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Spatially dependent Lamb shift in a waveguide and its influence on the optical
polyatomic cooperative effects
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We show that the Lamb shift can significantly affect the nature of the interatomic dipole-dipole interaction in
structured reservoirs. The effect is explained by the difference in the Lamb shift for atoms located at different
positions due to the inhomogeneity of the spatial structure of the modes of the electromagnetic field. Based on
the model system involving two atoms in a waveguide, we demonstrate that this difference can be the same order
as the natural linewidth of the atomic transition.
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I. INTRODUCTION

The study of collective optical effects in atomic ensem-
bles represents one of the most promising fields in quantum
physics. It has found a number of applications in quantum
metrology, frequency standardization, and quantum infor-
mation science. Nowadays, it is understood that a correct
theoretical description of cooperative effects keeping all the
interatomic correlations requires a microscopic approach.

In the frame of microscopy, the electromagnetic dipole-
dipole interaction between atoms can be interpreted as an
exchange of photons, including virtual ones. A similar mech-
anism produces the natural linewidth of atomic transitions.
Therefore, quantum optics approaches allow us to describe
both spontaneous decay of individual atoms and interatomic
dipole-dipole interactions within a single formalism [1–5].
However, there is one long-standing problem that is usually
concealed in these approaches: the problem of the Lamb shift.
In the framework of standard nonrelativistic approaches, it
undergoes ultraviolet divergence. In the case of atomic en-
sembles in free space, one manages to bypass this problem
easily; since the Lamb shift of all the atoms is the same,
it can be additively included in the transition frequency [6].
However, this simple trick does not work when we deal with
atomic ensembles coupled to a cavity or waveguide. In this
case, the atoms located at different positions undergo different
Lamb shifts due to spatial inhomogeneity of the modes of the
electromagnetic field in a cavity and/or waveguide [7–11]. In
turn, it can affect the interatomic dipole-dipole interaction and
associated cooperative effects.

In this paper we report the investigation of the Lamb shift
which depends on the position of an atom in a waveguide.
On this basis, we analyze how it modifies the character of
the dipole-dipole interaction. Our results demonstrate that the
difference in the Lamb shift for two atoms located at differ-
ent points can be comparable to the natural linewidth of the
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atomic transition or even exceed it. Therefore, the collective
dynamics of an atomic system can be significantly affected by
the Lamb shift.

II. COOPERATIVITY

According to the general quantum microscopic approach,
the evolution of an ensemble which contains N atoms under
the condition of a strong dipole-dipole interaction is described
by the coupled dipole model [6,12–27]. In the framework of
this formalism, the dynamics of the atomic-field system can
be treated on the basis of the non-steady-state Schrödinger
equation for the wave function of the joint system, which
consists of the atoms and the electromagnetic field, including
a vacuum reservoir. The Hamiltonian of this system can be
represented as Ĥ = Ĥ0 + V̂ , where Ĥ0 corresponds to non-
interacting atoms and the electromagnetic field in an empty
space and V̂ is the interaction between the atoms and the field.
The operator of the interaction V̂ can be written in the form

V̂ = − e

mc

N∑
i=1

p̂i · Â(ri ), (1)

where e is the electron charge, m is its mass, c is the speed
of light in vacuum, p̂i is the electron momentum operator
of the atom i, Â(r) is the operator of the vector potential of
the electromagnetic field, and ri is the position of the atom
i. Considering the electric dipole atomic transitions, hereafter
we assume the relation between matrix elements of the op-
erator p̂ and the dipole momentum of transition, 〈g|p̂|e〉 =
(−imω0/e)〈g|d̂|e〉. Here 〈g| and |e〉 denote the ground and
excited atomic states, respectively, ω0 is the resonant tran-
sition frequency, and i is the imaginary unit. Actually, the
approximation performed together with neglecting the term
proportional to Â2 in the operator of the interaction essentially
constitutes the dipole approximation used in Ref. [6].

Formally solving the Schrodinger equation for the joint
system, which consists of N atoms and the electromagnetic
field, and restricting ourselves to the states containing no more
than one photon (i.e., neglecting nonlinear effects), we obtain
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a system of equations for the amplitudes be of onefold atomic
excited states with the coupling between atoms caused by
the dipole-dipole interaction. In the Fourier representation,
the set of coupled dipole equations reads (at greater length
see [6])

∑
e′

[(ω − ω0)δee′ − �ee′ (ω)]be′ (ω) = iδes. (2)

The index s as well as the indices e and e′ contain information
about both the number of concrete atom and the specific
atomic sublevel excited in the corresponding state. The set of
equations in the form represented by Eq. (2) is obtained under
the assumption that at the initial time only one atom is at the
excited state s; all other atoms are in their ground states and
the electromagnetic field is in the vacuum state.

This method was successfully used by our group for the
analysis of the optical properties of dense atomic ensembles
as well as for studying light scattering from such ensem-
bles [28–34]. Further, it allowed us to describe cooperative
effects in atomic ensembles located in a Fabry-Pérot cavity
[35,36], near a single conducting surface [37–39], and in a
waveguide [40,41]. Very similar approaches were used by
other groups [42–45], in particular, in application to photonic
crystals [9,46–50].

The matrix �ee′ (ω) is a key quantity in the theory. It de-
scribes both spontaneous decay and photon exchange between
the atoms. The general equation for this matrix is

�ee′ (ω) =
∑

g

Ve;gVg;e′ζ (h̄ω − Eg)

+
∑

ee

Ve;eeVee;e′ζ (h̄ω − Eee). (3)

This equation includes matrix elements of the operator V̂ of
the interaction between atoms and the electromagnetic field
and ζ (x) is a singular function given by the relation ζ (x) =
−iπδ(x) + P(1/x), where P denotes the principal value. To
calculate the matrix �ee′ (ω) in Eq. (3), we should perform a
summation over resonant single-photon states g (when all the
atoms are in their ground states) as well as over nonresonant
states with two excited atoms and one photon ee (for details
see [6]).

When we want to describe cooperative effects which occur
in atomic ensembles located in a waveguide, we should use
the field operator Â(r) corresponding to the inner space inside
a waveguide. In the case of perfectly conducting waveguide
with a rectangular cross section, Â(r) reads

Â(r) =
∑
k,α

√
h̄

2ωk
Ak,α (x, y)

× exp(ikzz)âk,α + H.c., (4)

where α denotes the type of waveguide mode (TE or TM), âk,α

is the operator of annihilation of a photon in the corresponding

FIG. 1. Sketch of the waveguide and the atomic ensemble inside
it. The inset shows the model structure of atomic levels used in
the study of cooperativity. Here a and b are the dimensions of a
rectangular cross section of a waveguide, L is its length (infinite),
Jg is the total angular momentum of an atom in the ground state,
Je is its value in the excited state, mJ is the projection of the total
angular momentum on the quantization axis z, and ω0 is the transition
frequency.

mode, ωk is the photon frequency,

Ax
k,TE(x, y) = − kn

k2
m + k2

n

× Bmn cos(kmx) sin(kny), (5)

Ay
k,TE(x, y) = km

k2
m + k2

n

× Bmn sin(kmx) cos(kny), (6)

Az
k,TE(x, y) ≡ 0, (7)

Ax
k,TM(x, y) = kzkm

k
(
k2

m + k2
n

)
× Bmn cos(kmx) sin(kny), (8)

Ay
k,TM(x, y) = kzkn

k
(
k2

m + k2
n

)
× Bmn sin(kmx) cos(kny), (9)

Az
k,TM(x, y) = − i

k
Bmn sin(kmx) sin(kny). (10)

Here km = mπ/a, kn = nπ/b, and k = √
k2

m + k2
n + k2

z =
ωk/c. The indices m and n are positive integers for TM modes;
for TE modes m, n = 0, 1, 2, . . ., but both indices cannot be
zero together. In addition, Bmn is the normalization constant,
which can be obtained on the basis of the standard form of
the field Hamiltonian. A reference point is chosen at one of
the corners of the cross section, so the space in a waveguide
corresponds to the positive values of the coordinates x and y,
as shown in Fig. 1.

As we assume an infinite length of a waveguide, the sum
over the field states in Eq. (3) should be calculated in the
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limit of infinite length of the quantization volume along the
z axis, Lq → ∞. This implies summation over the types of
field modes in a waveguide (TE and TM), summation over
the transverse indices m and n, and the integration over a
continuous variable kz (see [40] for detail):

∑
g

or
∑

ee

→ Lq

2π

∑
TE,TM

∑
m,n

∫ +∞

−∞
dkz.

The number of equations in the system (2) is determined by
the quantity of states where only one atom in the ensemble is
excited at the specific sublevel e whereas all other atoms are in
their ground states. So the size of the matrix �ee′ (ω) depends
on the number of atoms N and the structure of the atomic
levels. If the ground state is degenerate, the number of equa-
tions increases with an increase of N extremely fast (at least
exponentially). Therefore, in microscopy, one usually exploits
model schemes of levels, such as the so-called V scheme: The
ground state |gi〉 of an isolated atom i is nondegenerate with
the total angular momentum Jg = 0, whereas the excited states
|ei〉 is threefold degenerate with Je = 1 and natural free space
linewidth γ0 (see the inset in Fig. 1). The three degenerate
substates |ei,mJ 〉 correspond to the three possible projections
mJ = 0,±1 of the total angular momentum Je on the quan-
tization axis z. The resonant frequency ω0 of atoms defines
the natural length scale 1/k0 = c/ω0. In the framework of this
model, the number of equations is 3N .

Actually, the approach employed allows us to describe
both monatomic dynamics and cooperative effects caused by
interatomic dipole-dipole interactions from a single position.
In the case when the indices e and e′ refer to different atoms,
the matrix element �ee′ (ω) describes the dipole-dipole inter-
action. In the case when the states e and e′ refer to the same
atom, the imaginary part of �ee′ (ω) describes the spontaneous
decay rate of a given excited state, whereas the real part of
�ee′ (ω) is divergent. In its physical sense, the latter represents
the Lamb shift of the atomic transition frequency.

III. LAMB SHIFT

Since the Lamb shift of the given atomic level is caused by
the emission and absorbtion of virtual photons which couple
this level with all other levels (including the continuous spec-
trum of electronic states), we can no longer use the model
scheme of levels. When calculating the Lamb shift, we have
to consider a real atom, taking into account all the electronic
states. Thus, disclosing the real part of the corresponding
matrix element in Eq. (3), the Lamb shift of the energy level
n′ reads

	En′ =
∑

m′

∑
k,α

|〈m′, 1k,α|V̂ |n′, vac〉|2
En′ − Em′ − h̄ωk

. (11)

Here the index m′ indicates the electronic state (including
both bonded states with a discrete energy spectrum and ion-
ized states with a continuous spectrum) and 1k,α means that
there is one photon in the corresponding mode. Equation (11)
naturally coincides with a well-known formula from standard
textbooks (see, for example, Ref. [51]).

Exact calculation of the sum over field states in Eq. (11)
gives us linear divergence with the photon energy. It is ex-

plained by the fact that Eq. (11) contains the electromagnetic
energy of a free electron, which is also divergent. According to
Bethe’s approach [52], we should perform the renormalization
procedure, i.e., subtracting the electromagnetic energy of a
free electron from Eq. (11). Thus, the observable value of
the Lamb shift is 	Eobs

n′ = 	En′ − 	E free
n′ , where 	E free

n′ is
the value of 	En′ when the frequencies of all the transitions
approach zero En′ − Em′ → 0. The renormalization should re-
duce the character of the ultraviolet divergence down to the
logarithmic one.

In order to calculate the sum over the intermediate electron
states |m′〉 in Eq. (11), we should specify the kind of atom.
In this paper we consider a hydrogen atom and focus our
attention on the 1s ↔ 2p transition. It is known that in the first
approximation, p states do not undergo a Lamb shift [52,53].
Therefore, the shift of the transition frequency is determined
by the Lamb shift of the ground state 1s.

The Lamb shift of the 1s state of a hydrogen atom remains
weakly divergent after renormalization. Following Bethe [52],
we should introduce the cutoff energy of a photon Ec and
take into account in Eq. (11) only the photons having an
energy less than Ec. Our numerical simulation has proved that
the asymptote of the function 	Eobs

n′ (Ec) is indeed logarith-
mic, 	Eobs

n′ (Ec) = E1 ln(Ec/E2). Actually, it is the analog of
Bethe’s logarithm; the parameters E1 and E2 can be found
using the least-mean-square method. Finally, the cutoff energy
should be taken as Ec = mc2.

Our numerical simulation has shown that all the hyperfine
and Zeeman sublevels of the 1s state of the hydrogen atom
in a waveguide undergo the same Lamb shift. Figure 2 shows
this Lamb shift depending on the position of an atom (x1, y1).
In Fig. 2(a) the dimensions of the waveguide are a = 4 and
b = 2 (hereafter we consider the inverse wave number of
radiation resonant to the atomic transition k−1

0 = c/ω0 as a
unit of length), which correspond to a single-mode waveguide
with respect to the 1s ↔ 2p transition. Here we see that a
Lamb shift reaches its maximum when the atom is located
at the center of the cross section of a waveguide. Towards
the walls, the value of the Lamb shift decreases. The slope
of the x dependence of the Lamb shift is small in the central
area, whereas near the edges it becomes very large. When the
atom approaches the wall, the Lamb shift approaches some
asymptotic value. Our numerical simulation shows that, in the
case y1 = b/2, for example, this asymptote is 5370 MHz for
the dimensions a = 4 and b = 2.

With increasing transverse dimensions of a waveguide a
and b, coordinate dependence of the Lamb shift flattens. In
Fig. 2(b) we show this dependence for the case a = b = 5.
This corresponds to a multimode waveguide with respect to
the 1s ↔ 2p transition. Four modes are allowed: TE10, TE01,
TE11, and TM11. The flattening of the coordinate dependence
in the central area is explained by the increasing number of
field modes with increasing transverse dimensions. For large
values of a and b, the Lamb shift of an atom located in the
central area of a waveguide naturally resembles its free-space
value.

In Fig. 2 we can see that the spread in the Lamb shift is
hundreds of megahertz, which is comparable to the natural
linewidth of a hydrogen 2p → 1s transition, γ0 = 100 MHz.
Therefore, the spatial dependence of the Lamb shift can affect
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FIG. 2. Lamb shift of the 1s state of a hydrogen atom depending
on its position in a waveguide. The dimensions of the cross section of
a waveguide are (a) a = 4 and b = 2 and (b) a = b = 5.

the character of the dipole-dipole interaction between differ-
ent atoms in a waveguide. This inference is confirmed by
Fig. 3.

In Fig. 3 we analyze two equal atoms located in a waveg-
uide and coupled by the dipole-dipole interaction. Here we
use the model scheme of levels mentioned previously when
discussing cooperativity and shown in the inset in Fig. 1. Here
we hold the realistic ratio between Lamb shifts and a natural
linewidth. Since the Lamb shift is a single-atom effect, we are
able to merely include the single-atom Lamb shift in the cou-
pled dipole equations (2) that describe the excitation dynamics
of the two atoms. The first atom is considered to be initially
excited and the populated Zeeman sublevel of the excited state
is mJ = −1. The second atom is initially unexcited. Figure 3
shows the dynamics of the total excited-state population Psum

calculated as the sum of populations over all the Zeeman
sublevels, separately for the first and second atoms. Here we
compare the case when the Lamb shift is taken into account
with the case when it is not.

One can clearly see that accounting for Lamb shifts af-
fects the behavior of the atomic excited-state populations.
Figure 3(a) refers to the case when the difference in Lamb
shift for the first atom and for the second one is approximately

FIG. 3. Dynamics of the excited-state population. Here a = 4
and b = 2. The position of the first atom (initially excited) is at
x1 = 2.05 and y1 = 1. The position of the second atom (initially
unexcited) is at y2 = 1.5 and (a) x2 = 3.05 and (b) x2 = 3.95.

0.5γ0. Here the effect is not dramatic but is already ob-
servable. Figure 3(b) corresponds to such an arrangement
of atoms that the difference in Lamb shift is almost 3γ0.
Here the effect is significant. Such a difference in Lamb
shift makes atoms almost nonresonant with each other.
Therefore, when Lamb shifts are taken into account, the
atoms exhibit behavior similar to independent ones [40],
while originally it is two resonant and closely spaced atoms
that should be strongly coupled and exhibit cooperative
behavior.

Quasiperiodic oscillations observed in Fig. 3 are connected
with the energy exchange between the atoms. We can see that
the Lamb shift alters these oscillations. It is particularly man-
ifested in Fig. 3(b). A qualitative explanation of the observed
behavior of curves is as follows. Accounting for the Lamb
shift, almost nonresonant atoms evolve close to independent
ones. So the corresponding curves (the first and third) almost
reproduce the single-atom case: The first curve demonstrates
incomplete spontaneous decay in a single-mode waveguide
[40] and the third curve is close to zero. The weak dipole-
dipole interaction between atoms leads to small oscillations
caused by a photon exchange. In the case, when we do not
take into account the Lamb shift, we deal with two resonant
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atoms strongly coupled with each other. Such a dimer has
its own unique collective states with lifetimes which signifi-
cantly differ from the natural lifetime of the excited states of
a free atom. These collective lifetimes determine the period
of oscillations and its specific value depends on the specific
arrangement of both atoms.
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