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Finite-nuclear-size effect in hydrogenlike ions with relativistic nuclear structure
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The finite-nuclear-size (FNS) effect has a large contribution to atomic spectral properties, especially for heavy
nuclei. By adopting the microscopic nuclear charge-density distributions obtained from the relativistic continuum
Hartree-Bogoliubov (RCHB) theory, we systematically investigate the FNS corrections to atomic energy levels
and bound-electron g factors of hydrogenlike ions with nuclear charge up to 118. The comparison of the present
numerical calculations with the predictions from empirical nuclear charge models, the nonrelativistic Skyrme-
Hartree-Fock calculations, and the results based on experimental charge densities indicate that both the nuclear
charge radius and the detailed shape of the charge-density distribution play important roles in determining the
FNS corrections. The variation of FNS corrections to energy levels and g factors with respect to the nuclear
charge are investigated for the several lowest bound states of hydrogenlike ions. It is shown that they both
increase by orders of magnitude with increasing nuclear charge, while the ratio between them has a relatively
weak dependence on the nuclear charge. The FNS corrections to the s1/2 and p1/2 bound-state energies from the
RCHB calculations are generally in good agreement with the analytical estimations by Shabaev [V. M. Shabaev,
J. Phys. B 26, 1103 (1993)] based on the homogeneously charged sphere nuclear model, with the discrepancy
indicating the distinct contribution of microscopic nuclear structure to the FNS effects.
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I. INTRODUCTION

It has become increasingly important to include the
finite-nuclear-size (FNS) effect, i.e., the difference due to
replacement of a pointlike nucleus by a finite-size nucleus,
in sophisticated electronic structure calculations of atoms and
molecules [1,2]. In particular for systems with heavy nuclei,
e.g., highly charged ions, the contribution of the FNS effect to
system energies is comparable to or even larger than the quan-
tum electrodynamics (QED) corrections [3,4]. In addition, the
FNS effects in an electromagnetic interaction and weak decay
of elementary particles that involve electrons have been taken
into account for a long time, such as in internal conversion
[5,6], β decay [7–9], and electron-capture decay [10,11].

The study of FNS effects on the spectral properties of
few-electron multicharged or muonic ions is of special interest
as such effects could provide critical entries for a variety of
fundamental research. Since the experimental [12–20] and
theoretical [21–26] determination of atomic energy levels and
the bound-electron g factors have been considerably improved
in recent years, various applications of these quantities are
available in the literature, which include a stringent test of the
QED theory [27–32], determination of the fine-structure con-
stant [33–37] and electron’s mass [38–40], as well as tests for
new physics beyond the standard model [41,42]. With the fast
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development of high-precision spectroscopic measurements
in few-electron atoms and highly charged ions, it is crucial
from the theoretical perspective to accurately calculate the
FNS corrections to system energy levels and bound-electron g
factors.

Hydrogenlike ions are ideal systems for theoretical study of
FNS effects due to the absence of tricky electron correlations,
and in the past decades they have been extensively investi-
gated in the literature [2,43–51]. Earlier efforts were made
to perform a model-independent statement of FNS effects
for light muonic atoms and hydrogenlike ions using pertur-
bation theory, and an analytic formula expressed in terms
of the moments of nuclear charge distribution was proposed
[52–54]. However, the nuclear moments are model dependent
and therefore such an analytic formula becomes inaccurate
for nuclei with complex charge distributions. On the other
hand, the validity of the analytic formula based on perturba-
tion theory has not been verified in heavy muonic atoms and
hydrogenlike ions. Further development of an approximate
formula for FNS corrections in the several lowest bound states
of hydrogenlike ions was made based on empirical nuclear
charge models, such as the homogeneously charged sphere,
the Gaussian distribution, and the two-parameter Fermi charge
distribution [23,43–45]. Although these approximate formu-
las have been widely used in atomic spectral investigations,
accurate calculation of FNS corrections based on microscopic
and sophisticated nuclear charge distributions, i.e., a more
realistic description of the nuclear structure, is highly antic-
ipated. Such an effort was recently carried out by Valuev et al.
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[49] using the Hartree-Fock method based on the Skyrme-type
nuclear interaction. The obtained FNS corrections to energy
levels and bound-electron g factors for hydrogenlike ions of
40Ca19+, 116Sn49+, and 208Pb81+ show slight discrepancies
with those estimated from empirical nuclear charge models.
An important conclusion derived by the authors in their work
was that the nuclear charge radius has a great influence on the
magnitude of the FNS effects. In view of the nonrelativistic
nature of the Skyrme-Hartree-Fock method as well as of the
Skyrme-type nuclear interaction which includes adjustable
parameters to reproduce the experimental nuclear charge radii,
it is worthwhile to perform alternative nuclear structure cal-
culations and investigate the corresponding FNS effects in
atomic spectral properties.

In recent years, the covariant (relativistic) density-
functional theory (CDFT) has attracted considerable attention
in the nuclear physics community on account of its success-
ful description of the complex nuclear structure and reaction
dynamics [55–60]. For instance, it can reproduce well the
isotopic shifts in the Pb isotopes [61] and naturally give the
origin of the pseudospin and spin symmetries in the antinu-
cleon spectrum [62–64], as well as provide a good description
of the nuclear magnetic moments [65,66]. Based on the CDFT
with Bogoliubov transformation in the coordinate representa-
tion, the relativistic continuum Hartree-Bogoliubov (RCHB)
method was developed to provide a proper treatment of the
pairing correlations and mean-field potentials in the pres-
ence of continuum [67,68]. The RCHB method has achieved
great success in a variety of aspects of exotic nuclei, such
as providing a microscopic self-consistent description of the
halo in 11Li [67], predicting the giant halo phenomena in
light and medium-heavy nuclei [69–72], as well as repro-
ducing the interaction cross sections and charge-changing
cross sections in sodium isotopes and other light exotic
nuclei [73,74].

In the present work, the FNS effects on the atomic energy
levels and bound-electron g factors of hydrogenlike ions are
studied by employing the realistic nuclear charge distributions
constructed in the framework of the RCHB method. The paper
is organized as follows. In Sec. II we first introduce the RCHB
method for solving the nuclear structure and then construct
the nuclear charge densities to obtain the electrostatic interac-
tion, followed by the definition of FNS corrections to atomic
energy levels and bound-electron g factors. In Sec. III we
systematically investigate the FNS corrections with varying
nuclear charge and compare the present results with previ-
ous numerical calculations and analytical estimations. A brief
summary and outlook are presented in Sec. IV.

II. THEORETICAL METHOD

A. Relativistic continuum Hartree-Bogoliubov method

The RCHB method with contact interaction between nucle-
ons is employed to calculate the proton and neutron densities
and from which the nuclear charge density and electron-
nucleus interaction potential can be properly constructed.
In the RCHB method, the conventional finite-range meson-
exchange interaction between nucleons is replaced by the
corresponding local four-point interaction. The Lagrangian

density of the point-coupling model is given by [75]

L = ψ̄ (iγμ∂μ − M )ψ − 1

2
αS (ψ̄ψ )(ψ̄ψ )

− 1

2
αV (ψ̄γμψ )(ψ̄γ μψ ) − 1

2
αTV (ψ̄ �τγμψ )(ψ̄ �τγ μψ )

− 1

2
αT S (ψ̄ �τψ )(ψ̄ �τψ ) − 1

3
βS (ψ̄ψ )3 − 1

4
γS (ψ̄ψ )4

−1

4
γV [(ψ̄γμψ )(ψ̄γ μψ )]2 − 1

2
δS∂ν (ψ̄ψ )∂ν (ψ̄ψ )

− 1

2
δV ∂ν (ψ̄γμψ )∂ν (ψ̄γ μψ )

− 1

2
δTV ∂ν (ψ̄ �τγμψ )∂ν (ψ̄ �τγμψ )

− 1

2
δT S∂ν (ψ̄ �τψ )∂ν (ψ̄ �τψ )

− 1

4
FμνFμν − e

1 − τ3

2
ψ̄γ μψAμ, (1)

where M is the nucleon mass, Aμ and Fμν are the four-vector
potential and field strength tensor of the electromagnetic field,
respectively; αS , αV , αT S , and αTV represent the coupling
constants for four-fermion point-coupling terms; βS , γS , and
γV are the coupling constants for the higher-order terms which
are responsible for the effects of medium dependence; δS , δV ,
δT S , and δTV are the coupling constants for the gradient terms
which are included to simulate the finite-range effects; and the
subscripts S, V , and T stand for scalar, vector, and isovector,
respectively.

The energy density functional of the nuclear system is
constructed under the mean-field and no-sea approximations.
By minimizing the energy density functional, one obtains the
Dirac equation for each nucleon within the framework of the
relativistic mean-field theory as [57]

[α · p + V (r) + βM + S(r)]φk (r) = εφk (r), (2)

in which α and β are the traditional 4 × 4 matrices of Dirac
operators and φk (r) is the corresponding single-particle wave
function for a nucleon in the state k. The local scalar S(r) and
vector V (r) potentials are given by

S(r) = αSρS + βSρ
2
S + γSρ

3
S + δS�ρS, (3)

V μ(r) = αV jμ + γV ( jμ jμ) jμ + δV � jμ + eAμ

+αTV τ3 �jμTV + δTV τ3��jμTV . (4)

In order to describe open-shell nuclei, pairing correlations
are of crucial importance. A self-consistent description of
pairing correction in the presence of the continuum (more
specifically, the contribution from the resonance states with
positive energy) when treated in coordinate representation can
be completed by the Bogoliubov quasiparticle transformation,
which transforms the single-particle basis of ai and a†

i into
the quasiparticle basis of βi and β

†
i (i = 1,M, for an M-

dimensional basis) via(
ai

a†
i

)
=

∫
d3r

(
Ui(r) Vi(r)∗
−Vi(r) Ui(r)∗

)(
βi

β
†
i

)
, (5)
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where i = (n, l, j) represents the orbital quantum number and
U (r) and V (r) are the quasiparticle wave functions.

The relativistic Hartree-Bogoliubov (RHB) model employs
the unitary Bogoliubov transformation of the single-nucleon
creation and annihilation operators in constructing the quasi-
particle operator and provides a unified description of both the
mean-field approximation and the pairing correlations [58].
Following the standard procedure of Bogoliubov transfor-
mation, the relativistic Hartree-Bogoliubov equation can be
derived as(

hD − λτ �

−�∗ −h∗
D + λτ

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
, (6)

where Ek is the quasiparticle energy, λτ (τ ∈ {p, n}) are the
chemical potentials for neutrons and protons, and hD refers to
the Dirac Hamiltonian in Eq. (2), in which the densities can
be constructed by quasiparticle wave functions

ρS (r) =
∑
k>0

V̄k (r)Vk (r),

ρV (r) =
∑
k>0

V †
k (r)Vk (r),

ρTV (r) =
∑
k>0

V †
k (r)τ3Vk (r). (7)

The pairing potential � in Eq. (6) is given by

�(r1, r2) = V pp(r1, r2)κ (r1, r2), (8)

where

V pp(r1, r2) = V0
1

2
(1 − Pσ )δ(r1 − r2)

(
1 − ρ(r1)

ρsat

)
(9)

represents the density-dependent force of zero range and
κ (r1, r2) refers to the pairing tensor [76]. In Eq. (9), V0 is the
interaction strength and ρsat is the saturation density of the
nuclear matter.

With spherical symmetry imposed, the quasiparticle wave
function in the coordinate space can be written as

Uk = 1

r

(
iGk

U (r)Y l
jm(θ, φ)

F k
U (r)(σ · r̂)Y l

jm(θ, φ)

)
χt (t ),

Vk = 1

r

(
iGk

V (r)Y l
jm(θ, φ)

F k
V (r)(σ · r̂)Y l

jm(θ, φ)

)
χt (t ). (10)

The corresponding RHB equation can be expressed as the
following radial integral-differential equations in coordinate
space [68]:

dGU

dr
+ κ

r
GU (r) − [E + λ − V (r) + S(r)]FU (r)

+ r
∫

r′dr′�F (r, r′)FV (r′) = 0,

dFU

dr
− κ

r
FU (r) + [E + λ − V (r) − S(r)]GU (r)

+ r
∫

r′dr′�G(r, r′)GV (r′) = 0,

dGV

dr
+ κ

r
GV (r) + [E − λ + V (r) − S(r)]FV (r)

+ r
∫

r′dr′�F (r, r′)FU (r′) = 0,

dFV

dr
− κ

r
FV (r) − [E − λ + V (r) + S(r)]GV (r)

+ r
∫

r′dr′�G(r, r′)GU (r′) = 0. (11)

Due to the zero-range pairing force, the above coupled
integral-differential equations can be reduced to differential
ones, which can be solved in coordinate space using the
shooting method with Runge-Kutta algorithms [68]. After the
solution, new densities and fields are obtained from, e.g.,
Eq. (7), which are iterated into the differential equations until
convergence is achieved.

More implementation details of the RCHB method
with point-coupling density functionals are available
in Refs. [75,77]. After solving the relativistic Hartree-
Bogoliubov equations (11), the point proton and neutron
densities are obtained by summing the norm of the
corresponding quasiparticle wave functions (τ ∈ {p, n}),

ρτ (r) = ρV,τ (r) =
∑
k∈τ

nk

4πr2

{[
Gk

V (r)
]2 + [

F k
V (r)

]2}
, (12)

where nk refers to the occupation number of the orbit k.

B. Nuclear charge density

The nuclear charge density is uniquely related to the
nuclear charge form factor Fc (namely, the charge-density dis-
tribution in the momentum space), which naturally includes
the point proton and neutron densities, the proton and neutron
spin-orbit densities, and the single-proton and single-neutron
charge densities [78–81]. The nuclear charge form factor for
the ground state is the expectation value of the zeroth compo-
nent of the charge current Ĵ0, i.e.,

Fc(q) =
∫

d3r eiq·r ∑
τ∈{p,n}

[GEτ (q2)ρτ (r) + F2τ (q2)Wτ (r)],

(13)

where GEτ and F2τ denote Sachs electric and Pauli form
factors of the nucleon, respectively. The nucleon density ρτ (r)
is obtained from Eq. (12) and the spin-orbit density Wτ (r) is
generally given by [79,81]

Wτ (r) = μτ

2M

(
−∇2ρτ (r)

2M
+ i∇ · 〈0|

∑
k∈τ

δ(r − rk )γk|0〉
)

,

(14)

where μτ is the anomalous magnetic moment.
The relativistic nuclear charge density is obtained by the

inverse Fourier transformation of the nuclear charge form
factor Fc and is formally written as

ρc(r) =
∑

τ∈{p,n}
[ρcτ (r) + Wcτ (r)], (15)

where

ρcτ (r) = 1

r

∫ ∞

0
dx x ρτ (x)[gτ (|r − x|) − gτ (|r + x|)],

(16)
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Wcτ (r) = 1

r

∫ ∞

0
dx x Wτ (x)[ f2τ (|r − x|) − f2τ (|r + x|)].

(17)

The functions gτ (x) and f2τ (x) are given by

gτ (x) = 1

2π

∫ ∞

−∞
dq eiqxGEτ (q2), (18)

f2τ (x) = 1

2π

∫ ∞

−∞
dq eiqxF2τ (q2). (19)

In this work, we follow Ref. [79] and adopt the form factors

GE p = 1(
1 + r2

pq2

12

)2
, GEn = 1(

1 + r2+q2

12

)2
− 1(

1 + r2−q2

12

)2
,

F2p = GE p

1 + q2/4M2
p

, F2n = GE p − GEn/μn

1 + q2/4M2
n

, (20)

with the proton charge radius rp = 0.8414 fm [82] and r2
± =

r2
av ± 1

2 〈r2
n〉, where r2

av = 0.9 fm2 is the average of the squared
radii for positive and negative charge distributions and 〈r2

n〉 =
−0.11 fm2 [83] is the mean-square charge radius of neutron.

C. FNS corrections to atomic energy levels and bound-electron
g factors

The relativistic Dirac equation for the one-electron system
reads (atomic units h̄ = me = e = 1 are used)

[cα · p + βc2 + V (r)]ψ (r) = εψ (r), (21)

where the eigenenergy ε includes both the electronic state
energy E and the rest energy of electron c2, i.e., ε = E + c2.
When the electrostatic potential V (r) is in spherical symmetry,
the electron wave function can be formally written as

ψnκm(r) = 1

r

(
iPnκ (r)Y l

jm(θ, ϕ)

Qnκ (r)(σ · r̂)Y l
jm(θ, ϕ)

)
, (22)

where κ is the Dirac quantum number, Y l
jm(θ, ϕ) is the spin

spherical harmonics, and Pnκ (r) and Qnκ (r) are the large and
small components of the radial wave function, respectively.

After separating out the angular component of the wave
function, the radial Dirac equation for the one-electron system
is given by(

V (r) −c
(

d
dr − κ

r

)
c
(

d
dr + κ

r

)
V (r) − 2c2

)(
Pnκ (r)

Qnκ (r)

)
= E

(
Pnκ (r)

Qnκ (r)

)
.

(23)

The electrostatic potential V (r) which describes the electron-
nucleus interaction is constructed based on the nuclear charge
density ρc(r) shown in Eq. (15) via [84]

V (r) = −4π

(∫ r

0
ρc(r′)

r′2

r
dr′ +

∫ ∞

r
ρc(r′)r′dr′

)
. (24)

Note that for the Coulomb potential of a pointlike nucleus,
i.e., V (r) = − Z

r , the electronic energy levels can be analyti-
cally solved in the form

Epoint[nκ] = c2

(
1 + (αZ )2

(n − |κ| + γ )2

)−1/2

− c2, (25)

where γ =
√

κ2 − (αZ )2. The FNS correction to atomic en-
ergy levels is then obtained by taking the difference between
the Dirac energy for the finite-size nucleus (Efinite[nκ]) and
that for the pointlike nucleus (Epoint[nκ])

�EFNS[nκ] = Efinite[nκ] − Epoint[nκ]. (26)

In the present work, we are also interested in the FNS effect
on the bound-electron g factors which connect the magnetic
moment of electron μ with its angular momentum J through

μ = −gμBJ, (27)

where μB = 1
2 is the Bohr magneton. When the electron was

placed into a static homogeneous magnetic field B, the effec-
tive Hamiltonian for the field-electron interaction reads

Hint = −μ · B. (28)

If B is chosen in the z direction, then the first-order Zeeman
splitting of the eigenenergy �E can be derived by using the
standard perturbation theory as

�E = gμBBz〈Jz〉 = gμBBzm. (29)

On the other hand, the effective Hamiltonian in the framework
of the relativistic quantum theory can also be expressed as [85]

Hint = c

2
α · (B × r). (30)

Employing the electron wave function defined in Eq. (22), the
corresponding energy shift is given by

�E = Bz
κcm

j( j + 1)

∫ ∞

0
Pnκ (r)Qnκ (r)r dr. (31)

The bound-electron g factor can then be obtained by compar-
ing Eq. (31) with Eq. (29), which yields

g[nκ] = 2κc

j( j + 1)

∫ ∞

0
Pnκ (r)Qnκ (r)r dr. (32)

For comparison, the bound-electron g factor for a pointlike
nucleus is analytically available as

gpoint[nκ] = κ

j( j + 1)

(
κ

Epoint[nκ]

c2
− 1

2

)
(33)

and, correspondingly, the FNS correction to the g factor is
given by

�gFNS[nκ] = gfinite[nκ] − gpoint[nκ]. (34)

III. RESULTS AND DISCUSSION

The nuclear ground-state wave functions for even-even
nuclei with 8 � Z � 118 are calculated based on the RCHB
method. For convenience, we only choose the most abundant
nuclide in each isotopic chain [86]. The density-functional
PC-PK1 [75], which provides one of the best density-
functional descriptions of infinite nuclear matter and finite
nuclei in the ground or excited states, is employed in the
RCHB calculations. In practical calculations, we use a box
size Rbox = 25 fm with the mesh size �r = 0.1 fm and the
angular momentum cutoff Jmax = 19

2 , which are large enough
for all nuclei considered in this work. More computational
details can be found in Ref. [77].
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FIG. 1. Nuclear charge-density distributions ρc(r) of (a) 40Ca and (c) 208Pb obtained from the RCHB calculations (red dashed line), in
comparison with several empirical charge distribution models such as a homogeneously charged sphere (purple short-dashed line), a Gaussian
charge distribution (blue dash-dotted line), and the two-parameter Fermi model (magenta dash–double-dotted line), as well as the Fourier-
Bessel analysis of experimental scattering data [91] (black solid line). (b) and (d) Corresponding electrostatic potentials V (r) compared with
the point-nucleus Coulomb potential (green short-dash–dotted line). See the text for details.

The electron Dirac equation is solved using the kineti-
cally balanced generalized pseudospectral (KBGPS) method
developed recently by us [87]. As a numerical method imple-
mented in the discrete-variable representation, the generalized
pseudospectral (GPS) method has shown its fast convergence
and high flexibility in solving the nonrelativistic Schrödinger
equation [88–90]. In our recent work [87], we successfully
extended the GPS method to solve the relativistic Dirac equa-
tion by incorporating the kinetically balanced condition. The
derived KBGPS method removes all spurious states in the nu-
merical solution of the Dirac equation in the discrete-variable
representation and furthermore improves the convergence of
both the system eigenenergies and wave functions. Computa-
tional details of the KBGPS method are available in Ref. [87].
Throughout the present calculations, a total number of N =
450 mesh points are used to solve the radial Dirac equation,
which ensures that the several lowest bound-state energies and
corresponding wave functions are converged with more than
ten significant digits.

A. FNS corrections to energy levels and g factors
in hydrogenlike ions

In Figs. 1(a) and 1(c), the nuclear charge-density distri-
butions for 40Ca and 208Pb nuclei obtained from the RCHB
calculations are compared with three empirical nuclear charge
models, i.e., the homogeneously charged sphere, the Gaus-
sian charge distribution, and the two-parameter Fermi charge

distribution, which are denoted by Sphere, Gauss, and Fermi,
respectively. The explicit forms of the three nuclear charge
models are given in the Appendix. The corresponding pa-
rameters are fitted by reproducing the experimental nuclear
charge radii [91,92]. The Fourier-Bessel analysis of the exper-
imental scattering data [91] (denoted by FB) are provided as
the referenced nuclear charge-density distributions. It can be
seen that the present RCHB calculations are in better agree-
ment with the experimental results than those obtained using
the empirical models and, especially in the central region
of nucleus, the RCHB model provides a correct description
of the concave structure in the charge-density distributions
[e.g., around 2 fm for 208Pb in Fig. 1(c)]. For the three
empirical models, only the two-parameter Fermi distribution
shows good agreement with the experimental results, while
the sphere and Gaussian charge distributions are both qual-
itatively and quantitatively different from the referenced FB
charge distribution. Comparisons of the corresponding elec-
trostatic potentials are displayed in Figs. 1(b) and 1(d) for
40Ca and 208Pb nuclei, respectively. Due to the relatively
large magnitude of the electrostatic potential inside the nu-
cleus, both the present RCHB calculation and that from the
two-parameter Fermi model potential are indistinguishable
from the referenced FB potential based on the experimental
charge distribution. From the comparison of finite-nucleus
potentials with the point-nucleus Coulomb potential shown
in Figs. 1(b) and 1(d), it is obvious that the FNS correction
would systematically lift the electrostatic potential near and
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TABLE I. FNS corrections to bound-electron energy levels �EFNS (in units of eV) and g factors �gFNS for the 1s1/2, 2s1/2, and 2p1/2 states
of 40Ca19+, 208Pb81+, and 238U91+ highly charged hydrogenlike ions. Nuclear charge distributions obtained from different empirical nuclear
models, FB [91], and microscopic RCHB and Skyrme-Hartree-Fock [49] nuclear models are employed in the calculations. The root-mean-
square charge radii rc for different nuclei are given in units of femtometers. The relative FNS corrections in the ground state are defined as
δ[1s1/2] = �EFNS[1s1/2]

|Epoint [1s1/2]| for the energy level and
�gFNS[1s1/2]
gpoint [1s1/2] for the g factor. Numbers in square brackets represent multiplication by powers of 10.

�EFNS(eV) �gFNS

Ion Model rc 1s1/2 δ[1s1/2] 2s1/2 2p1/2 1s1/2 δ[1s1/2] 2s1/2 2p1/2

40Ca19+ sphere 3.4500 1.4343[−2] 2.6214[−6] 1.8280[−3] 7.3927[−6] 1.1139[−7] 1.7075[−7] 1.4188[−8] 5.7442[−11]
40Ca19+ Gauss 3.4500 1.4331[−2] 2.6192[−6] 1.8265[−3] 7.3870[−6] 1.1129[−7] 1.7059[−7] 1.4175[−8] 5.7397[−11]
40Ca19+ Fermi 3.4500 1.4336[−2] 2.6201[−6] 1.8271[−3] 7.3894[−6] 1.1134[−7] 1.7066[−7] 1.4181[−8] 5.7416[−11]
40Ca19+ FB 3.4500 1.4337[−2] 2.6203[−6] 1.8274[−3] 7.3899[−6] 1.1135[−7] 1.7067[−7] 1.4182[−8] 5.7420[−11]
40Ca19+ RCHB 3.4750 1.4543[−2] 2.6579[−6] 1.8523[−3] 7.4960[−6] 1.1294[−7] 1.7312[−7] 1.4385[−8] 5.8244[−11]
40Ca19+ Skyrme 3.4776 1.4565[−2] 2.6619[−6] 1.8551[−3] 7.5066[−6] 1.1311[−7] 1.7338[−7] 1.4406[−8] 5.8504[−11]
208Pb81+ sphere 5.5032 67.346 6.6315[−4] 11.694 1.0016 4.5405[−4] 1.1306[−3] 7.8777[−5] 6.7852[−6]
208Pb81+ Gauss 5.5032 66.666 6.5628[−4] 11.575 9.9181[−1] 4.4939[−4] 1.1190[−3] 7.7963[−5] 6.7184[−6]
208Pb81+ Fermi 5.5032 67.218 6.6172[−4] 11.671 9.9977[−1] 4.5317[−4] 1.1284[−3] 7.8624[−5] 6.7726[−6]
208Pb81+ FB 5.5032 67.223 6.6176[−4] 11.672 9.9984[−1] 4.5321[−4] 1.1285[−3] 7.8630[−5] 6.7731[−6]
208Pb81+ RCHB 5.5055 67.278 6.6231[−4] 11.682 1.0007 4.5358[−4] 1.1294[−3] 7.8695[−5] 6.7787[−6]
208Pb81+ Skyrme 5.5012 67.181 6.6135[−4] 11.665 9.9982[−1] 4.5291[−4] 1.1277[−3] 7.8579[−5] 6.7687[−6]
238U91+ sphere 5.8571 199.04 1.5047[−3] 37.809 4.4209 1.2765[−3] 3.9703[−3] 2.4211[−4] 2.8536[−5]
238U91+ Gauss 5.8571 196.72 1.4872[−3] 37.368 4.3707 1.2615[−3] 3.9236[−3] 2.3924[−4] 2.8210[−5]
238U91+ Fermi 5.8571 198.65 1.5017[−3] 37.736 4.4125 1.2740[−3] 3.9626[−3] 2.4163[−4] 2.8482[−5]
238U91+ RCHB 5.8462 198.24 1.4986[−3] 37.659 4.4033 1.2714[−3] 3.9545[−3] 2.4115[−4] 2.8422[−5]

inside the nucleus and, as a result, increase the bound-state
energies.

To further investigate the FNS effects on atomic spec-
tral properties, we present in Table I the comparison of
FNS corrections to the energy levels and bound-electron g
factors calculated by using different charge-density distri-
butions for the 1s1/2, 2s1/2, and 2p1/2 states of 40Ca19+,
208Pb81+, and 238U91+ ions. For 40Ca19+ and 208Pb81+, the
most recent calculations based on the Skyrme-Hartree-Fock
nuclear charge-density distributions [49] are also included for
comparison. Note that the Skyrme-type interaction between
nucleons in the Skyrme-Hartree-Fock method includes some
adjustable parameters to reproduce the experimental nuclear
charge radii.

By comparing the FNS corrections to energy levels and g
factors in the 1s1/2, 2s1/2, and 2p1/2 electronic states, it can be
readily seen that the FNS corrections in the ground state are
more significant than in other bound states. With continuously
exciting the bound state, the FNS corrections decrease rapidly
by orders of magnitude. The comparison among different hy-
drogenlike ions indicates that the FNS corrections are more
visible in heavier nuclei. For example, the FNS correction
to the ground-state energy increases from 1.4 × 10−2 eV in
40Ca19+ to 67 and 198 eV in 208Pb81+ and 238U91+, respec-
tively, which contribute about 2.6 × 10−6, 6.6 × 10−4, and
1.5 × 10−3 in proportion to the total ground-state energies
of the three systems. Further comparisons among different
electronic states of hydrogenlike ions with different nuclear
charges will be presented in the following section.

From the comparison shown in Table I, it is interesting
to note that the sphere and Fermi empirical nuclear distribu-
tions give similar FNS corrections to the energy levels and
bound-electron g factors and that they are both close to the

referenced values obtained from the experimental (FB) nu-
clear charge distribution. The Gauss model gives the worst
prediction, which can be understood from its poor description
of the nuclear charge densities as demonstrated in Fig. 1. The
discrepancies among these empirical models indicates that
the detailed shape of the nuclear charge distribution plays
a non-negligible role in the calculation of FNS corrections.
The comparison between two microscopic nuclear models
(RCHB and Skyrme) reveals more interesting phenomena. For
40Ca19+, both the present RCHB and the previous Skyrme cal-
culations produce a relatively larger root-mean-square (rms)
nuclear charge radius and systematically larger FNS correc-
tions compared to the FB results. However, for 208Pb81+,
the RCHB and Skyrme methods give a slightly larger and
a smaller value of rc than the experimental value, respec-
tively. The comparison of FNS corrections to energy levels
and bound-electron g factors follows a similar trend. From the
discussion we may simply conclude that the FNS corrections
are more sensitive to the average nuclear charge radius. The
empirical two-parameter Fermi distribution model, when it
fairly reproduces the experimental rms radius of the nucleus,
provides a reasonable estimate of the FNS corrections to both
energy levels and g factors. The present RCHB calculations
predict larger values of the rms radius and, as a result, slightly
overestimate the FNS corrections. Compared to the nonrela-
tivistic Skyrme-Hartree-Fock calculations, the RCHB method
provides a fully relativistic, parameter-free microscopic de-
scription of the nuclear structures and shows slightly better
agreement with the experimental (FB) results.

For the 238U91+ ion, there is currently no experimental
scattering data for the nuclear charge distribution, so we only
compare our results with the three empirical models. As is
shown in Table I, the present RCHB calculations are in better
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agreement with the two-parameter Fermi distribution results
than those for the other two models. The validity of the FNS
corrections to atomic energy levels can be estimated through
the Lamb shift, i.e., the difference between the exact binding
energy and the Dirac point-nucleus energy. The Lamb shift
mainly consists of three parts: the QED corrections [93–98],
the nuclear recoil corrections [99–102], and the nuclear struc-
ture corrections in which the leading contribution comes from
the FNS effects. Other contributions to the Lamb shift include
the remaining nuclear structure effects (e.g., the nuclear de-
formation [4,103,104] and nuclear polarization [29,105–109])
and the cross term between the FNS and QED corrections
[110–114]. It has been proven that such contributions can
only produce a very small energy shift. The theoretical cal-
culations of QED corrections (265.19 eV [21,94]), nuclear
recoil (0.46 eV [102]), and nuclear polarization (−0.20 eV
[105,109]) contribute a total of 265.45 eV for the ground
state of 238U91+. The combination of these contributions with
the FNS correction of 198.24 eV from the present RCHB
calculation yields a total Lamb shift of 463.69 eV, which is
in good agreement with the recent experimental measurement
of 460.2 ± 4.6 eV [17].

B. FNS corrections for the s1/2 and p1/2 states from light
to heavy hydrogenlike ions

To investigate the FNS effects in different hydrogenlike
ions, we present in Figs. 2(a) and 2(b) the FNS corrections
�EFNS and �gFNS, respectively, as functions of the nuclear
charge number Z for the ns1/2 and np1/2 bound states with
n � 4. The nuclear charge-density distributions and corre-
sponding electrostatic interaction potentials are calculated in
a way similar to that mentioned above. All numerical results
are tabulated in the Supplemental Material [115] for further
reference. From Fig. 2 it can clearly be seen that the FNS
corrections to both energy levels and g factors increase rapidly
as Z increases. This is consistent with the fact that the energy
levels of hydrogenlike ions are approximately proportional to
Z2, as well as with our findings in Table I that the contribu-
tion of FNS effects becomes increasingly important in heavy
nuclei.

It can also be observed from Fig. 2 that for both �EFNS

and �gFNS, the magnitude of FNS corrections in p-wave
states increases much faster than those in s-wave states. For
example, �EFNS[np1/2] is about three orders of magnitude
smaller than �EFNS[ns1/2] for light hydrogenlike ions be-
low Z = 20 and it finally becomes one order of magnitude
smaller as Z approaches 118. The faster increasing rate of the
FNS corrections in higher orbital angular momentum states
can be understood from the approximate formulas derived
by Shabaev [43]. By employing the homogeneously charged
sphere density distribution, Shabaev analytically derived (in
atomic units)

�Ens1/2 = Z2m2γ+1
e

10n

(
2ZRs

n

)2γ

[1 + (αZ )2 fns1/2 (αZ )], (35)

�Enp1/2 = Z4α2m2γ+1
e

40

n2 − 1

n3

(
2ZRs

n

)2γ

× [1 + (αZ )2 fnp1/2 (αZ )], (36)

FIG. 2. (a) FNS corrections to the energy levels �EFNS and
(b) bound-electron g factors �gFNS in the ns1/2 and np1/2 states with
n � 4 for hydrogenlike ions with 8 � Z � 118.

where

f (αZ ) = b0 + b1(αZ ) + b2(αZ )2 + b3(αZ )3 (37)

and

γ =
√

κ2 − (Zα)2. (38)

The effective charge radius is given by Rs =
√

5
3 rc and the

coefficients b0,1,2,3 for different bound states are available
in Ref. [43]. The results obtained by using the above ap-
proximate formulas are indistinguishable from our numerical
calculations in the figure scale.

By neglecting the factors 1 + (αZ )2 f (αZ ) in both
Eqs. (35) and (36), we obtain the ratio between the FNS
corrections for p- and s-wave state energies in the form

�EFNS[np1/2]

�EFNS[ns1/2]
≈ n2 − 1

4n2
(Zα)2, (39)

which follows approximately a quadratic law with respect to
Zα. As a result, the FNS corrections in p-wave states increase
much faster than those in the s-wave states.

042807-7



XIE, LI, JIAO, AND HO PHYSICAL REVIEW A 107, 042807 (2023)

FIG. 3. Difference of the ratio D = �gFNS
�EFNS

between the ap-
proximate formula of Eq. (40) and the present RCHB numerical
calculations for ns1/2 and np1/2 states with n � 4. The inset shows
the specific ratio for the ground state evaluated by Eq. (40) (red solid
line) and the corresponding RCHB numerical results (black square
scatter).

C. Ratio between �gFNS and �EFNS

Considering the similarity between the FNS corrections
�EFNS and �gFNS displayed in Fig. 2, it is of great inter-
est to investigate the quantitative relationship between them.
Karshenboim et al. [45] analytically derived that the FNS
correction to the bound-electron g factor approximately con-
nects with the corresponding correction to the energy level
via

D = �gFNS

�EFNS
= κ2(2γ + 1)α2

j( j + 1)
. (40)

The ratio D has only a weak dependence on the nuclear
charge Z through the coefficient γ shown in Eq. (38). Such
a weak dependence can clearly be seen from the inset
of Fig. 3, where the ratio for the ground state of hydro-
genlike ions decreases smoothly from 7.8 × 10−6 to 5.2 ×
10−6 eV−1 as the nuclear charge Z increases from 8 to 118.
The present numerical calculations based on the RCHB nu-
clear charge densities show only small discrepancies with the
approximate formula at large values of Z . Figure 3 depicts
the difference of the ratio D between the approximate for-
mula and the present numerical calculations for the ns1/2 and
np1/2 bound states with n � 4. It is observed that although
the discrepancies increase gradually along with increasing
nuclear charge, its magnitude does not exceed the 3% pro-
portion of the ratio for all nuclei considered here. Therefore,
we may conclude that the approximate formula of Eq. (40)
establishes a fairly accurate connection between the FNS cor-
rection to bound-electron g factors and energy levels. The
consequence of this connection leads to the similar behavior
of �gFNS with respect to changing Z as �EFNS shown in
Fig. 2.

FIG. 4. Comparison of the present RCHB calculations and the
two approximate formulas for �EFNS proposed by Shabaev [43]
and Deck et al. [44] for the 1s1/2, 2s1/2, and 2p1/2 states of
hydrogenlike ions with 8 � Z � 96. (a) Direct comparison and
(b) absolute differences of the RCHB numerical calculations and
the estimation of Deck et al. [44] with respect to Shabaev’s [43]
approximation. The squares and circles for the RCHB results indicate
the positive and negative absolute differences of δE = �ERCHB −
�EShabaev, respectively. The dashed lines represent the positive abso-
lute difference of δE = �EDeck − �EShabaev. The four vertical dotted
lines denote the nuclei with magic proton numbers of 20, 28, 50,
and 82.

D. Comparison of direct calculations
with approximate formulas

In Fig. 4(a), the FNS corrections to energy levels of 1s1/2,
2s1/2, and 2p1/2 states for hydrogenlike ions with 8 � Z � 96
based on the RCHB nuclear charge densities are compared
with two approximate formulas proposed by Shabaev [43] and
Deck et al. [44]. The analytical formulas derived by Shabaev
are shown in Eqs. (35) and (36) and those obtained by Deck
et al. are available as Eqs. (37) and (38) in Ref. [44]. Both
of these approximations are derived based on the homoge-
neously charged sphere nuclear model, except that the former
author explicitly solved �EFNS as a function of the effective
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charge radius, while the latter authors employed the first-order
perturbation theory in the treatment of the Coulomb potential
in the interior of nucleus. In producing both approximate
formulas in Fig. 4(a), we employ the recent experimental
rms nuclear charge radii summarized in Ref. [92], where
the largest nucleus is Z = 96. It should be noted that in the
isotopic chain of each element, only the isotope with the most
natural abundance is chosen for comparison. We leave the
investigation of isotopic shift of FNS corrections to future
work. From Fig. 4(a) it can be seen that the present RCHB
numerical calculations are in good agreement with the results
of two approximate formulas for light and medium-heavy
nuclei, while for heavy nuclei our results are much closer
to Shabaev’s approximation [43]. The discrepancies between
these two analytical predictions at heavy nuclei are probably
attributed to the inaccuracy of the first-order perturbation the-
ory [44].

To further view the FNS effects introduced by differ-
ent nuclear models, especially the difference between the
present RCHB numerical calculations and Shabaev’s ana-
lytical approximation, we present in Fig. 4(b) the absolute
difference δE = �ERCHB − �EShabaev as well as the dif-
ference between the two approximate formulas, i.e., δE =
�EDeck − �EShabaev. For convenience, we choose Shabaev’s
approximation as the referenced result. The systematic over-
estimation of the FNS corrections by the perturbation method
of Deck et al. is constantly enhanced as the nuclear charge
increases. The comparison between the RCHB calculations
and Shabaev’s estimation reveals apparent fluctuations of the
FNS effects in different nuclei. An interesting phenomenon is
observed for nuclei with magic proton numbers, e.g., Z = 20,
28, 50, and 82, where the absolute difference δE acquires
some local minima, indicating that the RCHB calculations
are closer to Shabaev’s approximation in these situations.
Such a correspondence is consistent with the fact that the
RCHB theory gives a better prediction of the charge radii
for nuclei with magic proton numbers [77] (a complete list
of the charge radii for even-even nuclei calculated by the
RCHB method is available in the Supplemental Material
[115]). Due to the good agreement with experiment for the
RCHB calculations of important nuclear properties such as
the binding and separation energies, rms radii of neutron
and proton, and charge-density distributions for both sta-
ble and unstable nuclei in the large nuclear landscape, we
tentatively conjecture that the RCHB method should also
be applicable in the investigation of FNS effects in sys-
tems with unstable nuclei, which is still a challenging task
for both theoretical estimations and experimental measure-
ment.

IV. CONCLUSION

In the present work, the FNS effects to the energy lev-
els and bound-electron g factors have been investigated
for hydrogenlike ions with 8 � Z � 118, where the nu-
clear charge-density distributions were obtained by employing
the RCHB method in the framework of covariant density-
functional theory. The nuclear charge-density distributions
and corresponding electronic interactions for 40Ca19+ and
208Pb81+ ions were calculated to demonstrate that the RCHB

TABLE II. Parameters for the three nuclear charge models.

Nucleus rc R0 ξ ρF
0 C

40Ca 3.4500 4.4539 0.1260 0.0900 3.6782
208Pb 5.5032 7.1046 0.0495 0.0628 6.6458
238U 5.8571 7.5615 0.0437 0.0575 7.1322

method reproduces very well the predictions from the Fourier-
Bessel analysis of experimental data. For FNS corrections
to energy levels and g factors, a comparison among the
RCHB method, the three empirical nuclear charge models,
the nonrelativistic Skyrme-Hartree-Fock method, and the ref-
erenced Fourier-Bessel results indicated that both the nuclear
charge radius and the detailed shape of charge-density dis-
tribution are responsible for accurate determination of the
FNS effects. The present RCHB calculations are generally in
good agreement with the referenced results, with the minor
overestimation originating from the slightly larger estimation
of the rms nuclear charge radius. We further demonstrated
in the 238U91+ ion that the RCHB calculation of the FNS
correction to the ground-state energy, combined with the
contributions from other finite nuclear effects, are in good
agreement with the experimental measurement of the Lamb
shift.

The systematic investigation of the FNS corrections to the
energy levels and g factors with respect to different nuclear
charge reveals that not only the magnitude but also the rel-
ative contribution of the FNS corrections increases rapidly
from light to heavy nuclei. Our numerical calculations for
the ns1/2 and np1/2 states of hydrogenlike ions show good
agreement with the approximate prediction by Shabaev and
the ratio between the FNS correction to g factor and energy
level reproduces very well the estimation from Karshenboim
et al. The discrepancy between the RCHB calculations and the
approximate predictions based on empirical nuclear charge
models reveals the distinct contribution from microscopic nu-
clear structures.

There still exist many important open questions for the
FNS effects in electronic structure calculations, e.g., the
isotope shifts and the nuclear polarization and deforma-
tion effects. These contributions can also be taken into
account through the RCHB method with further development.
These investigations would be of great interest in our future
studies.
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APPENDIX: EMPIRICAL NUCLEAR
CHARGE MODELS

The homogeneously charged sphere model reads

ρc(r) =
{

3eZ
4πR3

0
, r � R0

0, r > R0,
(A1)
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where R0 =
√

5
3 rc. The corresponding electrostatic potential

is given by

V (r) =
{

− eZ
2R0

(
3 − r2

R2
0

)
, r � R0

− eZ
r , r > R0.

(A2)

The Gaussian charge distribution reads

ρc(r) = ρG
0 exp(−ξr2), (A3)

where ξ = 3
2r2

c
and ρG

0 = eZ ( ξ

π
)3/2. The potential is expressed

as

V (r) = −eZ

r
erf (

√
ξr), (A4)

where erf (x) is the error function. The two-parameter Fermi
charge distribution reads

ρc(r) = ρF
0

1 + exp[4 ln 3(r − C)/T ]
, (A5)

where C =
√

R2
0 − 7

3 ( πT
4 ln 3 )2 is the half charge radius, T =

2.3 fm is the skin thickness parameter, and ρF
0 is the normal-

ized parameter determined from the number of total charges.
The corresponding potential cannot be expressed in a sim-
ple analytic form but can be numerically obtained through
Eq. (24). The parameters of the three nuclear charge models
for 40Ca, 208Pb, and 238U nuclei are listed in Table II.
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