641 581 032 577 164 118 124 999 957 656 2

The exponents αμ and βμ are chosen in a pseudorandom
way [27] in several intervals, see Table I of [14] for an il-
lustrative example. The first three intervals comprise smaller
values of the exponents (αμ, βμ ∼ 1) and mainly influence the
behavior of the wave functions at intermediate (r1, r2 ∼ a0,
where a0 is Bohr’s radius) and long distances. The other
intervals including increasingly large exponents model their
singular behavior in the vicinity of the nuclei. In contradistinc-
tion with [14], the sizes ni of all the subsets are here chosen to
be equal.

One important advantage of this basis set is to better repre-
sent the singular behavior of the wave function in the vicinity
of the point-like nuclei (through the inclusion of large expo-
nents in the basis) compared to, e.g., Gaussians. Moreover, all
the matrix elements appearing in Eqs. (5) and (8) can be cal-
culated analytically by recurrence relations (see [27]) which
allows for a high level of accuracy as numerical integrations
are completely avoided.

Since we aim for highly accurate energy levels and wave
functions, it is mandatory to use multiple-precision arithmetic.
The very wide range of exponents included in basis sets makes
the matrices ill-conditioned and increases further the need for
numerical accuracy. Multiprecision arithmetic is handled by
the package MPFUN2020 [40]. For most calculations we use
96-digit floating point numbers. We checked the stability of
our results as a function of numerical precision; in cases where
a nonnegligible dependence was observed, the numerical pre-
cision was increased so that all given digits are stable.

The calculation of matrix elements is much more computa-
tionally expensive for DKB than for NKB [compare Eqs. (5)
and (8)]. For example, for N = 1000 and 96-digit arithmetic,
it required about half an hour in NKB and 19 hours in DKB,
using 12 cores of an Intel Xeon Gold 5220 processor.

IV. RESULTS

Unless otherwise specified, we use the CODATA 2018 value
of c = α−1, ca = 137.035 999 084, in all calculations [41].

Table I shows the convergence of the ground-state (1sσg)
energy of the H2

+ molecular ion for an internuclear distance
R = 2.0 a.u. obtained using the DKB approach. Similar data
for NKB are given in Table VI in the Appendix B. In addition,
the convergence for both basis sets is shown graphically, using

a more extensive set of data with respect to the tables, in
Figs. 1 and 2.

The convergence is studied as a function of two parameters:
(i) the maximal value of exponents included in the basis,
αmax, which is varied from 107 to 1010 by keeping the first
p subsets, where p lies between 9 and 12; (ii) the number of
basis functions ni in each subset. The basis size is equal to
N = pni per spinor component.

Similar behaviors are observed in NKB and DKB, with
quicker convergence in the DKB case. The precision im-
proves with increasing basis size up to a certain value of N ,
above which it saturates. When the maximal exponent αmax

is increased, the saturation occurs at higher N and a better
precision floor is reached. The existence of this precision floor
dependent on αmax can be understood by considering that the
basis set allows representing the behavior of the wave function
down to a distance r ∼ 1/αmax from the nuclei. The scaling
of the error on the energy can be estimated in a simplified
approach by calculating the contribution to the energy from
a sphere of radius 1/αmax centered on a nucleus, taking into
account the short-distance behavior of the wave function,
ϕ ∼ rγ−1 with γ =

√
1 − Z2/c2. One then gets �E ∼

(1/αmax)2γ . A power-law fit of our data as a function of
1/αmax yields exponents of 2.16 for Z =1, whereas 2γ � 2.00,

FIG. 1. Convergence of the ground-state energy of H2
+ at R =

2.0 with the NKB basis set, using different values of the maximal
exponent included in the basis set αmax, which are given in the legend.
The reference value of the energy Eref , used to estimate the error
|E − Eref | is given in the last line of Table I.
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FIG. 2. Same as Fig. 1, for the DKB basis set.

and 1.58 for Z = 90 (see the convergence data in Table VII in
Appendix C), whereas 2γ � 1.51, in reasonable agreement
with the above model.

A phenomenon known as “prolapse” [42–44] is observed
for small values of ni, i.e., the energy lies below the exact
energy, which is possible because the Dirac energy is not a
variational minimum. This behavior disappears at larger basis
sizes: the values obtained in the saturation region are always
above the exact energy and decrease when αmax is increased.

Overall, the NKB and DKB basis sets yield the ground-
state energy with 27 and 32 converged digits, respectively.
The large improvement with respect to RKB (see [14] and
Appendix A) is consistent with the discussion in [14], where
it was noted that the behavior of the small components χ in
the vicinity of the point-like nuclei is not well represented
by the RKB prescription. Our results indicate that the simple
exponential basis functions used in NKB improve the descrip-
tion of χ and that the best description is provided by the
more flexible DKB basis set, which includes both the pure
exponential behavior and that imposed by kinetic balance.

The faster convergence of the DKB approach comes at the
cost of a higher complexity of the matrix elements, requiring
more computation time. Depending on the application, either
DKB or NKB may turn out to be the most cost-effective
method.

Our final results for the H2
+ (Z = 1) and Th2

179+ (Z = 90)
are given in Table II and compared to previous works. The
precision decreases at high Z because of the stronger singular-
ity of the wave function at the nuclei, which slows down the

TABLE II. Comparison of the Dirac ground-state energy ob-
tained in this work, using DKB, with previous results. The value
of [13] is obtained from the more precise value of the relativistic
correction given in the added note [45]. For Z = 90, we repeated
the calculation with a different value of c, cb = 137.035 999 074 to
compare our result with that of the authors of Ref. [26]. In the results
of “this work” all digits are converged.

Z E c Ref.

1 −1.102 641 581 032 577 164 118 124 999 957 65 ca This work
−1.102 641 581 032 577 164 118 1 ca [13]

90 −9 504.756 648 434 009 50 ca This work
−9 504.756 648 536 783 47 cb This work
−9 504.756 648 531 cb [26]

TABLE III. Energies of the first eight excited states of H2
+ at

R = 2.0. All digits are converged. Note that π states give rise to a
fine-structure doublet.

State | jz| E (This work) E [25]

2pσu 1/2 −0.667 552 771 993 113 045 809 −0.667 552 771 8
2pπu 1/2 −0.428 781 160 212 631 303 442 −0.428 781 158 4
2pπu 3/2 −0.428 774 447 992 646 216 404
2sσg 1/2 −0.360 871 070 577 597 640 901 −0.360 871 069 5
3pσu 1/2 −0.255 419 704 748 235 324 061 −0.255 419 703 3
3dσg 1/2 −0.235 781 268 452 381 629 103 −0.235 781 268 1
3dπg 1/2 −0.226 703 071 340 986 072 893 −0.226 703 069 6
3dπg 3/2 −0.226 701 493 971 348 876 268

convergence with respect to αmax, as discussed above. Despite
this, the precision is improved by five orders of magnitude,
showing the potential interest of our approach for calculations
in heavy quasi-molecules.

Beyond the ground-state energy, the diagonalization of the
eigenvalue problem gives a numerical representation of the
full spectrum of the Dirac Hamiltonian whose precision can
be assessed through the calculation of sum rules, as described
in the next section. For illustration, the energies of the first few
excited states of H2

+ can be found in Table III. No detailed
convergence study was undertaken, but the 21 given digits are
converged for all levels. It is worth noting that no spurious
states were found in these calculations: after addition of c2

that was subtracted in Eq. (1b), the 4N eigenvalues split into
2N positive eigenvalues, and 2N in the negative-energy con-
tinuum below E = −c2. However, two spurious states were
found for the largest basis sizes (ni � 90) in our calculations
at Z = 90, which were performed with the DKB basis set.

V. SUM RULES

In this section, we use the eigenvalues En and eigenvectors
|ψn〉 obtained by full diagonalization of the Dirac equation ex-
panded in the NKB basis set [Eq. (4)] to evaluate the sum rules

Si =
∑

n

(En − E0)i|〈�0|r|�n〉|2, (10)

as done in [38]. r is the position vector of the electron. E0 and
|�0〉 are the energy and wave function of the ground state,
which is an even state with jz = ±1/2. Choosing jz = 1/2, it

TABLE IV. Sum rules [see Eq. (10)] for the ground state of H2
+

at R = 2.0, using the NKB basis set with αmax = 108.

ni −�S0/S0 −S1 �S2/S2

30 5.8 × 10−14 1.4 × 10−12 2.5 × 10−8

40 1.4 × 10−16 2.3 × 10−15 4.8 × 10−11

50 2.8 × 10−18 7.2 × 10−18 3.7 × 10−12

60 1.5 × 10−20 8.5 × 10−20 1.1 × 10−14

70 1.3 × 10−22 5.0 × 10−22 4.3 × 10−17

80 1.0 × 10−23 2.4 × 10−23 9.9 × 10−18

90 2.1 × 10−24 1.8 × 10−24 3.6 × 10−19

100 2.1 × 10−24 7.3 × 10−26 2.3 × 10−21
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TABLE V. Convergence of the ground-state energy of H2
+ at R = 2.0 with the RKB basis set, using different values of the maximal

exponent included in the basis, αmax. Bold figures are converged.

ni αmax = 108 αmax = 1010

30 −1.102 641 581 032 577 164 817 576 −1.102 641 581 032 577 164 817 577
40 −1.102 641 581 032 577 164 463 630 −1.102 641 581 032 577 164 463 628
50 −1.102 641 581 032 577 164 238 103 −1.102 641 581 032 577 164 238 103
60 −1.102 641 581 032 577 164 150 087 −1.102 641 581 032 577 164 150 087
70 −1.102 641 581 032 577 164 141 481 −1.102 641 581 032 577 164 141 481
80 −1.102 641 581 032 577 164 133 131 −1.102 641 581 032 577 164 133 131
90 −1.102 641 581 032 577 164 130 716 −1.102 641 581 032 577 164 130 716
100 −1.102 641 581 032 577 164 126 142 −1.102 641 581 032 577 164 126 142

is coupled via the r operator to odd states having jz = −1/2,
1/2, and 3/2. The index n therefore runs over all states having
these symmetries.

The first values of Si can be shown to be [38,46]

S0 = 〈�0|r2|�0〉, (11a)

S1 = 0, (11b)

S2 = 3c2. (11c)

A comparison of the values of Si obtained with Eq. (10) with
those of Eq. (11), which are either exact (for S1 and S2) or
can be calculated with high accuracy (for S0), provides a way
to evaluate the accuracy of our discrete representation of the
Dirac spectrum. This can be viewed as a test of accuracy of
the numerical Green’s function

G(z) �
∑

n

|ψn〉〈ψn|
En − z

, (12)

since the Si can be written in the form

Si = 〈ψ0|rG(E0)(H − E0)i+1r|ψ0〉. (13)

The results are shown in Table IV, where �Si = Snum
i − Sexact

i ,
with Sexact

i given by Eq. (11). The errors are small and decrease
as the basis size is increased. This provides strong evidence
that our numerical description of the Dirac spectrum is accu-
rate and complete.

VI. CONCLUSION

We showed that the two-center Dirac equation for H2
+ can

be solved to essentially arbitrary accuracy using an expansion
in a basis set of pure exponential basis functions and multiple-
precision arithmetic. Several kinetic balance conditions were

compared; the DKB scheme [36] was found to yield the fastest
convergence. Alternatively, a pure exponential basis without
any kinetic balance condition (NKB) can be used when the
slower convergence is to some extent counterbalanced by
simpler calculation of matrix elements. Finally, the calculation
of sum rules gave evidence that the full diagonalization of the
Dirac Hamiltonian provides an accurate representation of the
Green’s function. This method appears to be a promising tool
for high-precision relativistic calculations of molecular prop-
erties such as QED corrections in low-Z but also in high-Z
systems.
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APPENDIX A: RESTRICTED KINETIC BALANCE

The RKB prescription consists in imposing the following
relationship between the basis functions of the large and small
components [33,34]:

fμ = 1

2c
σp gμ. (A1)

1. Matrix form of the Dirac equation

Injecting Eq. (A1) into the Dirac equation, Eq. (1), leads to
the following matrix form of the Dirac equation [47]:(

V 2cT
2cT W − 4c2T

)(
A
B

)
= E

(
S 0
0 2T

)(
A
B

)
, (A2)

TABLE VI. Same as Table V, using the NKB basis set.

ni αmax = 108 αmax = 1010

30 −1.102 641 581 032 599 064 556 576 400 842 −1.102 641 581 032 599 064 558 575 251 726
40 −1.102 641 581 032 577 206 904 005 189 779 −1.102 641 581 032 577 206 903 909 324 324
50 −1.102 641 581 032 577 164 396 302 629 401 −1.102 641 581 032 577 164 396 294 032 166
60 −1.102 641 581 032 577 164 120 584 096 424 −1.102 641 581 032 577 164 120 583 064 101
70 −1.102 641 581 032 577 164 118 141 273 724 −1.102 641 581 032 577 164 118 142 857 619
80 −1.102 641 581 032 577 164 118 123 938 353 −1.102 641 581 032 577 164 118 125 507 671
90 −1.102 641 581 032 577 164 118 123 415 736 −1.102 641 581 032 577 164 118 125 019 588
100 −1.102 641 581 032 577 164 118 123 227 381 −1.102 641 581 032 577 164 118 125 000 808
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TABLE VII. Convergence of the ground-state energy of Th2
179+ (Z = 90) at R = 2.0/Z with the DKB basis set. Values with αmax/Z = 1010

and ni � 90 were obtained using 150 digits of numerical precision, while the value with αmax/Z = 1011 and ni = 120 was obtained using 300
digits of numerical precision.

ni αmax/Z = 108 αmax/Z = 1010

60 −9 504.756 648 434 007 951 288 −9 504.756 648 434 009 499 551
70 −9 504.756 648 434 007 761 385 −9 504.756 648 434 009 499 550
80 −9 504.756 648 434 007 970 559 −9 504.756 648 434 009 499 570
90 −9 504.756 648 434 008 102 338 −9 504.756 648 434 009 499 639
100 −9 504.756 648 434 008 162 438 −9 504.756 648 434 009 499 723

αmax/Z = 1011

120 −9 504.756 648 434 009 500 732

where the matrix elements are

Vμν = 〈gμ|V |gν〉, Tμν = 〈gμ|p2/2|gν〉,
Sμν = 〈gμ|gν〉, Wμν = 〈gμ|σpV σp|gν〉. (A3)

2. Numerical results

We implemented Eq. (A2) using the exponential basis
functions described in Sec. III. Our results are presented
in Table V. The dependence of the energy on ni is very
close to what was obtained in [14] using a similar RKB
basis set and an iterative method (see Table II in that
reference). This confirms the equivalence between the di-
rect resolution of the four-component eigenvalue problem,
Eq. (A2), and the method of [14,15] based on iterated
resolution of a two-component linear system. Results ob-
tained with αmax = 108 and 1010 are essentially identical,
showing that the precision is only limited by the slow
convergence with respect to ni. Extrapolation to ni → ∞
would yield the same value of the ground-state energy
as that published in [14], with an uncertainty of about
10−20 a.u. However, we do not pursue this analysis here
as both the NKB and DKB basis sets provide much faster

convergence and more accurate results, as described in
Sec. IV.

APPENDIX B: NO KINETIC BALANCE

Table VI shows our numerical results for the ground-state
(1sσg) energy of the H2

+ molecular ion (Z = 1) for an internu-
clear distance R = 2.0 a.u. obtained using the NKB approach.
The convergence is slower than with DKB (see Table I), but
NKB still yields 27-digit accuracy for the largest basis size
tested here.

APPENDIX C: GROUND-STATE ENERGY OF Th179+
2

To study the applicability of our approach to strongly
bound (high-Z) systems, we calculated the ground-state en-
ergy of the Th179+

2 molecule (Z = 90) at R = 2.0/Z a.u. using
DKB. The basis set is obtained by multiplying by Z the
bounds of the intervals in which the exponents αi, βi are
generated. Our results are shown in Table VII. The conver-
gence is much slower than for Z = 1 (compare with Table I),
but we were still able to obtain 18 converged digits, which
represents an improvement by five orders of magnitude with
respect to [26].
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