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Elastic scattering of positive muons from 3He and 4He

M.-S. Wu ,1,2 Y. Zhang,1,2,* G.-A. Yan ,3 J.-Y. Zhang,4,† K. Varga,5 and Z.-C. Yan6,4

1Center for Theoretical Physics, Hainan University, Haikou 570228, China
2School of Science, Hainan University, Haikou 570228, China

3School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
4State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science

and Technology, Chinese Academy of Sciences, Wuhan 430071, China
5Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA

6Department of Physics, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3

(Received 21 March 2023; accepted 17 April 2023; published 25 April 2023)

The study of positive muon μ+-He scattering plays an important role in precision experiments involving
positive muons. In this paper, we employed the confined variational method to investigate S-wave μ+-He
scattering with scattering momenta below 0.1a−1

0 , where a0 denotes the Bohr radius. Our approach yielded
accurate S-wave phase shifts and scattering lengths. By utilizing the modified effective range formula, we
determined the S-wave scattering lengths to be −12.3a0 and −10.6a0 for μ+- 4He and μ+- 3He scattering,
respectively. Furthermore, we examined the distortion effects on helium induced by μ+.
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I. INTRODUCTION

The positive muon μ+, which is the antiparticle of the
muon, holds a special significance in testing the theory
of quantum electrodynamics (QED) and searching for new
physics beyond the standard model of elementary particle
physics (BSM) [1–7]. One of the most notable examples is
the Muon g − 2 experiment, which has provided stronger evi-
dence for BSM physics [1]. Recently, Delaunay et al. [8] and
Ohayon et al. [9] have proposed that muonium spectroscopy
could serve as an alternative approach for determining the
muon anomalous magnetic moment. To meet the requirements
of these precision experiments, μ+ needs to be trapped and
cooled to low temperatures as standard μ+ beams possess
relatively high energy and poor phase space quality [10]. For
instance, the muCool device has been developed at the Paul
Scherrer Institute (PSI), which uses cryogenic helium buffer
gas for precooling [11,12]. Hence, studying μ+-He scattering
is essential for enhancing the cooling process in these muon
precision experiments.

The process of slowing down μ+ in low-pressure He gas
has been studied by Fleming et al. [13] and Senba [14].
Fournier et al. [15] performed calculations of the binding en-
ergies of 4He μ+ using the Born-Oppenheimer (BO) potential
of HeH+. Cencek et al. [16], Stanke et al. [17,18], Tung et al.
[19], and Pachucki [20] further improved the BO potentials
for HeH+ and its isotopic combinations. Yang et al. [21] used
explicitly correlated Gaussians (ECGs) to calculate the high-
accuracy binding energies of all the bound states of 4He μ+
without applying the BO approximation. They confirmed that
the BO approximation is reasonable for 4He μ+, as it can be
regarded as a system of a positive muon bound to a slightly
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distorted helium atom. However, ab initio calculations still
need to be performed for μ+-He scattering.

In this paper, we calculate the scattering properties of
μ+- 4He and μ+- 3He using the confined variational method
(CVM) combined with ECGs. The CVM is an ab initio
method used for studying low-energy elastic scattering prob-
lems. It has been widely applied to investigate the scattering
of electron, positron, and positronium with hydrogen, helium,
and hydrogen molecular systems [22–27]. Very recently, a
strategy was developed that can effectively eliminate the non-
physical confinement effect of the original CVM [28,29]. In
addition, unlike the original CVM, this strategy uses a smaller
confining radius, which greatly reduces the computational
cost.

This paper is organized as follows: In Sec. II, we introduce
the CVM. We present the computational results in Sec. III,
where we provide the phase shifts in Sec. III A, the S-wave
scattering lengths in Sec. III B, and the distortions of the
helium atoms during the scattering processes in Sec. III C.
Finally, a summary is given in Sec. IV. Phase shifts are ex-
pressed in radians, and atomic units (a.u.) are used throughout
unless otherwise stated.

II. THEORY

The scattering of μ+-He, in the absence of the BO ap-
proximation, represents a fundamental four-body Coulomb
problem. The Hamiltonian of the system, in the laboratory
frame, is given by

H =
4∑

i=1

p2
i

2mi
+

4∑
i, j=1

j>i

qiq j

|ri − r j | , (1)

where ri, mi, and qi denote the position vector, mass,
and charge of the ith particle, respectively, and pi is the
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momentum conjugate to ri. In particular, particle 1 refers
to the helium nucleus, particles 2 and 3 represent the two
electrons, and the last particle 4 corresponds to the positive
muon.

After removing the center-of-mass motion from H and
setting the helium nucleus as the origin of the coordinate
system, the internal Hamiltonian of the scattering system takes
the form

H = 1

2

3∑
i, j=1

�i jπi · π j +
3∑

i=1

q1qi+1

|xi| +
3∑

i, j=1
j>i

qi+1q j+1

|xi − x j | , (2)

where xi = ri+1 − r1 are the internal relative coordinates and
πi = −i∂/∂xi are the momenta conjugate to xi. Also, �i j =∑4

k=1 UikUjk/mk (i, j = 1, 2, 3), with the transformation ma-
trix U defined by

U =

⎛
⎜⎜⎝

−1 1 0 0
−1 0 1 0
−1 0 0 1
m1
mt

m2
mt

m3
mt

m4
mt

⎞
⎟⎟⎠, (3)

where mt = ∑4
i=1 mi is the total mass of the system.

The CVM approach involves the use of a confining po-
tential Vcp to transform the original many-body scattering
problem into a confined many-body bound-state problem. Ac-
cording to CVM, when two potentials V1 and V2 have the same
eigenenergy E under the same confining potential Vcp, they
will exhibit the same phase shift at energy E [22,26]. Suppose
V1 represents the actual potential between a μ+ particle and
helium, and V2 is an unknown, adjustable potential. The CVM
can help us construct this auxiliary potential V2 and then solve
the scattering equation of V2 to obtain the phase shift of the
original μ+-He scattering problem.

The specific procedures to determine V2 are as follows. Ini-
tially, a many-body calculation is carried out by incorporating
a confining potential Vcp into the internal Hamiltonian of the
original μ+-He scattering problem,

(H + Vcp)�(x, s) = E�(x, s), (4)

where x refers to (x1, x2, x3) and s refers to (s1, s2, s3, s4), rep-
resenting the spins of the four particles. The function � is the
eigenfunction of H + Vcp that corresponds to the eigenenergy
E . The eigenenergy E is the sum of the ground-state energy
of He and the scattering energy Es = k2/(2mr ), with k being
the scattering momentum and mr the reduced mass between
μ+ and He. In order to account for the intricate Coulomb
correlations between particles, the many-body wave function
� is expanded in terms of the explicitly correlated Gaussians
(ECGs) [30–32],

� =
N∑

n=1

cnφn, (5)

φn = |v|2Kn+L exp

(
−1

2
xTAnx

)
YLM (v)χ (s), (6)

where N is the basis size and cn are the expansion coeffi-
cients. Furthermore, v represents the global vector [30], χ (s)
represents the spin function, An is a parameter matrix, Kn is

an integer, and |v|2Kn is an important factor that describes
the wave function between μ+ and He. Lastly, L and M are,
respectively, the total orbital angular momentum and its z
component, while YLM denotes the spherical harmonics.

The potential used in this study [22,26] is given by

Vcp(ρ) =
{

0, ρ < R0,

G(ρ − R0)2, ρ � R0,
(7)

where ρ represents the distance between the center of mass
of helium and μ+, and R0 is the confining radius. The value
of R0 is chosen such that the complex short-range interaction
between μ+ and helium can be neglected outside the sphere
of radius R0. In this study, we set R0 equal to 18.

The confining potential in Eq. (4), or equivalently the
parameter G in Eq. (7), is adjusted to produce a specific
total eigenenergy E . Once the confining potential Vcp(ρ) is
determined for this specific E , we can proceed to solve the
one-dimensional bound-state problem:(

− 1

2mr

d2

dρ2
+ V2(ρ) + Vcp(ρ)

)
	(ρ) = E ′	(ρ). (8)

In this step, we aim to determine an adjustable model potential
V2 that produces the same scattering energy Es under the
same confining potential Vcp. Here, 	(ρ) and E ′ represent,
respectively, the eigenfunction and the associated eigenvalue.
We choose V2(ρ) to be

V2(ρ) = λe−αρ − αd

2ρ4
[1 − e−(ρ/β )6

], (9)

where λ, α, and β are adjustable parameters. The term
−αd/(2ρ4) is the long-range polarization potential, with
αd = 1.383 200 being the ground-state polarizability of he-
lium [33]. In this work, we set α = 0.5 and β = 5, and adjust
λ to ensure that the bound-state problem Eq. (8) yields the
eigenvalue E ′ = Es = k2/(2mr ) for given k. Once we have
determined the parameter λ from Eq. (8), we can determine
the phase shift of μ+-He scattering by solving the one-
dimensional scattering equation for V2:(

− 1

2mr

d2

dρ2
+ V2(ρ)

)
φ(ρ) = Esφ(ρ). (10)

It is worth noting that the calculated CVM phase shifts are
independent of the form of V2. This is due to the fact that the
phase shift is determined solely by the logarithmic derivative
of the wave function, and the derivatives at each step have
been shown to be equal [22,23,27].

III. RESULTS

A. Phase shifts

In this study, we use masses of 7294.299 541 42 for
the 4He nucleus, 5495.885 280 07 for the 3He nucleus,
and 206.768 283 0 for μ+ [34]. The ground-state ener-
gies of atomic 4He and 3He are calculated to be E4He =
−2.903 304 557 and E3He = −2.903 167 210, respectively, us-
ing 700 ECGs.

Table I presents the convergence test results of the many-
body eigenvalue E , the model potential parameter λ, and
the S-wave phase shift δ for μ+- 4He scattering at k = 0.1,
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TABLE I. Convergence test for the many-body eigenvalue E in
Eq. (4), the model potential parameter λ in Eq. (9), and the S-wave
phase shift δ (in radians) at k = 0.1 for μ+- 4He scattering, as the
size of the basis set N increases. In atomic units.

N E λ δ

3100 −2.903 279 660 0.009 262 029 0.046 82
3400 −2.903 279 672 0.009 257 924 0.047 60
3700 −2.903 279 679 0.009 255 532 0.048 06
4000 −2.903 279 684 0.009 253 824 0.048 38

as the basis set size N increases. It is noted that the exact
corresponding many-body eigenvalue in Eq. (4) is E = E4He +
(0.1)2/(2mr ) = −2.903 279 690. We observe that E , λ, and δ
converge smoothly to the eighth, third, and second significant
digit, respectively. Therefore, in this work, we use N = 4000
for all calculations of the S-wave phase shifts of μ+- 4He and
μ+- 3He scatterings.

As the mass of μ+ is significant compared to that of a
helium nucleus, it is necessary to use finite helium nuclear
mass when studying μ+-He scattering. In contrast, for e+-He
scattering, the infinite nuclear mass approximation can be
used. In a test run, for example, with only 2000 ECGs, the
S-wave phase shift for e+-He scattering at k = 0.1 has already
converged to the third significant digit.

The difference between the CVM calculations for μ+-He
scattering and e+-He scattering can be explained as follows.
For e+-He scattering with L = 0, there is no bound state
between the positron and helium, so the first bound state in
Eq. (4) is optimized in our CVM calculation. However, for
μ+-He scattering with L = 0, there are four bound states
between μ+ and helium, so the fifth bound state in Eq. (4)
is optimized. In other words, the CVM calculation of μ+-He
scattering is more difficult than that of e+-He scattering, and
as a result, more ECGs are required, and fewer significant
digits are expected to converge.

Due to the level of difficulties of calculating μ+-He scat-
tering using CVM, only S-wave scattering was studied in this
work. Table II displays the S-wave phase shifts for μ+- 4He
and μ+- 3He scattering at k = 0.06–0.1. All phase shifts in
this table are accurate to the second significant digit. Due

TABLE II. S-wave phase shifts (in radians) obtained by the
confined variational method for μ+- 4He and μ+- 3He scattering at
k = 0.06 − 0.1, and by the Born-Oppenheimer (BO) potential of
HeH+. In atomic units.

k δ δ(BO)

μ+- 4He 0.06 0.32 0.38
0.07 0.25 0.31
0.08 0.19 0.23
0.09 0.12 0.16
0.1 0.048 0.088

μ+- 3He 0.06 0.26 0.31
0.07 0.20 0.25
0.08 0.13 0.18
0.09 0.066 0.10
0.1 −0.0044 0.032

TABLE III. S-wave scattering lengths as for μ+- 4He, μ+- 3He,
and e+-He scattering using the confined variational method (CVM),
the Born-Oppenheimer (BO) potential of HeH+, and the stochastic
variational method (SVM). In atomic units.

System Method as

μ+- 4He CVM −12.3
BO −14.0

μ+- 3He CVM −10.6
BO −11.9

e+-He SVM −0.474

to the difference in mass between 4He and 3He, their phase
shifts are noticeably distinct. As k decreases, the percentage
differences in the phase shifts between μ+- 4He and μ+- 3He
scattering decrease. For each scattering, the phase shifts de-
crease as k increases, which is the opposite of those in e+-He
scattering. The S-wave phase shift of e+-He scattering at k =
0.1 is 0.03 [35,36], which is similar to that of μ+- 4He scatter-
ing. Moreover, the convergence of the phase shifts of μ+- 3He
scattering is slower than that of μ+- 4He scattering, indicating
that the former is more difficult to calculate using CVM. The
phase shift of μ+- 3He scattering changes sign from posi-
tive at k = 0.09 to negative at k = 0.1, while for μ+- 4He
scattering it does not, suggesting that the S-wave interaction
is more attractive for μ+- 4He scattering than for μ+- 3He
scattering at the same k. For comparison, Table II also lists
the S-wave phase shifts obtained by the Born-Oppenheimer
(BO) potential of HeH+ [20] using a five-point polynomial
interpolation. These BO phase shifts are more positive than
our CVM results, indicating that the BO potential is more
attractive for μ+-He scattering.

B. Scattering length

The S-wave scattering length is a crucial parameter in
experiments involving cold or ultracold atoms and molecules.
However, currently, experimental or theoretical results for the
S-wave scattering length of μ+-He scattering are lacking. In
this study, we obtain the S-wave scattering lengths by fitting
the calculated phase shifts to the well-known effective range
expansion given by

k cot δk = − 1

as
+ rek2

2
, (11)

where δk is the phase shift corresponding to the momentum
k, as is the S-wave scattering length, and re is the effective
range. In order to take into account the long-range polarization
potential −αd/(2ρ4), we use the modified effective range
expansion [37],

tan δk = −ask

(
1 + 4αd k2

3
ln k

)
− παd k2

3
+ Dk3 + Fk4,

(12)
where D and F are two additional fitting parameters. It is
noted that higher-order terms ignored in these formulas do not
significantly impact low-k scattering processes.

The results of the scattering lengths obtained by the
CVM, as determined by Eq. (12), are presented in Table III.
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FIG. 1. The fitting result between the calculated S-wave phase
shifts (in radians) from the CVM and the effective range expansion
Eq. (11) for μ+- 4He scattering at k = 0.06–0.1. In atomic units.

A comparison with the results calculated by the Born-
Oppenheimer (BO) potential of HeH+ [20] is provided.
Additionally, the scattering length of e+-He scattering, ob-
tained by the stochastic variational method (SVM) under the
infinite nuclear mass approximation [38], is also included.

Note that the CVM and BO scattering lengths are extracted
from the phase shifts in Table II. The fitting results for the
CVM phase shifts of μ+- 4He scattering using Eqs. (11) and
(12) are shown in Figs. 1 and 2, respectively. From the two
figures, it is clear that the correct result cannot be obtained
using Eq. (11), while Eq. (12) fits well with the calculated
data. This indicates that the long-range polarization potential
has a significant influence on the μ+-He scattering length.

The CVM scattering lengths of μ+- 4He and μ+- 3He, de-
termined by Eq. (12), are −12.3 and −10.6, respectively. The
percentage differences between the CVM scattering lengths
and the BO results are 14% and 12% for μ+- 4He and
μ+- 3He, respectively.

The scattering length of e+-He is −0.474, which is less
negative compared to the scattering lengths of μ+-He. This
suggests that the interaction between μ+ and He is more

FIG. 2. The fitting result between the calculated S-wave phase
shifts (in radians) from the CVM and the effective range expansion
Eq. (12) for μ+- 4He scattering at k = 0.06–0.1. In atomic units.

FIG. 3. Probability density functions for the ground states of 4He
and 3He, as well as the μ+- 4He and μ+- 3He scatterings at k = 0.1.
In atomic units.

attractive at low energies. Although μ+ has the same charge
as e+, the larger mass of μ+ greatly reduces the value of the
kinetic energy, resulting in a more attractive interaction with
helium.

C. Distortion effects

When a helium atom and μ+ come into close proximity, the
helium atom undergoes distortion. In a previous study by Yang
et al. [21], it was confirmed that the bound state of 4He μ+ can
be considered as a system where a μ+ is bound to a slightly
distorted helium atom. However, the effects of distortion in
the μ+- 3He and μ+- 4He scatterings, and their comparison,
still need to be studied.

To provide a quantitative analysis of helium atom distor-
tion, we use the probability density function of the electron
fe(R),

fe(R) = R2
∫

dR〈�|δ(x1 − R) + δ(x2 − R)

2
|�〉, (13)

where the symbol 〈· · · 〉 indicates integration over the two
electron coordinates x1 and x2 relative to the helium nucleus,
while

∫
dR · · · represents integration over the solid angle of

vector R.
Figure 3 shows the probability density function fe(R) for

μ+- 4He and μ+- 3He scatterings at k = 0.1. For compari-
son, fe(R) of the ground-state 3He and 4He atoms are also
included. The four fe(R) are quite similar, with a peak near
R = 0.566. However, the peaks of μ+- 3He and μ+- 4He scat-
terings are lower than those of 3He and 4He, indicating that
the distortion of helium in μ+- 3He and μ+- 4He scatterings is
slightly greater. This is because

∫
fe(R)dR = 1 holds for all

four fe(R). The peak of μ+- 3He is 0.0098% lower than that
of 3He, and the peak of μ+- 4He is 0.0104% lower than that
of 4He, indicating that the helium distortions in μ+- 3He and
μ+- 4He are very similar to each other.

Figure 4 displays the probability density function fe(R)
for the ground state of the 3He atom, the μ+- 3He scattering
at k = 0.1, and the first and fourth bound states of 3He μ+.
Notably, all four density functions exhibit a peak near R =
0.566. Comparing fe(R) of μ+- 3He and 3He, we can observe
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FIG. 4. Probability density functions for the ground state of 3He,
the μ+- 3He scattering at k = 0.1, the first bound state of 3He μ+,
and the fourth bound state of 3He μ+. In atomic units.

their similarity, but their peaks are evidently higher than those
of the 3He μ+ bound states. This suggests that the helium
distortion in the 3He μ+ bound states is greater. Additionally,
the peak of the fourth 3He μ+ bound state is higher than that
of the first bound state (which is not visible in the inset),
implying that a larger helium distortion corresponds to a lower
bound state. This is because as the positive muon approaches
the helium atom, the distortion in the helium atom increases.

IV. SUMMARY

The confined variational method, in combination with an
explicitly correlated Gaussian basis, was used to calculate
the S-wave phase shifts and scattering lengths for low-energy
elastic μ+- 4He and μ+- 3He scatterings without relying on
the BO approximation. The S-wave phase shifts obtained
through this method are converged to the second significant
digit. By accounting for the long-range polarization effect, the
S-wave scattering length was determined to be −12.3a0 and
−10.6a0 for μ+- 4He and μ+- 3He scattering, respectively.
Furthermore, the distortion of helium in μ+- 3He scattering
was examined and compared to that of 3He μ+ bound states.
The distortions in μ+- 3He scattering were found to be min-
imal, with the first 3He μ+ bound state exhibiting the largest
distortion due to the proximity between μ+ and 3He.
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