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First-principles calculation of the frequency-dependent dipole polarizability of argon
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In this work we report state-of-the-art theoretical calculations of the dipole polarizability of the argon atom.
Frequency dependence of the polarizability is taken into account by means of the dispersion coefficients (Cauchy
coefficients), which is sufficient for experimentally relevant wavelengths below the first resonant frequency. In
the proposed theoretical framework, all known physical effects including the relativistic, quantum electrody-
namics, finite nuclear mass, and finite nuclear size corrections are accounted for. We obtained α0 = 11.0775(19)
for the static polarizability and α2 = 27.976(15) and α4 = 95.02(11) for the second and fourth dispersion
coefficients, respectively. The result obtained for the static polarizability agrees (within the estimated uncertainty)
with the most recent experimental data [C. Gaiser and B. Fellmuth, Phys. Rev. Lett. 120, 123203 (2018)]
but is less accurate. The dispersion coefficients determined in this work appear to be the most accurate in
the literature, improving by more than an order of magnitude upon previous estimates. By combining the
experimentally determined value of the static polarizability with the dispersion coefficients from our calculations,
the polarizability of argon can be calculated with accuracy of around 10 ppm for wavelengths above roughly
450 nm. This result is important from the point of view of quantum metrology, especially for a new pressure
standard based on thermophysical properties of gaseous argon. Additionally, in this work we calculate the static
magnetic susceptibility of argon, which relates the refractive index of dilute argon gas with its pressure. While
our results for this quantity are less accurate than in the case of the polarizability, they can provide, via the
Lorenz-Lorentz formula, the best available theoretical estimate of the refractive index of argon.
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I. INTRODUCTION

The electric dipole polarizability α(ω) is an intrinsic
microscopic property of atomic and molecular systems de-
scribing their response to an external electric field oscillating
with frequency ω. Focusing on dilute gases of noble atoms, the
polarizability appears in the fundamental Clausius-Mossotti
equation

εr − 1

εr + 2
= 4π

3
αρ, (1)

which relates the relative electric permittivity εr of an atomic
gas with the density of the gas, ρ. We can further express the
gas density through the ideal gas formula p = kT ρ, where k is
the Boltzmann constant. After some rearrangements we arrive
at the relation

p = 3

4π

εr − 1

εr + 2

kT

α
, (2)

which is the basis for the new primary gas-pressure standard
established in 2020 [1,2]. Indeed, according to the recent
revisions of the fundamental constants [3–5], the Boltzmann
constant k has a fixed predefined value. Therefore, by mea-
suring the temperature and electric permittivity of a gas [1,6–
9], the macroscopic pressure p can be found, as long as the
atomic polarizability is known. By progressive improvements
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to the experimental setup and accuracy of the polarizability
determined from theory, the new pressure standard is com-
petitive with the best mechanical pressure measurements, as
illustrated with the recent stress test [2].

The aforementioned pressure standard uses helium as the
medium gas. This choice is justified, among other things, by
high accuracy of theoretical predictions that can be obtained
for this relatively simple two-electron atom [10–18]. How-
ever, the disadvantage of helium is its relatively small polariz-
ability, which makes this setup sensitive to impurities, requires
high-quality materials free of contaminants, etc. A natural
way to avoid these problems is to replace helium by a heavier
noble atom such as neon or argon. As both of them are signif-
icantly more polarizable than helium, the sensitivity problems
are marginalized. Unfortunately, as the electronic structure of
neon and argon is much more complicated, it is impossible to
maintain the same accuracy of theoretical predictions. In fact,
while the polarizability of helium can be calculated from first
principles [18] with relative accuracy of about 10−7, which
is entirely sufficient from the point of view of metrology, the
same is not true for neon and argon. Two recent papers [19,20]
devoted to the theoretical calculation of the polarizability of
neon were the first studies where all known relevant physical
effects were systematically included. Despite significant effort
and an immense amount of computational time, the best theo-
retical estimate still has an uncertainty about five times larger
than the experiment [21] in the case of the static polarizability.
However, the theoretically derived frequency dependence of
the polarizability, which is more difficult to get experimen-
tally, is a useful supplement for the measurements [22].
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In comparison with neon and, especially, helium, the best
available theoretical results for argon lag behind in terms
of accuracy. The most reliable theoretical data for the po-
larizability reported by Lupinetti and Thakkar [23] and by
Pawłowski et al. [24] can be estimated to have uncertainties of
several parts per thousand. This is insufficient for the purposes
of metrology, and hence in the present work we report state-
of-the-art ab initio calculations in order to improve the current
state of theory. We employ a sequence of coupled-cluster
(CC) methods [25,26] that converge to the exact solution
of the nonrelativistic clamped-nuclei Schrödinger equation,
combined with a large basis set up to nonuple-zeta quality.
This enables reliable extrapolation to the complete basis set
limit and estimation of the residual error, which is particularly
important in applications to metrology. Equally importantly,
in the theoretical framework we include all known physical ef-
fects, including relativistic, quantum electrodynamics (QED),
finite nuclear mass, and finite nuclear size contributions.

The static polarizability of argon measured by Gaiser and
Fellmuth [21] is accurate to about 2 parts per million (ppm).
Within the current state of the theory, it is unreasonable to
expect that a comparable accuracy can be achieved from
first principles. However, this is not the goal of the present
work; comparison with the experimental data for the static
polarizability will be used primarily to verify that the adopted
theoretical framework is adequate. We shall also focus on
determination of the so-called dispersion coefficients (defined
further in the text) which describe the frequency dependence
of the polarizability and are much more difficult to determine
experimentally. However, by combining the experimental re-
sult for the static polarizability with the frequency dependence
derived from theory, a high level of accuracy can be obtained
for the dynamic polarizability at experimentally relevant fre-
quencies.

Besides the polarizability, in the present work we con-
sider the static magnetic susceptibility of argon atom, χ0. It
is defined as the second derivative of the energy (with sign
reversed) with respect to the strength of the external magnetic
field. The importance of the magnetic susceptibility is moti-
vated by the Lorentz-Lorenz formula

n2 − 1

n2 + 2
= 4π

3
(α + χ0)ρ, (3)

which relates the the refractive index, n, of a gas with its
density, ρ. The magnetic susceptibility of argon is several
orders of magnitude smaller than the polarizability. Therefore,
the value of χ0 may be determined less accurately without
a significant impact on the accuracy of n. This allows us to
neglect the frequency dependence of the magnetic susceptibil-
ity and consider only its static value. Additionally, we neglect
several minor corrections in our theoretical framework which
are included in case of polarizability.

Unless explicitly stated otherwise, atomic units (a.u.) are
used throughout. Following the CODATA recommendations
[27], we adopt the following values of the fundamental physi-
cal constants: speed of light in vacuum, c = 137.035 999 084,
atomic mass unit, 1 Da = 1822.888 486 209(53), and Bohr
radius, a0 = 0.529 177 210 903 Å. We consider only the most
naturally abundant (99.6%) stable isotope 40Ar with atomic
mass 39.962 383 Da. Most of the available experimental data

related to the molar polarizability of argon are reported in the
literature in units of cm3/mol. To express such quantities in
the atomic units we use the conversion factor 1 cm3/mol =
11.205 872 a3

0.

II. BASIS SET PREPARATION

The family of correlation-consistent [28] Gaussian basis
sets for argon, usually abbreviated as cc-pVXZ, was op-
timized by Dunning and collaborators [29–32] up to the
sextuple-zeta level of quality. Moreover, additional sets of dif-
fuse and core-valence augmenting functions are also available
in the literature. Unfortunately, the standard cc-pVXZ basis
sets are not adequate for the purposes of the present work,
because of considerable irregularities in the convergence pat-
tern of the results to the complete basis set limit. While for
total energies these irregularities were negligible, a signifi-
cant deterioration was observed for atomic polarizabilities,
which are the main focus herein. It is worth pointing out
that the quality of the results reported in this work depends
significantly on the reliability of the extrapolation procedure
used to eliminate the residual basis set incompleteness error.
The presence of the aforementioned irregularities precludes
a robust extrapolation and complicates the error estimation.
Therefore, we have decided to optimize a family of Gaussian
basis sets for argon that matches the specific requirements of
this work.

In the design of the basis sets we follow the general princi-
ples of correlation consistency introduced by Dunning [28].
First, we optimized a large set of s- and p-type Gaussian
functions to variationally minimize the Hartree-Fock energy
of argon. Note that at this level of theory functions with an-
gular momentum l � 2 do not contribute to the ground-state
energy. The number of s- and p-type functions was increased
progressively and the exponents of the Gaussian-type orbitals
(GTO) were constrained to form a geometric sequence

ζln = αlβ
n
l or log ζln = log αl + n log βl , (4)

where n = 0, 1, . . ., and αl and βl are subject to the optimiza-
tion. Starting with a small number of functions taken from
the cc-pVDZ basis set, the size of the basis was increased by
one function at a time, followed by reoptimization of the αl

and βl parameters. We finally settled for the basis set of size
34s27p, which leads to the accuracy of about 0.3 μH (nine
significant digits in the energy) in comparison with the numer-
ical Hartree-Fock results of Cinal [33], which are assumed to
be exact for the present purposes.

At some stages of the calculations we shall require an
even more accurate basis for the Hartree-Fock calculations.
However, extending the geometric sequence (4) further leads
to progressive accumulation of numerical noise due to the
increasing linear dependencies. It is hence difficult to use the
formula (4) for basis sets with more than about 30–40 func-
tions. To circumvent this problem we used a generalization of
Eq. (4), namely,

log ζln = log αl + n log βl + n2 log γl + n3 log δl , (5)

where γl and δl are additional variational parameters. Em-
ploying this formula, we optimized a 37s37p basis for
Hartree-Fock calculations, which is the smallest basis that
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reaches the accuracy of a few nH (11 significant digits in the
energy). No significant numerical issues were encountered for
this basis.

The next step of the basis set optimization is the addition
of polarization functions necessary to recover the electronic
correlation effects. At this stage it is customary to contract the
sp part of the basis optimized in order to reduce the size of the
basis. We follow this protocol; however, in some calculations
we will use uncontracted basis sets when explicitly stated.
The contraction coefficients were obtained from expansion
coefficients of the Hartree-Fock orbitals within a given ba-
sis. The polarization functions were added according to the
correlation consistency principle, i.e., the double-zeta basis
contains a single d polarization function, triple-zeta—two d
and one f , quadruple-zeta—three d , two f , and one g, etc. At
each expansion stage, additional s and p functions were added
by taking from the contraction the functions with the lowest
exponents.

The exponents of the polarization functions follow the se-
quence defined by Eq. (4), and the parameters αl and βl were
optimized to minimize the frozen-core (eight active electrons)
MP2 correlation energy. While in the literature it is common
to use the configuration interaction with the single and double
excitations (CISD) method for basis set optimization, it is
not feasible for the basis sets required in this work. This is
due to the high cost of CISD calculations in comparison with
MP2. The parameters αl and βl were optimized in turn using
Powell’s method until the convergence to within 10−11 H in
the MP2 energy was obtained. The largest basis set considered
is of nonuple-zeta quality and includes basis set functions up
to l = 9. The optimizations were performed using the Dalton
program package [34] combined with an external program
written especially for this purpose. Note that to carry out cal-
culations with such high angular momentum, it is necessary
to modify the source code of the Dalton package before com-
pilation. Details of how to perform the necessary changes can
be obtained from the authors upon request. The composition
and exponents of the optimized Gaussian basis sets are given
in the Supplemental Material [35]. For brevity, we refer to
the basis sets simply as XZ, X = 2, . . . , 9 here. Note that the
parameter X coincides with the highest angular momentum
present in the basis set.

The polarizability is sensitive, to a much larger degree
than the energy, to the accuracy of the long-range tail of
the atomic density. Therefore, in our calculations it is neces-
sary to augment the Gaussian basis with additional functions
with low exponents. In this work the exponents are not op-
timized but are generated from the formula (4) by setting
n = −1,−2, . . . . In this way, we generated singly aug-
mented (adding n = −1 up to l � X ), doubly augmented (n =
−1,−2 up to l � X ), and triply augmented (n = −1,−2,−3
up to l � X ) basis sets, which are denoted aXZ, daXZ, and
taXZ. Preliminary calculations shown that further augmen-
tation of the basis leads to only a tiny improvement of the
results, which does not justify the corresponding increase of
the computational costs.

Finally, in the optimization of the XZ basis sets we kept
ten inner core orbitals of the argon atom inactive. While their
influence on the results is much smaller than of the valence
shells, it is still nonnegligible from the point of view of the

adopted accuracy standards. To take the contribution of the
core orbitals into account, the basis sets must be extended
with a set of functions with high exponents (tight functions).
Fortunately, we found that the cc-pCVXZ basis sets avail-
able in the literature [29,32] which were optimized to take
the core-valence effects into account do not suffer from the
irregularities we encountered in reproduction of the valence
contributions. Therefore, we simply use the optimized tight
functions from the standard cc-pCVXZ basis sets in combi-
nation with the remaining functions from the XZ family. We
denote this extended core-valence basis set as cXZ and their
augmented counterparts as acXZ, dacXZ, etc.

III. OVERVIEW OF THE THEORETICAL APPROACH
AND COMPUTATIONAL DETAILS

The main goal of the present work is to theoretically de-
termine the polarizability of the argon atom, denoted α(ω),
including all known physical effects that bring a significant
contribution. The atomic polarizability depends on the fre-
quency ω of the external electromagnetic field that the atom
is subjected to. We are interested in a range of wavelengths
above (roughly) 450 nm, which covers operating wavelengths
of most of the practically used gas lasers based on noble
gases. After conversion to the atomic units, this gives the
interval 0 � ω � 0.1. As the supremum of this interval is
significantly lower than the first resonance frequency of the
argon atom (equal to about ωres ≈ 0.42 [36]) we can use the
power expansion:

α(ω) = α0 + α2 ω2 + α4 ω4 + · · · . (6)

The first term of the above formula, α0, is usually called the
static polarizability, while the quantities α2, α4, etc., are the
dispersion coefficients (or Cauchy coefficients).

The static polarizability of the argon atom has recently
been determined experimentally by Gaiser and Fellmuth [21]
using the dielectric-constant gas thermometry. They obtained
the relative accuracy of about 2 parts per million (ppm).
Within the current state of the theory, it is unlikely that
any calculations can deliver a similar accuracy level. In fact,
among noble gases, only for helium does the quality of
theoretical predictions match (or even surpass) that of the
experiments, but this is feasible only because of a relatively
simple electronic structure of two-electron systems. Already
for neon, in the most accurate theoretical calculations per-
formed thus far [19,20], the uncertainty estimates are several
times larger than of the experimental results. Instead, we will
test and validate our theoretical model by comparing with the
experimental data for α0.

Our focus in this work is placed on the dispersion coeffi-
cients. These quantities cannot be determined experimentally
at present as accurately as the static polarizability. Therefore,
in applications where the frequency dependence of the po-
larizability is necessary, theoretical results for the dispersion
coefficients can supplement the experimental α0. Therefore,
let us estimate the accuracy level required in αn to achieve the
accuracy of about 10 ppm for wavelengths above (roughly)
450 nm. Such an accuracy level is acceptable from the point
of view of metrology. Considering the worst-case scenario of
ω ≈ 0.1, the value of α2 must be determined with relative
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accuracy of about ×10−3, while α4 by about 10%. The higher-
order dispersion coefficients, αn, n � 6, can be neglected. In
this analysis, we assumed that all αn, n = 0, 2, 4, are of a
similar magnitude. In practice, α2 is larger than α0 by roughly
a factor of two, and hence the relative accuracy of around
5 × 10−4 is needed. The value of α4 is about eight times larger
than α0, thus it has to be determined with an accuracy of about
1%. One can also expect that the value of α6 is significantly
larger than α0, and it may contribute for short wavelengths.
Therefore, in this work we additionally determine the value of
α6 with an accuracy goal of 10%.

Regarding the magnetic susceptibility, its value is by a fac-
tor of around 2 × 10−5 smaller than the polarizability. Taking
into account that a simple sum of the two quantities is relevant
from the point of view of Eq. (3), it is sufficient to determine
χ with an accuracy of about 10%. Provided that this level of
accuracy can be reached, the sum α0 + χ0 would have the
uncertainty comparable with the experiment of Gaiser and
Fellmuth [21] for α0. This allows us to adopt several approxi-
mations in determination of the magnetic susceptibility. First,
we neglect the frequency dependence; its influence is expect
to be around 1% within the relevant frequency range. Second,
we omit all corrections which contribute to less than 1% in the
case of the static polarizability. This eliminates the relativistic,
QED, and several other minor corrections. We hence focus
on accurate determination of the nonrelativistic value, which
is much more straightforward and sufficient for all practical
purposes.

The calculations reported in this work are based primarily
on the coupled-cluster hierarchy of methods. For calcula-
tions using the Hartree-Fock, CCSD [37,38], CCSD(T) [39],
and CC3 [40] methods (including the relativistic effects),
we employed the DALTON program package [34] with the
aforementioned modifications of the source code to enable
calculations with high angular momentum functions. For
CCSDT [41,42] calculations and computations of the finite
nuclear mass corrections we used the CFOUR program [43],
interfaced with the MRCC package [44]. The latter code is
used for all higher-order CC methods (CCSDTQ [45–48],
CCSDTQP [49,50], and higher [51–53]). In all calculations
we use tight thresholds for the convergence of the CC itera-
tions and of the response function solver (10−9 in the norm
of the residual vector). Purely spherical Gaussian basis sets
are used throughout this work. The orbital-unrelaxed variant
of the CC response theory is employed in all calculations.

IV. NONRELATIVISTIC POLARIZABILITY

The dominant contribution to the polarizability of argon
comes from the nonrelativistic clamped-nucleus approxima-
tion. Therefore, this contribution must be calculated with high
precision, and we adopt a composite scheme based on the CC
theory for this purpose.

A. Mean-field contribution

The first contribution to the polarizability and dispersion
coefficients, denoted by the symbol αHF

n , comes from the
(restricted closed-shell) Hartree-Fock method and was calcu-
lated using the standard coupled-perturbed response theory.

We used the large 37s37p basis set described in the preceding
section, augmented with three sets of diffuse functions, giving
a 40s40p set in total. Note that at the Hartree-Fock level
only s and p functions are needed to expand the ground-state
orbitals, but d functions are additionally needed for the calcu-
lation of the polarizability. Therefore, a set of 40d functions
was added to the basis with the same exponents as for the
p functions. Within the complete 40s40p40d basis we obtain
the following values of the polarizability and dispersion coef-
ficients at the Hartree-Fock level of theory:

αHF
0 = 11.4726(1),

αHF
2 = 25.6162(1),

αHF
4 = 78.9658(2),

αHF
6 = 297.775(6).

(7)

We accessed the accuracy of the results by randomly removing
one or two functions of each angular momentum from the
basis and recomputing the polarizability with the reduced set
(bootstrapping). In all cases, we observed deviations at the
level of 1–2 ppm, which is negligible in the present context.

B. Valence correlation contribution

The second contribution to the polarizability, denoted
�αSD

n , was obtained at the frozen-core CCSD level of theory
(eight active valence electrons). Here we use the optimized
XZ basis sets, X = 2, . . . , 9 (fully uncontracted variants) and
their counterparts augmented with diffuse functions. In Table I
we present results of the calculations. As is well known,
the results converge rather slowly (asymptotically as X −3)
with respect to the basis set size, which is a consequence
of the nonanalytic behavior of the exact wave function at
the coalescence points of the electrons (the cusp condition).
To eliminate the residual basis set incompleteness error, we
perform extrapolation to the complete basis set (CBS) limit
using the recently proposed formalism based on the Riemann
ζ function [54]. Application of this scheme is straightforward
provided that results obtained with two consecutive basis sets
(X and X − 1) are available. Let us denote the quantity of
interest O obtained with the basis set X by OX . The CBS limit
O∞ is then estimated from the formula [54]

O∞ = OX + X 4

[
ζ (4) −

X∑
l=1

l−4

]
(OX − OX−1), (8)

where ζ (s) = ∑∞
n=1 n−s is the Riemann ζ function and hence

ζ (4) = π4

90 . Throughout this work, this extrapolation formula
is used for all components of the static polarizability and
the dispersion coefficients. Note that the CBS limit estimated
from Eq. (8) is still formally dependent on the variable X ,
and by observing the progression of the extrapolated values
from a series of basis sets one can estimate the uncertainty
of the predictions. To illustrate this, in Fig. 1 we provide
extrapolated values of the �αSD

n contributions, n = 0, 2, 4, as
a function of the X parameter that defines the size of the basis
set. The extrapolated values converge quickly to the vicinity of
the limiting value; for basis sets X � 7 the differences are mi-
nor. It is reasonable to estimate that the extrapolation error is
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TABLE I. Linear-response frozen-core CCSD contribution to the static polarizability and dispersion coefficients, �αSD
n , of the argon atom

calculated using the augmented XZ basis sets. In the last row we provide results extrapolated to the complete basis set limit according to Eq. (8)
and the corresponding error estimate.

Singly augmented Doubly augmented Triply augmented

X �αSD
0 �αSD

2 �αSD
4 �αSD

0 �αSD
2 �αSD

4 �αSD
0 �αSD

2 �αSD
4

2 −0.4025 1.4828 13.4945 −0.3166 2.3074 17.3982 −0.2635 2.8722 20.7742
3 −0.2775 2.3570 15.8547 −0.2184 2.8555 18.8666 −0.2162 2.8822 19.0202
4 −0.3270 2.0304 13.1597 −0.3115 2.2346 14.7719 −0.3117 2.2346 14.7754
5 −0.3412 1.9645 12.6164 −0.3320 2.0923 13.7132 −0.3321 2.0923 13.7155
6 −0.3507 1.9142 12.2765 −0.3447 2.0147 13.2029 −0.3447 2.0146 13.2055
7 −0.3551 1.8991 12.2270 −0.3512 1.9711 12.9275 −0.3512 1.9712 12.9318
8 −0.3582 1.8847 12.1634 −0.3552 1.9429 12.7499 −0.3552 1.9432 12.7569
9 −0.3605 1.8689 12.0687 −0.3577 1.9246 12.6333 −0.3577 1.9252 12.6462

∞ −0.3665(32) 1.8290(476) 11.8286(944) −0.3642(4) 1.8781(48) 12.3376(401) −0.3642(4) 1.8797(32) 12.3654(99)

equal to the difference between the CBS limits obtained with
X = 9, 8 and X = 8, 7 basis set pairs. However, to make this
error estimate more conservative, we additionally multiply it
by a factor of two. The shaded areas plotted in Fig. 1 represent
the error bars obtained in this way.

While the bulk of the basis set incompleteness error, ad-
dressed in the previous paragraph, stems from truncation
with respect to the angular momentum, the secondary source
of error is related to the augmentation with diffuse func-
tions. Fortunately, the results converge rapidly with increasing
augmentation level, as evident from Table I. The single aug-
mentation level is not satisfactory with the present accuracy
standards, but the differences between the results obtained
as doubly and triply augmented basis sets are minor. This
is especially true for the static polarizability, where the esti-
mated CBS limits are essentially indistinguishable. However,
for the dispersion coefficients we observe a small discrepancy
between the CBS limits obtained with daXZ and taXZ basis
sets, signaling that the adopted extrapolation scheme (8) does
not fully resolve this problem. To eliminate this issue, we
assume that the results converge exponentially with respect to
the augmentation levels. The CBS limits obtained with aXZ,
daXZ, and taXZ are fitted with the functional form

�αSD
n = An + Bne−Cnm, (9)

where m is the augmentation level. By extrapolating to the
limit m → ∞ we obtain the final estimates of the frozen-core
CCSD contribution to the polarizability and dispersion coeffi-
cients:

�αSD
0 = −0.3642(4),

�αSD
2 = 1.8797(32),

�αSD
4 = 12.3670(99),

�αSD
6 = 67.906(26).

(10)

For the sake of brevity, in the above discussion we have not
considered the quantity �αSD

6 explicitly. However, the value
given above has been obtained using exactly the same protocol
as for the lower-order coefficients.

The next contribution to the polarizability and dispersion
coefficients is due to coupled-cluster triple excitations within
the frozen-core approximation. We split this contribution into
two parts. The first (dominant) part is calculated at the CC3
level of theory, denoted �αCC3

n here, while the second (pre-
sumably minor) is the difference between the CC3 and full
CCSDT results, that is,

�αT
n = �αCCSDT

n − �αCC3
n . (11)

The reason for adopting this two-step approach is the fact that
the CC3 calculations are significantly less computationally
expensive than the full CCSDT. Moreover, the CC3 method

FIG. 1. Extrapolation of the �αSD
n contributions to the complete basis set limit using the formula (8). The solid horizontal line denotes the

best estimate of the corresponding quantity (see text for details), and the shaded area represents the respective error bars.
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TABLE II. Comparison of the �αCC3
n coefficients obtained by

fitting and from the direct calculation (da4Z basis set). The fitting
procedure includes even powers of ω up to the tenth order.

Quantity Direct Fitting

�αCC3
0 −0.0250 −0.0250

�αCC3
2 0.2285 0.2285

�αCC3
4 1.6473 1.6509

�αCC3
6 9.8084 9.1503

is known to capture a majority of the triple-excitation effects.
We managed to calculate �αCC3

n with doubly augmented basis
sets daXZ, X = 2, . . . , 7, but calculations of �αCCSDT

n are
feasible only for X = 2, . . . , 5 at this augmentation level.
Based on a set of preliminary calculations, we found that
the triply augmented basis sets taXZ give almost the same
results as daXZ and, in order to reduce the computational
costs, the latter basis sets are adopted. In calculation of both
triple-excitation contributions we use the contracted variants
of the daXZ basis sets.

In the determination of the �αT
n contribution we face an ad-

ditional technical difficulty. The CCSD and CC3 calculations
reported here were carried out with the help of the DALTON

package, which is able to determine the dispersion coefficients
directly. However, the CCSDT (and higher-order) methods are
not implemented in this program, and we employ the CFOUR

and MRCC packages for these calculations. Unfortunately,
with the latter two codes the dispersion coefficients are not
computed explicitly. Instead, one has to perform calculations
of the frequency-dependent polarizability at a grid of frequen-
cies and determine the coefficients in the expansion (6) by
fitting. This procedure is an additional source of potential
error that has to be controlled. Fortunately, we are able to per-
form benchmark calculations at the CC3 level of theory, where
the dispersion coefficients can be determined both directly and
by fitting, to judge the accuracy of the procedure.

As an example, we provide details of the aforemen-
tioned benchmark calculations within the da4Z basis set.
The polarizability was calculated at the CC3 level of the-
ory for 31 frequencies uniformly spaced in the interval
ω ∈ [0.000, 0.150] including the endpoints. The largest fre-
quency corresponds to the wavelength 303.76 nm, and hence
the whole experimentally relevant range of frequencies is
covered. Independently, the dispersion coefficients were cal-
culated directly at the same level of theory. In this work we
are not interested in dispersion coefficients of higher order
than sixth. Nonetheless, we found that inclusion of additional
coefficients proportional to ω8 and ω10 stabilizes the fitting
procedure and improves the accuracy. Therefore, the expan-
sion (6) used in the fitting procedure includes all even powers
of ω up to ω10. Incorporation of higher powers of ω does not
change the results in a meaningful way, and hence they were
eliminated to reduce the risk of overfitting. In Table II we
compare the �αCC3

n coefficients obtained by fitting and from
the direct calculation within the da4Z basis set. Overall, the
fitting procedure yields reliable values of the required coef-
ficients. For n = 0 and n = 2 the fitted results are essentially

identical to those calculated directly. Only for n = 6 do we ob-
serve a substantial deviation, but this is acceptable within the
present context. Based on this benchmark calculation we shall
assume in the remainder of the paper that the fitting procedure
is able to deliver the accuracy of at least four significant digits
for the second-order coefficient, at least three significant digits
for the fourth-order coefficient, and at least one significant
digit for the sixth-order coefficient.

In Table III we report results of the calculations of the
�αCC3

n and �αT
n contributions. The former contribution was

calculated directly, while the fitting procedure was used for
the latter. The results obtained with the da2Z basis set are
somewhat erratic, but starting with X = 3 the convergence
pattern towards the CBS limit becomes regular. For the �αCC3

n
and �αT

n contributions we adopted exactly the same extrapo-
lation scheme and error estimation method as in the preceding
CCSD calculations. The final estimates of the �αCC3

n and �αT
n

contributions and the corresponding error bars are given in
Table III. While the results for the �αCC3

6 contribution are
not given explicitly, the same procedure as for the lower-order
coefficients gives

�αCC3
6 = 16.85(30). (12)

The contribution �αT
6 is neglected; see the discussion in

Sec. III. The same is true for contributions of higher excita-
tions to the sixth-order dispersion coefficient.

Next, we consider the contributions to the polarizability
originating from quadruple excitations with respect to the
reference determinant. The full CCSDTQ computations scale
as N10 with the system size and are very costly. To reduce
this cost, it is customary to employ noniterative models that
account for quadruple excitations, such as CCSDT(Q) [55,56]
or CCSDT[Q] [57]. Unfortunately, as the electronic wave
function is not well defined in these methods, they cannot
be used for determination of dynamic response properties or
excitation spectra. Another option is to employ the CC4 model
[56], which is free from this drawback and has recently been
shown to deliver very accurate excitation energies. However,
to the best of our knowledge, calculation of the dynamic
polarizabilities at the CC4 level of theory is not implemented
in any electronic structure package at present. Therefore, in
determination of the quadruple excitations contribution to the
polarizability and dispersion coefficients, denoted �αQ

n , the
full CCSDTQ method is used in this work.

In Table IV we report the calculations of the �αQ
n con-

tribution. Due to the aforementioned high cost of these
computations, daXZ basis sets only up to X = 4 were feasi-
ble. Similarly as for other contributions, �αQ

n was calculated
for a finite set of frequencies followed by an analytical fitting
procedure. In general, the behavior of the results is similar
as in the case of the �αT

n correction (cf. Table III), but the
convergence with respect to the basis set size is noticeably
faster. We employ the extrapolation formula (8) from the
X = 3, 4 pair to eliminate the basis set incompleteness error,
as shown in Table IV. In order to estimate the error of these
results, we repeat the same procedure for extrapolation of the
�αT

n correction and compare with more reliable results from
Table III. The error bars given in Table IV were obtained under
the assumption that the relative error in the �αQ

n contribution
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TABLE III. Linear-response frozen-core triple-excitation contribution to the static polarizability and dispersion coefficients, �αCC3
n and

�αT
n , of the argon atom calculated using the doubly augmented daXZ basis sets as discussed in the paper.

X �αCC3
0 �αCC3

2 �αCC3
4 �αT

0 �αT
2 �αT

4

2 0.0452 0.3335 1.9729 0.0006 0.0333 0.2909
3 −0.0175 0.2244 1.6777 0.0051 0.0609 0.4627
4 −0.0250 0.2285 1.6473 0.0029 0.0551 0.3846
5 −0.0133 0.3445 2.3298 0.0010 0.0413 0.3171
6 −0.0069 0.4022 2.6685 0.0009 0.0373 0.3012
7 −0.0054 0.4186 2.7659 — — —
8 −0.0047 0.4261 2.8083 — — —

∞ −0.0031(4) 0.4427(68) 2.9018(473) 0.0007(2) 0.0312(62) 0.2764(553)

extrapolated from the X = 3, 4 basis set pair is no larger than
for the �αT

n contribution calculated in the same way.
It is worth pointing out an unusual feature of the triple and

quadruple excitation contributions to the static polarizability.
The total triple excitation contribution (that is, the sum of the
CC3 and CCSDT contributions), equal to roughly −0.0024,
is smaller in absolute terms than the quadruple excitation
contribution, −0.0045; see Tables III and IV. This unexpected
phenomenon is a consequence of a peculiar behavior of the
�αCC3

0 , which accidentally crosses zero in the vicinity of ω =
0. A similar phenomenon does not occur for the quadruple
excitations, explaining the unusual ratio of the two correc-
tions. Moreover, this feature is not observed for the dispersion
coefficients. In fact, for both the second- and fourth-order
coefficients, the quadruple excitation contribution is about 50
times smaller than the triple excitation effects, in line with the
expectations based on the conventional wisdom.

Finally, we study the contribution of higher-order exci-
tations to the polarizability and dispersion coefficients. The
contributions of pentuple, �αP

n , and hextuple, �αH
n , excita-

tions were calculated within the da2Z basis set. Unfortunately,
these calculations are unfeasible with a larger basis set, and
hence it is not possible to perform an extrapolation. Therefore,
we assign a conservative uncertainty estimate of 50% to the
values calculated within the da2Z basis. The following results
were obtained using the fitting procedure described in the
preceding paragraphs:

�αP
0 = −0.0007(3), �αH

0 = −0.00002(1),

�αP
2 = −0.0050(24), �αH

2 = −0.00009(5), (13)

�αP
4 = −0.0386(193), �αH

4 = 0.0002(1).

It is also worth pointing out the rapid convergence of the
results with respect to the maximum excitation level included

TABLE IV. Coupled-cluster quadruple excitation contributions
to the static polarizability and dispersion coefficients, �αQ

n , of the
argon atom calculated using the doubly augmented daXZ basis sets.

X �α
Q
0 �α

Q
2 �α

Q
4

2 −0.0114 −0.0593 −0.3400
3 −0.0128 −0.0866 −0.5383
4 −0.0085 −0.0477 −0.2858

∞ −0.0045(10) −0.0122(45) −0.0549(64)

in the coupled-cluster wave function. Taking the �α2 coef-
ficient as an example, the best estimate of the single and
double excitations contribution is −1.8797(32), triple ex-
citations: 0.4739(92), quadruple excitations: −0.0122(45),
pentuple excitations: −0.0050(24), and finally hextuple ex-
citations: −0.00009(5). In this light, the contributions of
higher-order excitations can be neglected, as they are most
likely smaller than the combined uncertainty of other terms.
Therefore, the contribution of septuple and higher excitations
is not considered in this work.

C. Core correlation contribution

In the calculations discussed in the previous subsection, we
adopted the frozen-core approximation, neglecting the cor-
relation contribution from the 1s2 2s2 2p6 core orbitals. The
influence of the core correlation is expected to be small, but
nonetheless nonnegligible within the present accuracy goals.

To eliminate this source of uncertainty, we carried out
additional calculations at the CC3, CCSDT, and CCSDTQ
levels of theory with all electrons correlated. The corrections
accounting for the core-core and core-valence correlations are
defined as the difference between the results obtained with
all electrons correlated and with frozen 1s2 2s2 2p6 orbitals.
These corrections are denoted as, for example, �αAE-CC3

n in
the case of the core orbitals correction calculated using the
CC3 method.

In Table V we report results of the calculations of the
�αAE-CC3

n correction using the modified dacXZ basis sets that
include the tight functions with large Gaussian exponents for
better description of the core region of the wave function. The
results are extrapolated to the complete basis set limit using

TABLE V. Contribution the core-core and core-valence correla-
tions to the static polarizability and dispersion coefficients or argon
calculated at the CC3 level of theory, �αAE-CC3

n , using the dacXZ
basis sets.

X �αAE-CC3
0 �αAE-CC3

2 �αAE-CC3
4

2 −0.0052 −0.0294 −0.1526
3 −0.0321 −0.1274 −0.5662
4 −0.0353 −0.1383 −0.6027
5 −0.0365 −0.1348 −0.5572
6 −0.0370 −0.1315 −0.5372

∞ −0.0379(9) −0.1264(50) −0.5060(312)
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the formula (8). The corresponding uncertainty is estimated
as the difference between the extrapolated value and the result
obtained with the largest basis set available.

It is also necessary to estimate the contribution of higher-
order excitations to the core-core and core-valence correlation
correction. Unfortunately, all-electron calculations using the
CCSDT and CCSDTQ method are extremely costly. This is a
result of a larger number of active electrons in comparison
with valence-only computations (8 vs 18 active particles).
Additionally, the dacXZ basis sets include the aforementioned
tight functions, and hence their total size is significantly
increased in comparison with their valence counterparts. Be-
cause of these obstacles, we managed to perform all-electron
CCSDT calculations only within X = 2, 3 basis sets, while
for the CCSDTQ method we are limited solely to X = 2.

Fortunately, the �αAE-T
n and �αAE-Q

n corrections are small
and do not have to be calculated very accurately. In the former
case two basis sets are available, and hence the extrapolation
towards the CBS is possible. However, the X = 2 is not re-
liable enough to make such extrapolation beneficial. In fact,
considering the CC3 data included in Table V, extrapolation
from the X = 2, 3 basis set pair overestimates the limit by
roughly 50%. On the other hand, the X = 3 result has an error
smaller than 15%. Therefore, a more accurate result is most
likely obtained by simply taking the value of �αAE-T

n obtained
within the X = 3 basis and assigning a large uncertainty of
15%. This gives

�αAE-T
0 = −0.0051(8),

�αAE-T
2 = −0.0516(78),

�αAE-T
4 = −0.3167(476).

(14)

Finally, we consider the �αAE-Q
n correction, where only one

basis set is available. To estimate the CBS limit of this correc-
tion we assume that it converges at the same rate as the CC3
contribution. The limit is then obtained by scaling the �αAE-Q

n
correction obtained within the X = 2 basis by the ratio of the
�αAE-CC3

n contributions as follows:

�αAE-Q
n (CBS) = �αAE-CC3

n (CBS)

�αAE-CC3
n (X=2)

�αAE-Q
n (X=2). (15)

This leads to the following estimates:

�α
AE-Q
0 = −0.0006(3),

�α
AE-Q
2 = 0.0014(7),

�α
AE-Q
4 = 0.0554(277),

(16)

where we assigned an uncertainty of 50% to the values
obtained by scaling. The error of the �αAE-Q

n contribution
obtained is this way is large, but in absolute terms this has
little influence on the overall uncertainty of our predictions.

V. RELATIVISTIC CORRECTIONS
TO THE POLARIZABILITY

To reach the required accuracy level in theoretical deter-
mination of the polarizability of argon, relativistic corrections
have to be considered. Indeed, even for the neon atom which is
much lighter, the relativistic effects constitute about two parts

per thousand of the total value. Our framework for calculation
of the relativistic contributions to the static polarizability and
dispersion coefficients is based on two alternative methods.
The first one is the standard first-order perturbation theory
based on the Breit-Pauli Hamiltonian [58]

ĤBP = P̂4 + D̂1 + D̂2 + B̂, (17)

where the operators appearing above are defined as

P̂4 = − 1

8c2

∑
i

∇4
i , (18)

D̂1 = π

2c2
Z

∑
i

δ(ria), (19)

D̂2 = π

c2

∑
i> j

δ(ri j ), (20)

B̂ = 1

2c2

∑
i> j

[
∇i · ∇ j

ri j
+ ri j · (ri j · ∇ j )∇i

r3
i j

]
, (21)

where Z is the nuclear charge and c denotes the speed of light
in vacuum. We avoid the use of the fine-structure constant
α in this work as it may easily be confused with the polar-
izability. The corrections to the polarizability and dispersion
coefficients resulting from the operators (17) will be denoted
by the symbol �αX

n , where X in the superscript denotes the
perturbing operator. Following the usual convention, we refer
to these corrections as mass-velocity (X = MV), one-electron
Darwin (X = D1), two-electron Darwin (X = D2), and Breit
(X = B), in the same order as appearing in Eq. (17). The sum
of the first two corrections (MV and D1) is referred to as the
Cowan-Griffin (CG) correction [59]. Another frequently used
name for the �αB

n term is the orbit-orbit correction, but we
refer to this quantity as the Breit correction for consistency
with previous works. The expectation values of the operators
in Eqs. (18)–(21) are calculated analytically at the CCSD(T)
level of theory as described in Ref. [60].

The second approach to determination of the relativis-
tic corrections is based on the Douglas-Kroll-Hess [61–63]
theory of the second order (DKH2). In this method the one-
electron part of the Hamiltonian is replaced by an effective
operator arising from a specific decoupling transformation
applied to the Dirac equation for one-electron systems. In the
DKH2 variant the decoupling is carried out to the second order
in the external potential. The practical advantage of the DKH2
Hamiltonian is the fact that is can easily be used together with
any method that is able to calculate polarizabilities. The same
is not true for the Breit-Pauli Hamiltonian; to the best of our
knowledge, analytic calculation of the full BP correction to the
polarizability (and dispersion coefficients) is not implemented
in any electronic structure package. On the other hand, the
DKH2 completely neglects the two-electron corrections (D2
and B), but in comparison with the Cowan-Griffin approx-
imation it includes terms of orders higher than 1/c2. The
relativistic correction obtained using the DKH2 method is
denoted by the symbol �αDKH2

n .
The Breit-Pauli correction to the static polarizability was

calculated using the finite-field approach. The electric field of
a small finite strength was added to the Hamiltonian, and the

042805-8



FIRST-PRINCIPLES CALCULATION OF THE … PHYSICAL REVIEW A 107, 042805 (2023)

TABLE VI. Relativistic corrections to the static polarizability of the argon atom calculated using the doubly augmented dacXZ basis sets
at the all-electron CC3 level of theory. In the last row we provide results extrapolated to the complete basis set limit according to Eq. (8) and
the corresponding error estimate.

One-electron corrections Two-electron corrections

X �αMV
0 �αD1

0 Total Cowan-Griffin �αDKH2
0 �αD2

0 �αB
0

2 −0.1380 0.1572 0.0192 0.0198 0.0002 0.0061
3 −0.1474 0.1667 0.0192 0.0198 0.0003 0.0066
4 −0.1452 0.1638 0.0186 0.0191 0.0002 0.0065
5 −0.1446 0.1629 0.0183 0.0188 0.0002 0.0065
∞ −0.1439(7) 0.1618(11) 0.0179(3) 0.0184(4) 0.0001(1) 0.0065(1)

second derivative of the Breit-Pauli corrections was extracted
using the simplest finite difference formula. The strength of
the electric field within range [0.00,0.01] was considered, and
for a wide interval around ca. 0.075 the results were stable to
four significant digits. This strength of the field was applied in
all calculations reported here. In Table VI we show relativistic
corrections to the static polarizability of argon calculated us-
ing the Breit-Pauli and DKH2 approaches (all-electron CC3
method within dacXZ basis sets, X = 2, . . . , 5). The results
were extrapolated to the CBS limit using the formula (8). The
error was estimated as a difference between the value extrap-
olated using the X = 4, 5 basis set pair, and the raw results
obtained within X = 5 basis. Only for the D2 correction is
a modification of this procedure required; it is known [64]
that this correction converges to the CBS limit as X −1, and
hence proper changes to Eq. (8) were introduced similarly as
in Refs. [65–70].

First, let us consider the differences between the Cowan-
Griffin and DKH2 corrections. The error of both methods
is of the order 1/c4, and hence we expect them to give a
similar answer, provided that the perturbation theory remains
valid for argon. One can see from Table VI that both methods
agree within their mutual error estimates. Based on that, we
conclude that DKH2 is a reliable method for calculation of
the one-electron relativistic corrections, and we apply it also
in calculations of the dispersion coefficients. The obtained
results of the �αDKH2

n corrections are given in Table VII with
the same extrapolation and error estimation method as for the
static polarizability.

From Table VI we can also judge the importance of
two-electron relativistic effects in the present context. The
two-electron Darwin correction is entirely negligible. Its con-
tribution is smaller than the uncertainty of other corrections.
We tacitly assume that the same is true for the dispersion

TABLE VII. Relativistic corrections �αDKH2
n obtained at the

CC3 level of theory within the dacXZ basis sets (DKH2 effective
Hamiltonian).

X �αDKH2
0 �αDKH2

2 �αDKH2
4

2 0.0198 0.1859 1.3507
3 0.0198 0.1832 1.3331
4 0.0191 0.1736 1.2453
5 0.0188 0.1701 1.2173

∞ 0.0184(4) 0.1658(43) 1.1827(346)

coefficient and hence omit it in further analysis. However,
the situation is entirely different in the case of the Breit
correction. Indeed, due to significant cancellation between
the mass-velocity and one-electron Darwin corrections (which
have opposite signs), the Breit correction is only about three
times smaller than the total Cowan-Griffin correction. Such
phenomena appear to be a common feature in calculations
for many-electron systems. Moreover, the contribution of the
one-electron relativistic effects increases in magnitude (on a
relative basis) for the dispersion coefficients in comparison
with the static polarizability (roughly 0.6% and 1.5% for α2

and α4, respectively, while only 0.2% for α0). We can expect
that the same is true for the Breit correction, and hence the
omission of this quantity in determination of the dispersion
coefficient would significantly increase the overall error of our
results. As mentioned above, no implementation of the Breit
correction to the dispersion coefficients has been reported yet,
and the standard finite-field approach is not applicable to the
frequency-dependent quantities.

In order to circumvent this problem, let us first analyze
the results from Table VI more closely. A striking feature of
the results obtained for the Breit correction is the fast conver-
gence with respect to the basis set size. Indeed, even within
the smallest dac2Z basis, the accuracy of the calculated Breit
correction would be acceptable (with wider error bars). The
apparent insensitivity of the Breit correction to the quality
of the basis set suggests that the dynamic correlation effects,
which typically require high angular momenta to achieve con-
vergence, may not be important for this quantity. To verify this
hypothesis we recomputed the Breit correction to the static
polarizability using the Hartee-Fock theory, which includes
no dynamic correlation, as well as the MP2 theory, which is
the simplest correlated method. In Table VIII the obtained
results are compared with the CC3 data reproduced from
Table VI for ease of comparison. Results given in Table VIII

TABLE VIII. The relativistic Breit corrections to the static po-
larizability (�αB

0 ) obtained at various levels of theory (all electrons
correlated where applicable) using the dacXZ basis sets.

X Hartree-Fock MP2 method CC3 method

2 0.0062 0.0061 0.0061
3 0.0066 0.0067 0.0066
4 0.0066 0.0066 0.0065
5 0.0066 0.0066 0.0065
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confirm our hypothesis that the correlation contribution to the
Breit correction is tiny and the Hartee-Fock method provides
entirely satisfactory accuracy.

We assume that the unimportance of the correlation con-
tributions to the Breit correction holds true also for the
dispersion coefficients. In the Appendix we develop analytic
equations that allow us to calculate this correction to the
frequency-dependent polarizability at the Hartree-Fock level
of theory. From these calculations we obtain

�αB
2 = 0.0530(26),

�αB
4 = 0.2750(138).

(22)

The uncertainty estimates are based on a small contribution of
the electron correlation to the Breit correction, which amounts
to only about 1% for the static polarizability. In the case of
�αB

2 and �αB
4 we conservatively assumed that they contribute

by no more than 5%. As expected, the Breit correction to the
dispersion coefficients is sizable, constituting about a quarter
of the total relativistic contribution. Therefore, omission of
this term would significantly increase our final error.

Having included all effects of the order of 1/c2 we should
consider the possible significance of the relativistic effects of
the order of 1/c4. These effects originate from higher-order
terms in the Foldy-Wouthuysen transformation of the Dirac
equation and from the second-order contribution from the
Breit-Pauli Hamiltionan [71]. The required calculations are
very complicated even for the ground state of helium atom
and so far have not been performed for the polarizability of
helium. To gauge the magnitude of these 1/c4 effects in argon
we considered the effect of the second-order spin-orbit inter-
action on the atomic polarizability. This interaction vanishes
in the first-order of perturbation theory and hence was not in-
cluded in the Breit-Pauli Hamiltonian, Eq. (17). Nonetheless,
the spin-dependent terms enter in higher orders by coupling
triplet electronic excitations to the singlet ground state. While
such terms are expected to be small, there is no reason to
neglect them a priori. Unfortunately, rigorous evaluation of
the contribution of the second-order spin-orbit interaction in
argon is computationally unfeasible at present. Therefore, to
estimate the magnitude of the spin-orbit contributions we
performed fully relativistic Hartree-Fock calculations based
on the four-component Dirac-Coulomb Hamiltonian as im-
plemented in the DIRAC program [72,73]. In order to extract
the spin-dependent contributions to the static polarizability,
two sets of calculations were performed. The first set was
based on the conventional Dirac-Coulomb Hamiltonian, while
in the second the spin-dependent terms were eliminated using
the method of Dyall [74]. The spin-dependent contribution to
the static polarizability, denoted �αSO

0 here, was obtained as
a difference of the corresponding results from two sets. In the
calculations we used the uncontracted basis sets from Sec. IV
to expand the large component of the spinor. While these
basis sets were optimized in the nonrelativistic framework and
hence are suboptimal in the four-component calculations, this
is acceptable for relatively light systems such as argon atom.
The small-component basis was generated automatically us-
ing the restricted kinetic balance prescription.

The spin-dependent contributions to the static polarizabil-
ity converge rapidly with respect to the size of the basis set.

For example, the results obtained with da4z and da5z differ by
merely one part per 1000, and the difference between da5z and
da6z is by an order of magnitude smaller. Therefore, we adopt
the value obtained within the da6z basis as the final result. The
major contribution to the uncertainty of this quantity comes
from the neglected correlation effects. To account for this,
we adopt a conservative 20% error estimate. This gives the
final spin-dependent contribution to the static polarizability
equal to

�αSO
0 = 0.0012(2). (23)

This correction is smaller than the combined uncertainty of
other contributions. In the case of the dispersion coefficients,
these uncertainties are significantly larger on a relative basis,
and hence the spin-dependent terms can be neglected.

VI. QUANTUM ELECTRODYNAMICS CORRECTIONS
TO THE POLARIZABILITY

The next contributions to the polarizability and disper-
sion coefficients originate from the quantum electrodynamics
(QED) effects, �αQED

n . In this work we apply the following
correction [75–77]

�αQED
n = 8

3π c

(
19

30
+ 2 ln c − ln k0

)
�αD1

n , (24)

where �αD1
n is the relativistic D1 correction calculated in

the previous section and ln k0 is the so-called Bethe log-
arithm [58,78] (related to the mean-excitation energy of
the system). In comparison with the rigorous nonrelativistic
quantum electrodynamics (NRQED) theory [75–77], several
approximations were adopted to arrive at Eq. (24). First, the
two-electron QED corrections were neglected. There are two
corrections of this type; the first is essentially the D2 relativis-
tic correction scaled by a small numerical factor. Taking into
account that the D2 correction to the polarizability is already
negligible, there is little point in including the corresponding
QED correction. The second two-electron QED correction is
the so-called Araki-Sucher term [79,80]. While this contribu-
tion can be calculated within the Gaussian basis set [81–84],
it is typically even smaller than the D2 correction and hence is
entirely omissible. Another approximation used in Eq. (24) is
neglect of the external electric field dependence of the Bethe
logarithm. As discussed at length in Ref. [19], ln k0 is sensitive
primarily to the electronic wave function in the region close to
the nucleus. This regime is dominated by the strong electric
field generated by the nucleus, and hence the influence of
the (perturbatively small) external electric field is very small.
The excellent agreement between theory and experiment for
the polarizability of the neon atom [19,20], where the same
approximation was adopted in the calculations, confirms that
the field dependence of the Bethe logarithm is indeed tiny. The
same conclusion was reached in calculations for the helium
atom where the electric-field derivative of the Bethe logarithm
was calculated rigorously [14,18].

The Bethe logarithm for argon was calculated at the
Hartee-Fock level of theory using the same formalism as in
our previous work devoted to the neon atom [19]. Details of
these calculations will be reported in a separate publication.
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The value of the Bethe logarithm for argon adopted here reads

ln k0 = 8.7610. (25)

Based on comparison with more accurate calculations for
few-electron atoms, we estimate that the accuracy of this
quantity is 1%–2%, which does not contribute significantly
to the overall error.

With all aforementioned approximations taken into ac-
count, calculation of the �αQED

n correction amounts to scaling
the appropriate �αD1

n by a numerical factor of approximately
−0.0437. In the case of the static polarizability we use the
�αD1

0 calculated in the previous section. For the dispersion
coefficients the �αD1

n terms were calculated using the theory
developed in the Appendix. This leads to the following con-
tributions:

�α
QED
0 = −0.0071(7),

�α
QED
2 = −0.0223(22),

�α
QED
4 = −0.1039(104),

(26)

where we adopted a conservative 10% error bars to account
for all approximations in Eq. (24).

It is also instructive to estimate the magnitude of the
higher-order QED effects, �αQED+

n . It is well known that the
dominant QED contribution of the order 1/c4 is the so-called
one-loop term [85]. In the present case it takes the form

�αQED+
n = 2Z

c2

(
427

96
− 2 ln 2

)
�αD1

n . (27)

With the knowledge of the �αD1
n calculated previously, the

one-loop term can be obtain by scaling with the numerical
factor of roughly 0.0059. This gives the following estimates:

�α
QED+
0 = 0.0010(2),

�α
QED+
2 = 0.0030(7)

�α
QED+
4 = 0.0140(35).

(28)

We adopt a wide error bars of 25% to account for the missing
1/c4 QED terms.

VII. FINITE NUCLEAR MASS AND SIZE CORRECTIONS
TO THE POLARIZABILITY

In all preceding calculations, the nucleus of the argon atom
was effectively treated as a stationary point charge with infi-
nite mass. For completeness, we here consider two corrections
that go beyond this simple picture. First, we consider the finite
nuclear size (FNS) correction �αFNS

n which takes into account
that the nucleus has a finite dimension. For many-electron
atoms this correction to the static polarizability is calculated
from the formula [86]

�αFNS
0 = 4

3

〈
r2

c

〉
λ̄2

�αD1
0 , (29)

where 〈r2
c 〉 is the averaged square of the nuclear charge radius

and λ̄ ≈ 386.2 fm is the reduced Compton wavelength of
the electron. We employ the value 〈r2

c 〉 = 11.512 fm2 for the
40Ar isotope, which was obtained in Ref. [87] using the two-
parameter Fermi model of the nuclear charge distribution. The

uncertainty of this quantity reported in Ref. [87] is negligible
in the present context. Using the value �αD1

0 from Table VI
we find

�αFNS
0 = 1.7 × 10−5. (30)

This correction is negligible in comparison with other sources
of error. Since there is no reason to believe that the FNS cor-
rection is substantially larger for the dispersion coefficients, it
has been neglected in our analysis.

Next, we consider the finite nuclear mass (FNM) cor-
rection. In the case of the static polarizability, it can
be determined from the formula for the diagonal Born-
Oppenheimer correction (DBOC) [88]

�αFNM
0 = 1

2Mnuc
∂2
ε

∣∣
ε=0〈�0|∇2

nuc|�0〉, (31)

where �0 is the ground-state wave function, Mnuc is the nu-
clear mass, ε denotes the strength of the external electric
field, and ∇nuc is the gradient operator with respect to the
coordinates of the nucleus. As we expect the contribution of
the FNM correction to be relatively small, it is sufficient to
calculate �αFNM

0 using the simplest correlated theory which
is the MP1 method described in Refs. [89,90]. The derivative
with respect to the electric field in Eq. (31) is calculated
using the finite-difference approach with the same settings as
described in Sec. V. The final value of the �αFNM

0 correction
adopted here was obtained by extrapolating the results from
the da4Z/da5Z basis set pair according to Eq. (8). It reads

�αFNM
0 = 1.9(3) × 10−4, (32)

where the error estimate is equal to the difference between the
extrapolated value and the result obtained within the da5Z ba-
sis set. This correction is essentially negligible in comparison
with other sources of error, and the same conclusion is most
likely true for the dispersion coefficients as well. Therefore,
we neglect the FNM mass effects in determination of the
polarizability dispersion.

VIII. MAGNETIC SUSCEPTIBILITY

As discussed in Sec. III, the magnetic susceptibility does
not have to be determined as accurately as the polarizability,
and relative accuracy of around 10% is entirely sufficient.
Therefore, in our treatment we neglect the frequency depen-
dence of this quantity and concentrate solely on the static
magnetic susceptibility, χ0. It is worth pointing out that for
isolated atoms the frequency dependence of χ0 comes only
from paramagnetic terms (which are minor in absolute terms),
and hence it is highly unlikely that the frequency contribution
to χ0 exceeds 1% for argon; see Ref. [19].

Additionally, we neglect relativistic, QED, and finite nu-
clear mass or size corrections to χ0. Note that calculation of
these corrections is a significant challenge and has not been
attempted thus far (without additional approximations to the
theoretical formalism) even for the helium atom. Therefore,
such calculations are beyond the scope of the present work,
and here we focus solely on the “nonrelativistic” value of χ0.
Parenthetically, we note that the use of the term “nonrelativis-
tic” may be viewed as a misnomer in this context, because
the magnetic susceptibility in itself is of the order 1/c2 and
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hence vanishes in the nonrelativistic limit, c → ∞. However,
the use of this name appears to be common in the literature,
and hence we follow this naming convention.

Neglecting terms of higher order in 1/c and assuming
that the nucleus has an infinite mass, the atomic magnetic
susceptibility is related to the mean-square electron-nucleus
distance through the formula [58]

χ0 = − 1

6c2

〈∑
i

r2
i

〉
, (33)

which has roots in the Langevin theory of diamagnetism [91].
In this section we focus on accurate determination of the
value of 〈∑i r2

i 〉 for argon. For brevity, we adopt a shorthand
notation 〈r2〉 ≡ 〈∑i r2

i 〉. As will become apparent, in our cal-
culations we include several corrections which are smaller
than our stated accuracy goal and hence could possibly be
neglected. Nonetheless, our motivation is to establish how
accurately the nonrelativistic value of χ0 can be determined
at present. This provides an outlook as to how accurately
the relativistic (and other) corrections must be computed in
subsequent papers. In the calculations of 〈r2〉 we adopt a
similar strategy as for the nonrelativistic contribution to the
polarizability with only minor modifications. In particular,
the same basis sets are used, including the augmented and
core-valence functions, and the calculations are split into
valence-only (frozen 1s22s22p6 core orbitals) and all-electron
components.

First, we consider the Hartree-Fock contribution, denoted
〈r2〉HF further in the text. As the HF equations for atoms can
be solved using a grid based approach with extremely high
accuracy, there is little point in attempting to reproduce these
results within a Gaussian basis. Therefore, we take 〈r2〉HF =
26.0344 from Ref. [92], which is essentially exact for our
purposes to all digits given.

The second major contribution to 〈r2〉 was calculated at
the frozen-core CCSD(T) level of theory, �〈r2〉SD(T), using
the daXZ basis sets. Similarly as for the polarizability, we
found that further augmentation of the basis sets leads to
tiny changes in the results, which are not worth a significant
increase of the computational time. Note that the CCSD(T)
method is used here rather than the CC3 theory employed for
the polarizability. This choice is justified by the observation
that both CC3 and CCSD(T) have a similar accuracy, yet
the latter is usually significantly less expensive due to the
noniterative treatment of the triple excitations. Such a shortcut
was not available in the case of the (dynamic) polarizability as
this quantity is not well defined within the CCSD(T) model.
In Table IX we report values of the �〈r2〉SD(T) correction
calculated with basis sets X = 2, . . . , 9. The CBS limit of
this quantity is obtained by extrapolation using the formula
(8) with X = 8, 9. The uncertainty is estimated as twice the
difference between the extrapolated values from X = 8, 9 and
X = 7, 8 basis set pairs, analogously as for the polarizability;
see Sec. IV.

Next, we consider corrections to the magnetic suscepti-
bility accounting for higher-order excitations with respect to
the reference determinant. They are denoted by the sym-
bols �〈r2〉T [the difference between CCSDT and CCSD(T)
results], �〈r2〉Q (the difference between CCSDTQ and

TABLE IX. Valence coupled-cluster calculations of the mean
square electron-nucleus distance, 〈r2〉, for argon atom obtained
within the daXZ basis set family.

X �〈r2〉SD(T) �〈r2〉T �〈r2〉Q �〈r2〉P

2 0.2298 0.0035 0.0004 −0.0006
3 0.0909 0.0007 0.0007 −0.0010
4 0.0156 −0.0008 0.0020 —
5 −0.0104 −0.0017 — —
6 −0.0227 −0.0019 — —
7 −0.0290 — — —
8 −0.0326 — — —
9 −0.0349 — — —
∞ −0.0408(4) −0.0022(3) 0.0032(12) −0.0012(2)

CCSDT), and so on. We consider corrections up to pen-
tuple excitations, �〈r2〉P, and higher-order corrections are
neglected based on their small magnitude. For example,
the �〈r2〉H correction calculated within the da2Z basis set
amounts to only about −1 × 10−5. Even if one conservatively
assumes that within this small basis the �〈r2〉H correction is
underestimated by a factor of 20, the resulting value is still
smaller than the uncertainties of other contributions and hence
can be safely neglected without increasing the overall error.
Noting the rapid convergence of the results with respect to
the excitation level, the same is true for contributions of even
higher excitations.

The calculated higher-order contributions to the magnetic
susceptibility are given in Table IX. The CBS limits are ob-
tained by the standard extrapolation, Eq. (8), using the largest
two basis sets available for a given quantity. However, because
in calculation of these corrections we are unable to employ
basis sets as large as for �〈r2〉SD(T), a more conservative un-
certainty estimate is used. Namely, the error of the CBS limit
is computed as a difference between the extrapolated value
and the result obtained within the largest basis set feasible for
a given quantity.

Next, we consider core-valence contribution to 〈r2〉, de-
fined as the difference between results obtained with all
occupied orbitals correlated and with frozen 1s22s22p6 core
orbitals. In determination of this correction we adopt an analo-
gous strategy as in the valence calculations, with the exception
that dacXZ basis sets supplemented with additional tight func-
tions are used. The core-valence corrections are denoted by
the symbols �〈r2〉AE−SD(T), �〈r2〉AE−T, and so on. The results
of the calculations obtained in the same way as for the valence
contribution are given in Table X.

A somewhat surprising phenomenon encountered when
comparing results from Tables IX and X is the fact that
the valence contribution calculated at the CCSD(T) level of
theory is smaller (in absolute terms) than the corresponding
core-valence contribution. This feature is observed only in the
CCSD(T) calculations and absent in any other CC variant.
Moreover, even looking at the Hartree-Fock reference func-
tion, the contribution of the 1s22s22p6 core orbitals is about
two orders of magnitude smaller than of the valence shells.
This unusual behavior of the correlation contribution at the
CCSD(T) level of theory is somewhat unfortunate as the core
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TABLE X. All-electron coupled-cluster calculations of the mean
square electron-nucleus distance, 〈r2〉, for argon atom obtained
within the dacXZ basis set family.

X �〈r2〉AE−SD(T) �〈r2〉AE−T �〈r2〉AE−Q

2 −0.0092 −0.0003 0.0004
3 −0.0389 −0.0005 0.0001
4 −0.0555 −0.0001 —
5 −0.0640 — —
6 −0.0681 — —
∞ −0.0743(62) 0.0002(3) 0.0000(2)

corrections cannot be calculated with basis sets as large as
in the valence calculations. As a result, the uncertainty of
the �〈r2〉AE−SD(T) component actually dominates our error
budget for the magnetic susceptibility. Larger core-valence
basis sets need to be optimized in the future if a significant
error reduction is desired. It is also worth pointing out that the
�〈r2〉AE−T and �〈r2〉AE−Q corrections are essentially negligi-
ble at present.

By summing all calculated contributions we obtain the
final estimate of the mean-square electron-nucleus distance in
argon atom equal to

〈r2〉 = 25.9193(64), (34)

where the final error is calculated by adding squares of errors
of individual contributions and taking the square root. Accord-
ing to Eq. (33), this translates to the following value of the
magnetic susceptibility of argon:

χ0 = −2.3004(6) × 10−4. (35)

We would like to stress that above result is based on purely
“nonrelativistic” formula (33), and the corresponding error
estimate takes into account only the uncertainties in 〈r2〉.
Other corrections to χ0 such as relativistic, quantum electro-
dynamics, etc., are completely neglected and not included in
the above error bars. Nonetheless, assuming the magnitude of
these corrections is similar as for the static polarizability, one
can conclude that the value given above is accurate to at least
1%. As discussed in Sec. III, this level of accuracy is sufficient
from the point of view of refractive coefficient measurements.
In the subsequent section, the result given above is compared
with the available literature data.

IX. FINAL RESULTS AND DISCUSSION

In Table XI we present a summary of the theoretical re-
sults obtained in this work for the static polarizability and
dispersion coefficients for argon. The final estimates (denoted
“total” in Table XI) are obtained by summing all relevant con-
tributions. The total error is obtained by calculating the sum of
squares of individual uncertainties and taking the square root.
This approach is justified by the standard error propagation
formulas under the assumption that all contributions to the
final results are independent variables in the statistical sense.

In the case of the sixth-order dispersion coefficient, we
used a simplified computational scheme where only the
Hartree-Fock, valence CCSD, and valence CC3 contributions
are included. By summing these quantities we obtain the final

TABLE XI. The final error budget of the calculations of the static
polarizability and dispersion coefficients for the argon atom.

n = 0 n = 2 n = 4

Nonrelativistic valence (3s23p6) contributions
αHF

n 11.4726(1) 25.6162(1) 78.9658(2)
�αSD

n −0.3642(4) 1.8797(32) 12.3670(99)
�αCC3

n −0.0031(4) 0.4427(68) 2.9018(473)
�αT

n 0.0007(2) 0.0312(62) 0.2764(553)
�αQ

n −0.0045(10) −0.0122(45) −0.0549(64)
�αP

n −0.0007(3) −0.0050(24) −0.0386(193)
�αH

n 0.0000(1) 0.0000(1) 0.0002(1)

Nonrelativistic core (1s22s22p6) correlation contributions
�αCC3

n −0.0379(9) −0.1264(50) −0.5060(312)
�αT

n −0.0051(8) −0.0516(78) −0.3167(476)
�αQ

n −0.0006(3) 0.0014(7) 0.0554(277)

Relativistic and QED corrections
�αDKH2

n 0.0184(4) 0.1658(43) 1.1827(346)
�αD2

n 0.0001(1) — —
�αB

n 0.0065(1) 0.0530(26) 0.2750(138)
�αSO

0 0.0012(2) — —
�αQED

n −0.0071(7) −0.0223(22) −0.1039(104)
�αQED+

n 0.0010(2) 0.0030(7) 0.0140(35)

Other minor corrections
�αFNS

n 0.0000(1) 0.0000(1) 0.0000(1)
�αFNM

n 0.0002(1) — —
Total 11.0775(19) 27.976(15) 95.02(11)

Rel. accuracy 1.7 · 10−4 5.5 · 10−4 1.1 · 10−3

estimate

α6 = 382.5. (36)

Because the accuracy of α6 is not critical, we do not attempt
a rigorous error estimation for this quantity. However, by
analyzing the impact of analogous approximations on the
lower-order dispersion coefficients, it is safe to assume that
the value of α6 given above has the relative error no larger
than 10%. According to the discussion from Sec. III, this is
entirely sufficient from the point of view of metrology.

In order to verify the accuracy of the theoretical pre-
dictions, we first compare the final results obtained for the
static polarizability with the experimental data. As expected,
our value for α0 is significantly less accurate than the latest
experiment of Gaiser and Fellmuth [21]. Nonetheless, the
experimental value is within the error bars estimated by us.
In fact, the relative error with respect to the data of Gaiser and
Fellmuth [21] is about five times smaller than the uncertainty
estimated from theory. This suggests than our error estimation
protocol is conservative and leads to overestimation of the
uncertainty, but may also be in part due to fortuitous error can-
cellation. Therefore, we are reluctant to arbitrarily decrease
our uncertainty estimates based solely on this comparison.

Concerning the dispersion coefficients, the results provided
by us appear to be the most accurate reported thus far, see
Table XII. We improve the accuracy by more than an order
of magnitude in comparison with the available data. Unfortu-
nately, more accurate theoretical and/or experimental values
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TABLE XII. Comparison with other theoretical and experimental
literature values of αn. The error estimation is not present in cases
where it has not been provided by the original authors. All values are
given in the atomic units.

α0 α2 α4

Experimental or semiempirical
Kumar and Thakkar [93] 11.08(11) 27.89(28) 95.62(96)
Orcutt and Cole [94] 11.0753(54) — —
Buckley at al. [95] 11.0774(10) — —
Gaiser and Fellmuth [21] 11.077183(27) — —

Theoretical
Pawłowski et al.a [24] 11.102 27.996 94.846
Lupinetti et al.b [23] 11.07 — —

This work 11.0775(19) 27.976(15) 95.02(11)

aCC3 level of theory, sextuple-zeta GTO basis.
bFinite-field CCSD(T) calculations.

for this quantities are not available. However, in the recent
work by Egan et al. [96] the molar polarizability of argon
was determined for a single laser frequency corresponding to
the wavelength λE = 632.9908(2) nm (ωE = 0.071 981 in the
atomic units, red He-Ne laser). After converting to the unit
system used in the present work their result reads

αexp.(ωE ) = 11.224 31(17). (37)

To compare this value with the results obtained in the present
work, we use the expansion (6). For the static polarizabil-
ity we adopt the value of Gaiser and Fellmuth [21], while
the dispersion coefficients are taken from Table XI, and the
value from Eq. (35) is used for the magnetic susceptibility.
Note that the results of Egan et al. [96] are based on laser
refractometry experiments, and hence the sum of static po-
larizability and magnetic susceptibility must be used for the
frequency-independent component to allow for a meaningful
comparison. The contributions of the sixth- and higher-order
dispersion coefficients of the polarizability, as well as of the
frequency dependence of the magnetic susceptibility, are neg-
ligible for the laser frequency under consideration. This leads
to the following theoretical estimate:

αtheory(ωE ) = 11.224 45(11). (38)

As one can see, the theoretical and experimental results are in
agreement. While the experimental value lies slightly outside
the error bars of αtheory(ωE ), they are mutually within their
combined uncertainty. It is also worth pointing out that the rel-
ative uncertainty of the theoretical data, roughly 10 ppm, is of
comparable magnitude as of the experiment. This comparison
proves that by combining the static polarizability determined
by Gaiser and Fellmuth [21] with the dispersion and magnetic
susceptibility derived from theory, one obtains the most reli-
able data for the polarizability at a finite frequency available in
the literature. According to our analysis from Sec. III the data
reported in this work are accurate enough to apply the same
procedure to other experimentally relevant laser wavelengths
above roughly 450 nm. Therefore, we believe that the main re-
sults of this work, besides establishing a rigorous benchmark

TABLE XIII. Comparison with other theoretical and experimen-
tal literature values of static magnetic susceptibility of argon. The
error estimation is not present in cases where it has not been provided
by the original authors. All values are given in the atomic units.

χ0

Experimental
Havens [97] −2.15(2) × 10−4

Mann [98] −2.19(2) × 10−4

Abonnenc [99] −2.15 × 10−4

Barter et al. [100] −2.16(2)a × 10−4

−2.16(15)b × 10−4

Theoretical
Yoshizawa and Hadac [101] −2.22 × 10−4

Ruud et al.d [102], Jaszuński et al.d [103] −2.31 × 10−4

Reinsch and Meyere [104] −2.32 × 10−4

Levy and Perdewf [105], Desclauxf [106] −2.30 × 10−4

This work −2.30(2) × 10−4

aOriginal error estimate from Ref. [100].
bRevised error estimate proposed in Ref. [22].
cMP2-DKH2(V + A) method, 23s16p16d16 f 10g GTO basis.
dMCSCF calculations with 3s3p3d4s4p active orbitals.
ePNO-CEPA calculations, 14s11p4d GTO basis.
fNumerical relativistic Dirac-Fock.

for other theoretical methods, will find use in metrology and
related fields.

Regarding the magnetic susceptibility, our final result
reads

χ0 = −2.30(2) × 10−4, (39)

where we have adopted a global 1% uncertainty estimate to
account for the missing relativistic, quantum electrodynam-
ics, etc., corrections. In Table XIII we compare this value
with the experimental and theoretical data available in the
literature. The most frequently cited experimental result is
given in the work of Barter et al. [100], −2.16(2) × 10−4.
However, it has to be pointed out that this result is not an
independent measurement, but rather an arithmetic average of
three previous experimental values [97–99] used to calibrate
the apparatus. It has recently been suggested [22] that an issue
with purity of argon gas in these three experiments could
have been an additional source of error not accounted for
in the uncertainty estimates. This led to the revised error
estimate, −2.16(15) × 10−4, which we adopt in this work.

From Table XIII, we see that all theoretical calculations
reported in the literature, with the exception of the paper of
Yoshizawa and Hada [101], lead to a value χ0 = −2.30 ×
10−4 or lower. By comparison, the experimental results cluster
around χ0 = −2.15 × 10−4, a difference of roughly 6%–7%
in relative terms. In analogy with the current state of data
for helium and neon, we strongly recommend that the current
theoretical result (39) is used as an interim reference value.
In future works, we plan to calculate the magnetic suscep-
tibility of all noble gases with significantly higher accuracy,
including all relevant physical effects beyond Eq. (33). We
believe that this will establish a solid reference value for most
applications. However, in order to validate and double check
the results, new independent measurements of the magnetic
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susceptibility of noble gases with modern setups and rigorous
error control would be extremely valuable. The same is true
for verification of theoretical results by a set of independent
calculations, preferably within a different framework.

X. CONCLUSIONS

In this work we have reported first-principles theoretical
calculations of the dipole polarizability and magnetic suscep-
tibility of the argon atom. Frequency dependence of the latter
is neglected, while for the former it is taken into account by
means of power series expansion in terms of the so-called
dispersion coefficients (Cauchy coefficients). This approach
is sufficient in terms of accuracy for experimentally relevant
wavelengths below the first resonant frequency.

In the reported calculations, we include all nonnegligible
physical effects including the relativistic, quantum electrody-
namics, finite nuclear mass, and finite nuclear size corrections.
The dominant nonrelativistic clamped-nuclei contribution is
computed using a hierarchy of coupled-cluster methods com-
bined with Gaussian basis sets up to nonuple-zeta quality
optimized specifically for this task. Relativistic effects are
determined using either the Breit-Pauli Hamiltonian or DKH
effective approach, with excellent agreement between these
two methods. Other minor corrections are calculated with help
of the first-order perturbation theory.

The final results, with inclusion of all relevant physi-
cal effects, are α0 = 11.0775(19) for the static polarizability
and α2 = 27.976(15) and α4 = 95.02(11) for the second and
fourth dispersion coefficients, respectively. We additionally
determined the sixth-order dispersion coefficient, α6 = 382.5,
but with a significantly larger uncertainty of about 10%. Our
result obtained for the static polarizability agrees (within the
estimated uncertainty) with the most recent experimental data
[21] but is less accurate. The dispersion coefficients deter-
mined in this work appear to be the most accurate in the
literature, improving by more than an order of magnitude
upon previous estimates. By combining the experimentally
determined value of the static polarizability with the disper-
sion coefficients from our calculations, the polarizability of
argon can be calculated with accuracy of around 10 ppm for
wavelengths above roughly 450 nm.

Additionally, in this work we calculate the static magnetic
susceptibility of argon, which relates the refractive index of
dilute argon gas with its pressure. While our result for this
quantity is less accurate than in the case of the polarizability,
it provides a starting point for more rigorous calculations in
the future. In subsequent papers, we shall report relativistic
calculations of the magnetic susceptibility of noble atoms.

The results reported in this work increase the current
knowledge of several fundamental properties of atomic ar-
gon. This is important from the point of view of quantum
metrology, especially for a new pressure standard based on
thermophysical properties of gaseous argon.
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APPENDIX A: TWO-ELECTRON RELATIVISTIC
CORRECTIONS TO THE DYNAMIC POLARIZABILITY

In the following, the exact wave function is denoted by
the symbol |�0〉 and the electronic Hamiltonian of the system
by H . The exact ground state energy is denoted by E0. The
dynamic dipole polarizability at a real frequency ω (away
from the resonant frequencies of the system) of the ground
state is defined as

α(ω) = −1

3
〈�0|r Q

H − E0 + ω
r|�0〉 + g.H.c., (A1)

where Q = 1 − |�0〉〈�0| is the projection operator onto the
subspace orthogonal to �0 and r = ∑

i ri is the electronic
dipole operator. Note that Q commutes with the Hamiltonian
of the system and any analytic function of H . The sym-
bol “g.H.c.” denotes the generalized Hermitian conjugation,
which amounts to exchanging wave functions in bra and ket,
and reversing the sign of the frequency, i.e., ω → −ω.

Let us define the first-order response function �1 by the
formula

|�1〉 = − Q

H − E0 + ω
r|�0〉. (A2)

It can be obtained by solving the following equation:

(H − E0 + ω)|�1〉 + r|�0〉 = 0, (A3)

With help of the response function the polarizability can be
rewritten as

α(ω) = 1
3 〈�0| r |�1〉 + g.H.c. (A4)

Assume that the Hamiltonian is modified by adding a small
perturbation, i.e., H → H + λV , where V is an operator and
λ controls the strength of the perturbation. When the pertur-
bation is switched on, all quantities defined above become
dependent on λ, but we do not write this explicitly. We are
interested in the derivative of the polarizability with respect to
λ for λ = 0, i.e., ∂λ|λ=0 α(ω).

The response of the exact wave function to the perturba-
tion, |�V 〉 ≡ ∂λ|λ=0 |�0〉, is found by solving

(H − E0)|�V 〉 + (V − 〈V 〉)|�0〉 = 0, (A5)

subject to the orthogonality condition 〈�0|�V 〉 = 0, where for
any operator X , the symbol 〈X 〉 stands for the expectation
value 〈�0|X |�0〉. The derivative of the polarizability can be
formally expressed as

∂λ|λ=0 α(ω) = 1
3 〈�0|r|∂λ|λ=0�1〉 + 1

3 〈�V |r|�1〉 + g.H.c.

(A6)
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The above expression is somewhat overcomplicated as it in-
volves the derivative of the response function with respect to
λ. To eliminate this quantity we first note that according to
Eq. (A3)

〈�0|r|∂λ|λ=0�1〉 = −〈�1|(H − E0 + ω)|∂λ|λ=0�1〉. (A7)

Next, by differentiation of Eq. (A3) with respect to λ one can
show that

− 〈�1|(H − E0 + ω)|∂λ|λ=0�1〉
= 〈�1|(V − 〈V 〉)|�1〉 + 〈�1|r|�V 〉. (A8)

We are left with the final formula

∂λ|λ=0 α(ω) = 2
3 〈�1|r|�V 〉 + 1

3 〈�1|(V − 〈V 〉)|�1〉 + g.H.c.
(A9)

In this formulation we have adopted no approximations thus
far. However, in actual calculations we use the Hartree-Fock
determinant as |�0〉. By applying the Slater-Condon rules and
noting that r is a one-electron operator, one can show that the
response function |�1〉 can be represented as a linear combi-
nation of singly excited determinants. In our calculations the
operator V is a two-electron quantity [see Eq. (21)], and hence
the perturbed wave function |�V 〉 is expanded in terms of all
singly and doubly excited determinants.
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