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Many-body theory of positronium scattering and pickoff annihilation in noble-gas atoms
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The many-body-theory approach to positronium (Ps) interactions with atoms developed by the authors
[Phys. Rev. Lett. 120, 183402 (2018)] is applied to the noble-gas atoms He, Ne, Ar, Kr, and Xe. In this method,
the Ps-atom interaction is described by the sum of the electron-atom and positron-atom correlation potentials
(self-energies) and the screening of the electron-positron Coulomb interaction by the atomic electrons. Phase
shifts and cross sections for elastic scattering are presented, along with values of the pickoff annihilation param-
eter 1Zeff, accounting for short-range electron-positron correlations via vertex enhancement factors. Comparisons
are made with available experimental data for elastic and momentum-transfer cross sections and 1Zeff. Values of
1Zeff for He and Ne are found to be in near-perfect agreement with experiment; for Ar, Kr, and Xe, they are
within 20% of measured values.
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I. INTRODUCTION

Positronium (Ps) is a bound state of an electron and a
positron. This is a purely leptonic system and the simplest
matter-antimatter compound. Its properties and interactions
with matter are of fundamental interest and have applications
in many areas [1]. For example, the AEgIS and GBAR ex-
periments at CERN [2–5] aim to test whether gravity affects
antimatter equivalently to matter, making antihydrogen in
Ps collisions with antiprotons, with Ps produced in a meso-
porous material [6]. Ps is widely used in condensed-matter
physics to determine pore sizes in nanoporous materials and
to probe intermolecular voids in polymers [7]. Ps formation
in porous materials is also used to study its interactions
with gases, e.g., Xe [8–10], or the interaction between
the Ps atoms themselves [11–14], with prospects of room-
temperature Bose-Einstein condensation and a γ -ray laser
[15–17]. There are also proposals for using a beam of
long-lived Rydberg Ps for measuring the free fall of a matter-
antimatter system [18] and for detecting positron-atom bound
states [19].

The theoretical description of Ps-atom interactions is chal-
lenging due to the composite nature of both objects and a
significant cancellation between the short-range Ps-atom re-
pulsion (which results from the positron-nucleus repulsion
and the Pauli repulsion between the electrons in the target
atom and the electron in Ps) and the long-range van der Waals
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attraction. Accurate calculations must account for virtual ex-
citation of both objects during the collision.

In this work we carry out calculations of Ps scattering
by noble-gas atoms at low energies (i.e., below the Ps ion-
ization potential, 6.8 eV). We previously considered this
problem in the frozen-target approximation, where virtual
excitations of the target atom are neglected, and also using
a model van der Waals potential to approximately account
for such excitations [20]. The calculated scattering cross sec-
tions were in agreement with frozen-target calculations of
Blackwood et al. [21–23] and stochastic variational calcula-
tions [24,25], both frozen-core and with the van der Waals
potential. They also broadly agreed with the pseudopotential
results of Ref. [26,27]. However, the results did not agree with
the experimental data for Ar and Xe, which indicated that the
cross sections were very small at low collision energies, sug-
gesting that a Ramsaeur-Townsend minimum may be present
[28].

We subsequently developed a many-body theory descrip-
tion of Ps-atom interactions [29], combining the many-body
theory description of electron-atom and positron-atom inter-
actions, and including the important effect of screening of
the electron-positron Coulomb interaction by the atom. As
first applications, we computed scattering cross sections and
pickoff annihilation rates 1Zeff for Ps collisions with He
and Ne [29]. The cross section for both targets was found
to be a rather featureless curve, gently decreasing with in-
creasing collision energy. For He, our results are close to
the high-quality coupled-state calculations by Walters et al.
[30] and confined stochastic variational calculations [31,32].
The calculations of 1Zeff accounted for important short-range
electron-positron correlations, which enhance annihilation
rates by a factor of two to five over independent-particle-
model results [33,34]. For He and Ne, the calculated 1Zeff are
within 5%–10% of the values measured at room temperature
[35], and for He, within 10% of the 1Zeff from the stochastic
variational calculations [31,32].
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Here we describe the many-body-theory approach in more
detail and extend its application to Ar, Kr, and Xe, including a
study of the sensitivity of the results to the energies at which
the screened Coulomb interaction is calculated. Except where
otherwise stated, atomic units (a.u.) are used, with the symbol
a0 denoting the Bohr radius (the atomic unit of length).

II. THEORY

A. Hard-wall confinement

The system under consideration is a ground-state Ps atom
moving in the field of a closed-shell many-electron atom.
We enclose the entire system in an impenetrable sphere of
radius Rc centered on the target atom. This has the effect
of making all Ps states discrete [36]. This hard-wall cavity
is a key feature of our method. Values of Rc are chosen in
such a way that the cavity does not affect the atomic ground
state and allows for an accurate description of the distortion
of Ps as it interacts with the target atom. This enables us to
determine Ps-atom scattering phase shifts from the discrete
energy eigenvalues [20].

We construct the Ps wave function as an expansion in the
electron and positron states that are solutions of the Dyson
equation, which involves the self-energy for the respective
particle in the field of the atom. The Ps state satisfies a two-
particle Dyson equation (Bethe-Salpeter equation), which we
solve to find the expansion coefficients and discrete energy
eigenvalues from which the scattering phase shifts can be
determined [20]. We now describe each step in detail.

B. Dyson equation for electron or positron

A conventional treatment of an electron or positron in-
teraction with an N-electron atom involves the Schrödinger
equation for the total wave function for the N + 1 particles.
In many-body theory we use the Dyson equation (see, e.g.,
Refs. [37,38]):

(H0 + �E )ψE = EψE . (1)

Here, ψE is the single-particle (quasiparticle) wave function
of the incident electron or positron, E is its energy, and H0

is a central-field Hamiltonian that describes the motion of the
incident electron or positron in the static field of the atom (in-
cluding exchange for the electron). The key quantity in Eq. (1)
is �E , a nonlocal, energy-dependent correlation potential that
is equal to the self-energy part of the single-particle Green’s
function of the electron or positron in the field of the atom
[39]. The self-energy �E acts on ψE as an integral operator:

�EψE =
∫

�E (r, r′)ψE (r′)d3r′. (2)

The self-energy �E is given by an infinite series in powers
of the residual electron-electron and/or electron-positron in-
teractions. The terms in this series are conveniently depicted
by diagrams. The use of the Hartree-Fock approximation for
the atomic electrons and inclusion of the electrostatic (and
exchange) interaction in H0 means that the expansion for �E

starts with the second-order diagrams, and the diagrams do
not contain elements that describe the electrostatic potential

of the atom [40]. For electrons, this also implies the absence
from �E of the contribution of the target exchange potential.

As a result of the spherical symmetry of the problem,
Eq. (1) can be solved separately for each partial wave of the
incident electron or positron. The self-energy is expanded in
partial waves as

�E (r, r′) = 1

rr′

∞∑
λ=0

�
(λ)
E (r, r′)

λ∑
μ=−λ

Yλμ(r̂)Y ∗
λμ(r̂′), (3)

where Yλμ is a spherical harmonic. Rather than using the
coordinate representation �E (r, r′) of the self-energy, it is
usually more convenient to work with its matrix elements in
the basis of eigenfunctions of H0, viz.,

〈ε′l ′m′|�E |εlm〉 =
∫∫

ϕ∗
ε′l ′m′ (r′)�E (r, r′)ϕεlm(r)d3rd3r′

= δll ′δmm′

∫∫
Pε′l ′ (r

′)�(l )
E (r, r′)Pεl (r)drdr′,

(4)

where

H0ϕεlm(r) = εϕεlm(r), (5)

and

ϕεlm(r) = 1

r
Pεl (r)Ylm(r̂). (6)

Note that, for brevity, we will often replace the set of quantum
numbers εlm by the single label ε.

C. Calculation of the self-energy

Each contribution to 〈ε′|�E |ε〉 can be represented by a
Goldstone diagram. For the electron, we only include dia-
grams of the lowest, second order, shown in Fig. 1 (top row).
The second-order diagrams are known to provide an accurate
description of electron-atom interactions [41–45]. The contri-
bution of the first of these diagrams to 〈ε′|�E |ε〉 is∑

μ,ν>F
n�F

〈ε′n|V |μν〉〈νμ|V |nε〉
E + εn − εμ − εν + iδ

. (7)

Here V = |r − r′|−1 is the electron-electron Coulomb interac-
tion, with matrix elements defined as

〈νμ|V |nε〉 =
∫∫

ϕ∗
ν (r′)ϕ∗

μ(r)ϕn(r)ϕε(r′)
|r − r′| d3rd3r′, (8)

εμ is the energy of state μ, etc., δ is a positive infinitesimal.
The sum in Eq. (7) runs over the occupied (hole) states n and
excited electron states μ and ν, including the positive-energy
continuum, F denoting the Fermi level. Due to the presence
of the hard sphere, the positive-energy “continuum” states are
discrete. This diagram accounts for the main correlation effect
in low-energy electron-atom interactions, namely, polariza-
tion of the atom. At large distances, it leads to the well-known
local polarization potential,

�E (r, r′) � − α

2r4
δ(r − r′), (9)
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FIG. 1. The main contributions to 〈ε′|�E |ε〉 for the electron (top row) and positron (bottom row). Lines labeled ε or ε′ represent the electron
or positron wave function in the static (Hartree-Fock) field of the atom. Internal lines labeled μ or ν represent either excited electron or positron
states, while those labeled m or n represent holes in the atomic ground state. Wavy lines represent electron-electron and electron-positron
Coulomb interactions (V and −V , respectively). The hatched block (�E ) represents the electron-positron ladder-diagram series (see Fig. 2).

where

α = 2

3

∑
μ>F
n�F

|〈μ|r|n〉|2
εμ − εn

(10)

is the static dipole polarizability of the atom (in the Hartree-
Fock approximation here). The other three diagrams are due
to electron exchange and ground-state correlations and only
contribute to 〈ε′|�E |ε〉 at short range.

The main contributions to 〈ε′|�E |ε〉 for the positron are
shown in Fig. 1 (bottom row). The first diagram produces a
long-range polarization potential, similar to that for the elec-
tron, cf. Eq. (9). The second diagram describes the important
effect of virtual Ps formation [40,46,47]; the hatched block
represents the sum of the infinite electron-positron ladder-
diagram series �E shown in Fig. 2. This infinite series may
be calculated by considering the analytical form of left- and
right-hand sides of the diagrammatic equation in Fig. 2,

〈ν2μ2|�E |μ1ν1〉 = −〈ν2μ2|V |μ1ν1〉

−
∑
μ′,ν ′

〈ν2μ2|�E |μ′ν ′〉〈ν ′μ′|V |μ1ν1〉
E − εμ′ − εν ′ + iδ

,

(11)

where −V is the attractive electron-positron Coulomb in-
teraction. Equation (11) is an integral equation for the sum

of the ladder diagrams. Due to the hard-sphere confinement
[Pεl (Rc) = 0], the electron and positron continua are dis-
cretized, and Eq. (11) becomes a linear matrix equation, which
can be solved to find the matrix elements of �E [40].

Analytical expressions for each of the diagrams in Fig. 1
are provided in Appendix A.

D. Electron and positron quasiparticle
wave functions and energies

In either the electron or positron case, we calculate the self-
energy matrix elements 〈ε′|�E |ε〉 for pairs of Hartree-Fock
states εlm and ε′lm in the hard-wall cavity. We then solve
the Dyson equation (1) to determine the quasiparticle wave
functions and energies. To do this, we expand the unknown
quasiparticle wave function (also called a Dyson orbital) in
the basis of Hartree-Fock wave functions,

ψElm(r) =
∑

ε

Cεϕεlm(r). (12)

The function ψElm(r) can be factorized into radial and angular
parts,

ψElm(r) = 1

r
PEl (r)Ylm(r̂), (13)

FIG. 2. The electron-positron ladder-diagram series, which accounts for virtual Ps formation. The top line represents the positron, the
bottom line is the electron, and the wavy line is their Coulomb interaction −V .

042802-3



SWANN, GREEN, AND GRIBAKIN PHYSICAL REVIEW A 107, 042802 (2023)

with Eq. (12) being an expansion for the radial part:

PEl (r) =
∑

ε

CεPεl (r). (14)

Substituting Eq. (12) into the Dyson equation (1) and taking
matrix elements, we obtain a matrix-eigenvalue equation

HC = EC, (15)

where the Hamiltonian matrix H has elements

〈ε′|H |ε〉 = εδεε′ + 〈ε′|�E |ε〉, (16)

and C is the vector of expansion coefficients Cε. Solving
Eq. (15) for each partial wave yields the Dyson-orbital en-
ergies E and corresponding expansion coefficients for the
quasiparticle wave functions. For the electron, the result is a
set of negative-energy states corresponding to the atomic or-
bitals, along with a set of positive-energy “continuum” states.
For the positron, all of the states have positive energies.

E. Energy dependence of the self-energy

Because of the dynamic nature of the electron- or
positron-atom correlation potential, the self-energy is energy
dependent: the energy E appears in the energy denominators
of the Goldstone diagrams [see, e.g., Eq. (7)]. However, in
finding the Dyson orbitals we do not know the value of E until
we have solved Eq. (16), which requires the matrix elements
〈ε′|�E |ε〉 to already have been calculated. This means that the
Dyson equation must be solved self-consistently, with some
initial guess for the energy E being used in 〈ε′|�E |ε〉 (e.g.,
the corresponding Hartree-Fock energy). However, there are
two difficulties associated with such an approach.

(1) For any given partial wave of the incident electron
or positron, the self-consistent solution of the Dyson equa-
tion must be carried out separately for each state, i.e., when
solving Eq. (16), only the energy and expansion coefficients
for the state under consideration are accurate; the energies and
expansion coefficients for the other states must be ignored.

(2) More importantly, if each of the Dyson orbitals is
calculated with its own self-energy matrix 〈ε′|�E |ε〉 then they
will not be mutually orthogonal. Hence, they will not be suit-
able for constructing the two-particle Ps wave function (see
Sec. II F).

In light of this, we have chosen to consistently calculate
all of the self-energy diagrams “off the energy shell,” at E =
0. The energy dependence of the self-energy matrix elements
〈ε′|�E |ε〉 is rather weak in the energy range of interest. Using
E = 0 provides a good description of low-energy electron and
positron interactions with noble-gas atoms [29]. In Sec. IV C
we briefly investigate the effect of changing the value of E on
the results.

F. Two-particle Ps states

Having determined the Dyson-orbital energies and wave
functions of the electron and positron states, one can construct
a two-particle Ps wave function. The two-particle Dyson equa-
tion (also known as the Bethe-Salpeter equation [37]) for Ps

moving in the field of the target atom is(
He

0 + H p
0 + �e

Ee + �
p
E p − V + δVE

)
� = E�, (17)

where He
0 (H p

0 ) is the single-particle electron (positron)
Hamiltonian [which includes the electron (positron) kinetic
energy and the Hartree-Fock potential of the atom], �e

Ee (�p
E p)

is the self-energy of the electron (positron), −V is the attrac-
tive Coulomb interaction between the electron and positron
in Ps, and � is the two-particle Ps wave function with en-
ergy E .1 The operator δVE is the screening correction to the
electron-positron Coulomb interaction. The diagrams for the
matrix elements 〈ν ′μ′|−V + δVE |μν〉 are shown in Fig. 3;
again, we calculate diagrams up to second order. The direct
screening diagram (the second diagram in Fig. 3) is essential
for canceling the long range r−4 behavior of the single-particle
electron and positron polarization diagrams and making the
long-range Ps-atom interaction of the required R−6 van der
Waals form, where R is the distance between the atomic
nucleus and the Ps center of mass. The exchange screening
diagrams (the third, fourth, and fifth diagrams in Fig. 3) are
more expensive to calculate than the direct diagram, but they
partially cancel each other and are almost negligible in com-
parison (see Sec. IV A and Fig. 7); consequently, we will not
include the exchange screening diagrams in our calculations.
As explained above, the electron and positron self-energies,
and the screening correction, are calculated off the energy
shell, at Ee = E p = E = 0.

From this point on, we shall, without exception, use the la-
bels μ and ν to refer to electron and positron states in the field
of the atom, respectively. The electron and positron Dyson
orbitals ψμ(re) and ψν (rp) are eigenstates of the respective
single-particle Dyson equation (1). They form orthonormal
sets, and we use them to construct a two-particle Ps wave
function with a given total angular momentum J and parity
,

�J (re, rp) =
∑
μ,ν

Cμνψμ(re)ψν (rp), (18)

where the Cμν are expansion coefficients. Since the target
atom is closed-shell, the electron part of the Ps wave func-
tion should be orthogonal to the occupied atomic orbitals.
Hence, the negative-energy electron states corresponding to
these atomic orbitals are excluded from Eq. (18). The energy
eigenvalues E and expansion coefficients Cμν are found by
solving the eigenvalue problem for the Hamiltonian matrix

〈ν ′μ′|H |μν〉 = (εμ + εν )δμμ′δνν ′ + 〈ν ′μ′|−V + δVE |μν〉,
(19)

where εμ is the energy of state ψμ, etc. We consider J = 0+,
1−, and 2+ to investigate S-, P-, and D-wave Ps scattering, re-
spectively. The Ps energy eigenvalues in the cavity are used to
determine the scattering phase shifts, and hence the scattering
cross section; see Ref. [20] for details.

1There is a similarity between our approach and the combination of
MBT with the configuration-interaction method for open-shell atoms
[48].
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FIG. 3. The main contributions to 〈ν ′μ′|−V + δVE |μν〉. The top line (with end states ν and ν ′) represents the positron, while the bottom
line (with end states μ and μ′) represents the electron. The first diagram is the bare Coulomb-interaction matrix element 〈ν ′μ′|−V |μν〉. The
second diagram is the direct screening diagram; the other diagrams are exchange screening corrections. The second and last diagrams are
included with factors of two to account for mirror-image diagrams that have identical analytical expressions.

G. Pickoff annihilation

The Ps pickoff annihilation rate λ in a gas is parametrized
as

λ = 4πr2
0 cn1Zeff, (20)

where r0 is the classical electron radius, c is the speed of light,
and n is the number density of the gas. The parameter 1Zeff (or,
more specifically, 41Zeff) represents the effective number of
atomic electrons available for two-γ -ray pickoff annihilation
[49]. In the zeroth-order, independent-particle approximation,
1Zeff is given by

1Zeff = 1

4

∫∫∫
ρ(r)|�(re, rp)|2δ(r − rp

)
d3rd3red3rp,

(21)
where ρ(r) = ∑

n�F |ψn(r)|2 is the density of the atomic
electrons, and �(re, rp) is the Ps wave function, with the Ps
center-of-mass motion normalized to a plane wave at large
distances. The factor of 1

4 is to account for the fact that
only those electrons that form a relative singlet state with the
positron contribute to pickoff annihilation (assuming that all
annihilation events are the dominant 2γ decays).

Our interest is in values of 1Zeff at small (room-temperature
thermal) Ps energies, where the S-wave contribution dom-
inates. Higher partial-wave contributions are suppressed as
K2L, where K is the Ps momentum and L is the orbital angular
momentum of the Ps center-of-mass motion. We therefore use
� = �0+ (with appropriate normalization) in Eq. (21).

To account for the short-range-correlation corrections to
1Zeff (neglected in the independent-particle approximation),
we augment Eq. (21) with vertex enhancement factors γnl ,
which are specific to the electron orbital n and positron partial
wave l , and were calculated for positron annihilation in noble-
gas atoms in Refs. [33,34]. Explicitly, substituting Eq. (18)
into Eq. (21), using orthonormality of the electron wave func-
tions, and introducing the enhancement factors yields

1Zeff = 1

4

∑
n,μ,ν,ν ′

γnlCμνC∗
μν ′

∫
|ψn(r)|2ψν (r)ψ∗

ν ′ (r)d3r,

(22)
where the positron states ψν and ψν ′ both have angular
momentum l (see Appendix A for details of how 1Zeff is
computed in practice). The enhancement factors are largest
for the valence electrons but may still be significant for the
core electrons [50]. Also, the values of γnl are dependent on
the energy of the incident positron, although this dependence
is not very strong (see Fig. 13 in Ref. [40]). Here we use

values of γnl at zero energy of the positron. Note that γnl can
be calculated using either Hartree-Fock or Dyson states for
the positron. Here we use the Hartree-Fock values because,
when the positron is “packaged” within Ps, it is shielded
from the target atom by its partner electron. The two particles
together cannot polarize the atom as much as a lone positron
could, and virtual Ps contributes little because the positron
already has a partner electron. Table I shows these values of
γnl (taken from Ref. [34]). We leave contributions to 1Zeff for
core orbitals and/or for l � 3 unscaled, as we find that they
generally contribute �1% to 1Zeff.

III. NUMERICAL IMPLEMENTATION

A. B-spline bases

First, a standard Hartree-Fock program [51] is used to com-
pute the electrostatic potential (direct and exchange) of the
ground-state target atom. Then, a B-spline basis is used to cal-
culate the single-particle electron and positron Hartree-Fock
wave functions ϕεlm (see, e.g., Ref. [40]). We do this for both
the electron and positron using two different sets of B splines:
the first set contains 40 splines of order six, defined in a cavity
of radius Rc = 30 a.u., using an exponential knot sequence

TABLE I. Enhancement factors γnl for atomic orbital n and
positron partial wave l [33,34].

Atom n l = 0 l = 1 l = 2

He 1s 2.99 4.04 5.26
Ne 1s 1.18 1.21 1.22

2s 1.87 2.03 2.30
2p 2.78 3.46 4.70

Ar 2s 1.35 1.38 1.41
2p 1.43 1.47 1.51
3s 2.53 2.70 3.00
3p 5.19 6.22 8.17

Kr 3s 1.34 1.36 1.39
3p 1.41 1.43 1.47
3d 1.67 1.72 1.71
4s 2.77 2.96 3.25
4p 6.63 7.89 10.33

Xe 4s 1.42 1.44 1.46
4p 1.52 1.47 1.57
4d 1.96 2.00 1.24
5s 3.36 3.59 3.95
5p 9.26 10.91 14.08
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[see Eq. (31) in Ref. [40]]; the second set contains 60 splines
of order nine, defined in a cavity of radius Rc = 10, 12, 14, or
16 a.u., using a quadratic-linear knot sequence [see Eq. (28) in
Ref. [20]]. The reason for using two distinct sets of B splines is
as follows: Calculation of the Goldstone diagrams appearing
in the expansions of the electron and positron self-energies
requires summation over a complete set of intermediate states.
The exponential knot sequence is well-suited to this, since it
provides rapid saturation of the electron and positron continua
(see Fig. 6 in Ref. [40]). However, we ultimately want to use
the electron and positron states to construct a two-particle Ps
wave function; for this we need the single-particle states to
accurately represent “physical” states in the cavity, for which
the quadratic-linear knot sequence is well suited [20]. The two
sets of Hartree-Fock states for both the electron and positron
are used to find the Dyson orbitals in the following manner.

(1) The Hartree-Fock wave functions ϕεlm of the elec-
tron or positron, calculated using the exponential knot
sequence, are used to compute the self-energy matrix elements
〈ε′|�E |ε〉.

(2) These matrix elements are used to find the coordinate
form of the self-energy using the completeness relation, viz.,

�
(l )
E (r, r′) =

∑
ε,ε′

Pε′l (r
′)〈ε′|�E |ε〉Pεl (r). (23)

Here, Pε′l (r′) and Pεl (r) are the Hartree-Fock radial functions
used in step 1, but evaluated at points r and r′ on the quadratic-
linear knot sequence (see Fig. 2 of Ref. [29] for illustrative
plots of �(l )(r, r′) for l = 0, 1, 2 for Ne).

(3) The coordinate form of �E is used to calculate its ma-
trix elements via Eq. (4), where now Pε′l (r′) and Pεl (r) are the
Hartree-Fock functions calculated using the quadratic-linear
knot sequence. (Steps 1–3 are similarly used later for finding
the matrix elements of δVE .)

(4) The Hamiltonian matrix is diagonalized. Its elements
are given by Eq. (16), where the matrix elements 〈ε′|�E |ε〉
are those calculated in step 3. The eigenvalues are the Dyson-
orbital energies of the electron (εμ) or positron (εν) in the
cavity, and the eigenvectors provide the expansion coefficients
for the quasiparticle wave functions in terms of the Hartree-
Fock functions on the quadratic-linear knot sequence.

(5) The electron and positron Dyson orbitals are used to
construct the Hamiltonian (19) for the Ps states in the cavity.

This method enables the exponential-sequence Hartree-
Fock wave functions to be used in the sums over intermediate
states of diagrams, thus ensuring good convergence of the
sums over the intermediate states, while the Dyson-orbital
energies and wave functions are ultimately calculated using
the quadratic-linear sequence, meaning that they can be used
to accurately describe Ps states in the cavity and determine
Ps-atom scattering phase shifts.

Note that, when we construct the two-particle Ps wave
function from the single-particle electron and positron states
[Eq. (18)], we only use the Dyson-orbital states for the first
few partial waves, specifically, l = 0–3. To solve the Dyson
equation for all angular momenta of the incident electron or
positron included in the expansion of the Ps wave function
(up to l = 20; see Sec. III C) is computationally expensive and
unnecessary. For higher l , the centrifugal barrier prevents the

electron or positron from approaching the target atom closely,
and the effect of correlations (i.e., �E ) is small. Hence, we
just use the Hartree-Fock states for l � 4.

B. Convergence with respect to number of intermediate
states included in diagrams

The use of B splines with exponential knot sequences
means that rapid convergence is achieved in the sums over
intermediate states in the Goldstone diagrams with respect
to the number of radial states included for a particular an-
gular momentum. However, convergence with respect to the
number of partial waves included is slower. The increment
to the electron or positron eigenenergies upon increasing the
maximum orbital angular momentum from l − 1 to l behaves
as (l + 1

2 )−4. Therefore, if we include only partial waves up to
l = lmax, the energy eigenvalues E (lmax) approach the ultimate
lmax → ∞ values E as follows [52–55]:

E (lmax) = E + A(
lmax + 1

2

)3 . (24)

In practice, we calculate the self-energy diagrams for
lmax = 7, 8, 9, and 10, diagonalize the Hamiltonian matrix for
each value of lmax, and extrapolate the resulting eigenenergies
using the values for lmax = 9 and 10 to find the values of E
and A in Eq. (24). We use 32 radial states for each angular
momentum in all calculations of second-order diagrams. We
find that extrapolation typically changes the lmax = 10 value
of the energy by less than 0.1%.

When constructing the two-particle Hamiltonian matrix
(19) for Ps scattering, we use these extrapolated energies to
compute the diagonal elements. The quasiparticle wave func-
tions used in the expansion for the Ps wave function are those
obtained for lmax = 10.

C. Convergence with respect to number of electron and
positron states included in Ps wave function

In Eq. (18), the sums over the electron and positron states
should, in theory, run over all orbital angular momenta and
radial quantum numbers (up to infinity), but in practice we
use finite maximum values lmax and nmax, respectively.2 The
resulting dimension N of the Hamiltonian matrix (19) is

N =

⎧⎪⎨⎪⎩
n2

max(lmax + 1) for J = 0+

2n2
maxlmax for J = 1−

n2
max(3lmax − 2) for J = 2+.

(25)

To keep the size of the calculations manageable, we used
lmax = nmax = 20 for J = 0+, lmax = nmax = 18 for J =
1−, and lmax = nmax = 16 for J = 2+. The Ps eigenenergies
are then extrapolated to the limits lmax → ∞ and nmax → ∞
as explained in Ref. [36].

The pickoff annihilation parameter 1Zeff is calculated using
Eq. (22) for the lowest-energy state in the cavity. We do this
for each cavity radius, Rc = 10, 12, 14, 16 a.u., giving values

2This lmax is not related to the lmax used in summations over inter-
mediate states in the self-energy diagrams.
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of 1Zeff for four values of the Ps center-of-mass momentum K .
These values are extrapolated in lmax according to

1Zeff(lmax, nmax) = 1Zeff(∞, nmax) + A(
lmax + 1

2

)2 , (26)

and subsequently in nmax according to

1Zeff(∞, nmax) = 1Zeff + αn−β
max, (27)

where we typically find β ≈ 4.

D. Normalization of Ps wave function in calculation of 1Zeff

In Eq. (22), the Ps wave function needs to be such that
the center-of-mass motion is normalized to a plane wave at
large distances. However, the wave function of a Ps state in
the cavity is normalized as∫∫

|�0+ (re, rp)|2d3red3rp = 1. (28)

Away from the target atom, the Ps wave function is a product
of the internal [Ps(1s)] and center-of-mass parts [see Eq. (11)
in Ref. [20]]. To normalize the center-of-mass motion cor-
rectly, we proceed as follows:

(1) The center-of-mass density ρcm(r) in the cavity is
given by

ρcm(r) =
∫∫

|�0+ (re, rp)|2δ
(

re + rp

2
− r

)
d3red3rp.

(29)
The choice J = 0 means that ρcm(r) is spherically symmetric,
i.e., it only depends on the distance r of the Ps center of mass
from the center of the cavity. We calculate the value of ρcm on
a grid from 0 to Rc, using integer and half-integer values of r.
See Appendix A for the details of how ρcm(r) is computed.

(2) The value of ρcm for each r is extrapolated to the limit
lmax → ∞, according to

ρcm(lmax) = ρcm + A(
lmax + 1

2

)3 . (30)

Extrapolation typically changes the value of ρcm by 1%–10%,
depending on the radius Rc of the cavity. In principle one can
also extrapolate in nmax. However, this changes the value of
ρcm by less than 0.5%, so it has been neglected.

(3) In the asymptotic region of the cavity, i.e., the region
where the Ps center of mass is not too close to either the target
atom or the cavity wall,3 the density ρcm(r) should have the
form corresponding to free motion:

ρcm(r) = B2 sin2(Kr + δ0)

(Kr)2 , (31)

where B is a normalization constant, K is the Ps center-of-
mass momentum, and δ0 is the S-wave scattering phase shift.
The value of B is determined by performing a least-squares
fit of Eq. (31) to the calculated values of ρcm. The phase shift

3The asymptotic region is roughly defined by rat 
 r < Rc − ρ1s,
where rat is the approximate radius of the target atom, and ρ1s is the
collisional radius of Ps with respect to the cavity wall [36].

FIG. 4. Center-of-mass density ρcm(r) for Ps collisions with Ar
in a cavity of radius Rc = 10 a.u., in the frozen-target approximation.
Purple pluses, calculated values of ρcm(r); solid green line, fit using
Eq. (31) with δ0 as a parameter (δ0 = −1.396); dashed blue line, fit
using Eq. (31) with δ0 fixed using the boundary condition at the
cavity wall (δ0 = −1.374) [20]. The fits were made by using the
calculated values of ρcm(r) for 5 � r � 8.5 a.u.

δ0 can be taken from the scattering calculation or allowed to
be a free parameter of the fit. Allowing δ0 to be a variable
parameter gives a slightly better fit to the calculated values
of ρcm, so we do this in all calculations.4 Figure 4 shows the
center-of-mass density for the lowest-energy Ps eigenstate in
collisions with Ar, in a cavity of radius Rc = 10 a.u., in the
frozen-target approximation [where we excluded �E for both
the electron and positron and δVE from Eq. (17)].

(4) The four values of 1Zeff (one for each of Rc = 10, 12,
14, 16 a.u.) found directly from Eq. (22) are divided by the
corresponding B2 to obtain correctly normalized values.

Once the four values of 1Zeff have been calculated and nor-
malized, the general dependence of 1Zeff on the Ps momentum
K is analyzed using the effective-range-theory fit

1Zeff(K ) = 1Zeff(0) + 1Z ′
effK

2, (32)

where 1Zeff(0) and 1Z ′
eff are parameters to be determined [56].

IV. RESULTS

We have previously reported the scattering cross sec-
tions and values of 1Zeff for He and Ne in Ref. [29]; however,
we include them again here for ease of comparison with the
current results for Ar, Kr, and Xe.

4Alternatively, one can estimate the value of B2 analytically by
modeling the target atom as a hard sphere of radius rat. Assum-
ing ρcm(r) = B2 sin2(Kr + δ0)/(Kr)2 for rat < r < Rc, and using
the fact that ρcm is normalized to unity in the cavity, we obtain
(4πB2/K2)

∫ Rc−ρ1s
rat

sin2(Kr + δ0 )dr = 1, where ρ1s is the collisional
radius of ground-state Ps. Since rat < r < Rc corresponds to a
half period of sin(Kr + δ0 ), i.e., K (Rc − ρ1s − rat ) = π , we have∫ Rc−ρ1s

rat
sin2(Kr + δ0 )dr = π/2K , and therefore B2 = K3/2π 2.
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FIG. 5. S-, P-, and D-wave scattering phase shifts obtained for Ps scattering on He, Ne, Ar, Kr, and Xe. Purple pluses, calculated δ0; green
crosses, calculated δ1; blue asterisks, calculated δ2; solid purple lines, effective-range fits for δ0; solid green lines, effective-range fits for δ1;
solid blue lines, effective-range fits for δ2 (see Appendix B). For He we also show results (S and P waves only) from the confined stochastic
variational calculation: purple squares, δ0; green circles, δ1 [31,32].

A. Scattering

Figure 5 shows the S-, P-, and D-wave scattering phase
shifts δL obtained for Ps collisions with He, Ne, Ar, Kr, and
Xe. The phase shifts are calculated at discrete values of the
Ps center-of-mass momentum K , with effective-range-theory
fits used to describe the general dependence of δL on K ; see
Appendix B for details. In spite of the large differences in the
sizes and polarizabilities of the atoms, there is a great degree
of similarity between the phase shifts for all of them. This is
a result of cancellation of the effect of increasing repulsion in
the He to Xe sequence (due to increasing atomic sizes) and
increasing strength of the correlation (van der Waals–type)
attraction between the Ps and the atom. Note that the S-wave

phase shift is negative at low K for all five target atoms, i.e.,
the scattering length is positive for all of them. Therefore, we
can immediately deduce that a Ramsauer-Townsend minimum
will not appear in any of our cross sections, in contrast with
the experimental prediction [28]. Note also that for He, our
results are in a good agreement with the S- and P-wave phase
shifts obtained in the confined stochastic-variational calcula-
tions [31,32].

Table II lists the present scattering lengths and zero-energy
cross sections, alongside data from a number of earlier cal-
culations: the frozen-target calculations and model van der
Waals calculations of Swann and Gribakin [20]; the coupled-
channel R-matrix calculation for He (which included nine Ps
states and nine He states in the channel space) [30]; quantum
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TABLE II. Scattering lengths A (in units of a0) and zero-energy
cross sections σ (0) (in units of πa2

0) for Ps scattering on He, Ne, Ar,
Kr, and Xe.

Method A σ (0)

Ps-He calculations and experiment
Present, many-body theory 1.70 11.6
Frozen target [20] 1.86 13.8
van der Waals, R0 = 2.5 a.u. [20] 1.52 9.2
van der Waals, R0 = 3.0 a.u. [20] 1.61 10.4
Quantum Monte Carlo [57] 1.405 7.90
R matrix, 9 Ps states, 9 He states [30] 1.6 9.9
Stochastic variational (with stabilization) [31] 1.57 9.9
Experiment 1.46 ± 0.08 [58]

1.51 ± 0.18 [59]
1.49 [60]
1.42 [61]
1.50 [62]

1.77 ± 0.25 [63]
1.18+0.3

−0.4 [64]

Ps-Ne calculations
Present, many-body theory 1.76 12.4
Frozen target [20] 2.02 16.4
van der Waals, R0 = 2.5 a.u. [20] 1.46 8.5
van der Waals, R0 = 3.0 a.u. [20] 1.66 11.0
Stochastic variational, van der Waals [24] 1.55 9.6

Ps-Ar calculations
Present, many-body theory 1.98 15.6
Frozen target [20] 2.81 31.6
van der Waals, R0 = 2.5 a.u. [20] 1.43 8.2
van der Waals, R0 = 3.0 a.u. [20] 2.16 18.7
Stochastic variational, van der Waals [24] 1.79 12.8
Pseudopotential, van der Waals [26] 2.14 18.3

Ps-Kr calculations
Present, many-body theory 2.06 17.0
Frozen target [20] 3.11 38.7
van der Waals, R0 = 3.0 a.u. [20] 2.26 20.4
van der Waals, R0 = 3.5 a.u. [20] 2.56 26.2
Stochastic variational, van der Waals [25] 1.98 15.6
Pseudopotential, van der Waals [26] 2.35 22.1

Ps-Xe calculations
Present, many-body theory 2.12 18.1
Frozen target [20] 3.65 53.3
van der Waals, R0 = 3.0 a.u. [20] 2.63 27.7
van der Waals, R0 = 3.5 a.u. [20] 2.88 33.2
Stochastic variational, van der Waals [25] 2.29 20.9
Pseudopotential, van der Waals [27] 2.45 24.0

Monte Carlo calculations for He [57]; stochastic variational
calculations for He [31]; fixed-core stochastic-variational cal-
culations for Ne, Ar, Kr, and Xe (which included model
one-body and two-body polarization potentials for the elec-
tron and positron) [24,25]; and the calculations of Fabrikant
and coworkers where the electron- and positron-atom interac-
tions were modeled using pseudopotentials, with a model van
der Waals potential [26,27].

For Ps scattering on He, we obtain a scattering length
of 1.70 a.u., which is close to our previous calculation

[20] that employed a model van der Waals potential (with
R0 = 3.0 a.u.; see Eq. (24) in Ref. [20]), the 9-Ps–9-He–state
R-matrix calculation of Walters et al. [30], and the stochastic-
variational calculation of Zhang and Mitroy [31] (at the level
of 6%–8%). Comparing with experiment, it is closest to, and
within the error bars of, the value of Nagashima et al. [63],
with most other measurements giving slightly smaller val-
ues. Our scattering length corresponds to a zero-energy cross
section of 11.6πa2

0. Note that correlation effects reduce the
scattering length from its frozen-target value [20] by 9%, and
the zero-energy cross section by 16%.

The scattering lengths for Ne, Ar, Kr, and Xe are 1.76,
1.98, 2.06, and 2.12 a.u., respectively. The reduction of the
scattering length from its frozen-target value [20] increases
with the atomic number of the target, from 13% for Ne to
41% for Xe. Indeed, the zero-energy cross section for Xe
is approximately one third of its frozen-target value. These
results show that the van der Waals interaction due to simul-
taneous distortion of the Ps and the target plays a significant
role in Ps-atom scattering and must be accounted for in order
to obtain accurate results. Its effect is greater for heavier,
more polarizable atoms. Compared with other predictions, our
calculations are closest to the stochastic-variational results of
Mitroy and coworkers [24,25] which account for the van der
Waals interaction through model one- and two-body polariza-
tion potentials.

Figure 6 shows the elastic scattering cross sections as func-
tions of the Ps center-of-mass momentum K , up to K = 1 a.u.
(the Ps breakup threshold). They are generally rather flat and
featureless, and come into good agreement with the previous
van der Waals calculations [20] at higher Ps momenta. The
cross section for He is also within ≈10% of the 9-Ps–9-
He–state calculation of Walters et al. [30], and the confined
stochastic variational calculation of Wu et al. [32].

As we move along the noble-gas atom sequence, the be-
havior of the cross section at low energy changes from being
decreasing for He, Ne, and Ar to almost flat for Kr, and to
gently increasing for Xe. This is caused by the increasing
P-wave contribution at intermediate momenta. This increase
is due to a larger static Ps-atom repulsion for the heavier
noble-gas atoms, which overcomes the stronger dispersion
interaction for these more polarisable atoms. The contribution
of the D wave remains small for all atoms.

The level of agreement with the experimental data avail-
able for Ar and Xe [28] is mixed. For Xe there is close
agreement for 0.6 � K � 0.8 a.u. However, the measured
cross section for K = 0.44 a.u. is about a factor of two
lower than our theoretical prediction, and the two measured
values with the highest momenta indicate an increase in the
cross section, in contrast to our calculation. For Ar, the cross
sections agree at K = 0.8 a.u. The Ps n = 2 excitation thresh-
old lies at K = √

3/2 ≈ 0.87 a.u., so it is possible that for
K > 0.87 a.u. inelastic scattering with excitation of Ps(n = 2)
states, which is neglected in our calculations, contributes to
the measured values.

Curiously, for Ar, Kr, and especially Xe, our cross sec-
tions begin to decrease markedly at K ≈ 0.8 a.u. Behavior
of this type was not seen in either the frozen-target or van
der Waals calculations (although the frozen-target and van
der Waals cross sections were much more strongly decreasing
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FIG. 6. Elastic scattering cross sections for Ps scattering on He, Ne, Ar, Kr, and Xe. Present calculations: dashed purple lines, S-wave partial
cross section; dotted green lines, P-wave partial cross section; dot-dashed light blue lines, D-wave partial cross section; solid orange lines,
total cross section. Additional calculations of total cross section: dot-dash-dotted dark blue lines, van der Waals calculations with R0 = 3.0 a.u.
[20]. For He: long-dashed yellow line, 9-Ps–9-He coupled-channel calculation [30]; solid black line, stochastic variational calculation with
S- and P-wave contributions only [32]. The red circles are the experimental measurements of the total cross section by Brawley et al. [28].

across all momenta) [20]. It appears to occur because the P-
wave partial cross section reaches its maximum and begins to
decrease at K ≈ 0.8–0.9 a.u., while the D-wave partial cross
section remains almost insignificantly small—much smaller
than in the frozen-target or van der Waals calculations [20]
(due to cancellation of the static repulsion and correlation at-
traction). It is, however, possible that our calculations become
less accurate at momenta K > 0.8 a.u., where the Ps energy is
close to the Ps(n = 2) excitation threshold.

The effect of including or excluding the exchange screen-
ing diagrams (see Fig. 3) on the scattering cross section has
been investigated for Ar. Figure 7 shows the total cross
section for Ar in three different approximations: including

only the direct screening diagram in δV , including the direct
and exchange diagrams in δV , and completely neglecting
the screening correction δV (i.e., treating the interaction be-
tween the electron and positron as just the bare Coulomb
interaction). Also shown is the previous van der Waals cal-
culation with R0 = 3.0 a.u. [20]. It is evident that including
only the direct screening diagram or including the direct and
exchange screening diagrams in δV gives very similar cross
sections, differing by no more than 2% across the momen-
tum range considered. It is therefore justified, at this level of
accuracy, to neglect the exchange screening diagrams, saving
computational expense required to calculate them. Note that
these cross sections have the same basic shape as the earlier
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FIG. 7. Cross section for Ps scattering on Ar in various approx-
imations. Solid purple line, inclusion of direct screening diagram
only; dashed green line, inclusion of direct and exchange screening
diagrams; dotted light blue line, neglecting the screening correction.
The dot-dash-dotted dark blue line is the previous van der Waals
calculation with R0 = 3.0 a.u. [20].

van der Waals cross section [20], coming into very close
agreement for K � 0.5 a.u. In fact, it is quite remarkable
that using a simple, local van der Waals potential with a
single fitting parameter gives the cross section in such close
agreement with the sophisticated ab initio many-body-theory
calculation. One may conclude from this that this potential
(with a judiciously chosen cutoff radius) captures well the
correlation effects in the Ps-atom interaction.

The calculation which neglects the screening correction
δV (dotted line in Fig. 7) displays a much more vigorous
energy dependence, and is in stark contrast with the others. As
mentioned in Sec. II F, the screening correction δV (which is
physically similar to the two-body polarization potential [24])
cancels the long-range −α/2r4 polarization potentials acting
on the electron and positron, resulting in the correct −C6/R6

asymptotic behavior of the Ps-atom interaction. Neglecting
δV thus leads to a severe overestimation of the Ps-atom
correlation attraction and larger S- and P-wave phase shifts.
The corresponding S-wave cross section displays a Ramsauer-
Townsend minimum, leading to the cross section seen in
Fig. 7.

Figure 8 shows the momentum-transfer cross sections for
He, Ne, Ar, Kr, and Xe, along with the corresponding van der
Waals calculations using R0 = 3.0 a.u. [20]. For comparison,
the elastic cross sections are also shown. Moving away from
K = 0, the momentum-transfer cross sections all drop below
the corresponding elastic cross sections rather rapidly (due to
destructive interference of the S- and P-wave contributions),
and the many-body-theory and van der Waals calculations
coalesce at high K . Also shown in Fig. 8 are the experimental
data from several groups, which are not direct measurements
but the results extracted from observation of Ps thermalization
in the noble gases.

For He, our calculation lies within the error bars of the
experimental result of Nagashima et al. [63] but is about
30%–45% higher than the earlier measurements of Canter
et al. [58], Rytsola et al. [61], and Coleman et al. [62]. The
measurements of Skalsey et al. [65] and Engbrecht et al. [64]

give much lower values, and the zero-energy cross section ac-
cording to Engbrecht et al. [64] is not consistent with the
measurements of Canter et al. [58], Rytsola et al. [61], and
Coleman et al. [62]. As we noted in Ref. [29], this may be be-
cause the measurements of Skalsey et al. [65] and Engbrecht
et al. [64] are based on Doppler-broadening spectroscopy, and
they may suffer from errors related to the discrimination of
the narrow Ps annihilation component on the background of
the positron-He annihilation signal.

For Ne, our calculation is in agreement with the results
of Skalsey et al. [65], but lies outside the error bars of the
measurement of Saito et al. [66], and is about 40% greater
than the result of Coleman et al. [62]. For Ar, there is agree-
ment with the measurement by Nagashima et al. [67], but the
discrepancy with the results of Coleman et al. [62], Skalsey
et al. [65], and Sano et al. [68] is at the level of 70%, 60%,
and 300%, respectively. The general trend of the experimental
data for Ar is a rapid decrease of the momentum-transfer cross
section with increasing energy, which is qualitatively similar
to our results but faster than the calculation predicts. Finally,
for Xe, our momentum-transfer cross section is approximately
30% greater than the experimental value of Shibuya et al.
[9] at Ps energies of 40–60 meV, obtained by studying the
time evolution of the annihilation signal during Ps thermal-
ization in Xe. A more advanced partial-wave analysis by the
same group [10] yields the zero-momentum cross section of
(15 ± 2) × 10−16 cm2, which is in agreement with the present
calculation.

B. Pickoff annihilation

Table III shows the values of 1Zeff(0) and 1Z ′
eff obtained

by fitting the calculated 1Zeff [see Eq. (32)], and provides
a comparison with existing calculations and experimental
data. The experimental values of 1Zeff usually refer to room-
temperature, thermalized Ps, with K ≈ 0.06 a.u., but can be
compared with 1Zeff(0), given the weak momentum depen-
dence of 1Zeff(K ).

We carried out three sets of calculations for each tar-
get atom: frozen-target calculations, where we excluded �E

for both the electron and positron and δVE from Eq. (17)
and set γnl = 1 for all atomic orbitals and positron angular
momenta in Eq. (22); unenhanced many-body-theory calcula-
tions, where we included �E for both the electron and positron
and δVE in Eq. (17) but kept γnl = 1 for all atomic orbitals and
positron angular momenta in Eq. (22), and enhanced many-
body-theory calculations, where we included �E for both the
electron and positron and δVE in Eq. (17) and use the values
of γnl given in Table I in Eq. (22). In addition to the above
many-body-theory results obtained with E = 0 (see Sec. II E),
Table III also shows 1Zeff(0) and 1Z ′

eff obtained using the more
physical value E = −0.375 a.u. We regard the latter results
as our recommended values and discuss them separately in
Sec. IV C.

For He, where several static-exchange calculations of
1Zeff(0) are available, the present frozen-target results differ
from those of Refs. [69,70,72,73] by 17%, 21%, 35%, and
75%, respectively. A difference of about 20% is not unex-
pected, because unlike the present frozen-target calculations,
the static-exchange calculations do not account for distortion
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FIG. 8. Momentum-transfer and total elastic cross sections for Ps scattering on He, Ne, Ar, Kr, and Xe. Solid (dashed) green lines,
momentum-transfer (elastic) cross section using many-body theory; solid (dashed) light blue lines, momentum-transfer (elastic) cross
section using model van der Waals potential with R0 = 3.0 a.u. Also shown for He as a solid (dashed) black line is the confined stochastic
variational calculation (S and P waves only) [32]. Measurements of momentum-transfer cross section: filled orange square, Canter et al. [58];
open yellow circle, Rytsola et al. [61]; filled red circle, Coleman et al. [62]; open black triangle, Skalsey et al. [65]; open purple circle,
Nagashima et al. [63]; dotted dark blue line, Engbrecht et al. [64]; open purple diamond, Saito et al. [66]; yellow cross, Nagashima et al. [67];
filled orange diamond, Sano et al. [68]; black asterisks, Shibuya et al. [9,10].

of the Ps projectile. As for the much larger discrepancies with
Refs. [72,73], it was pointed out earlier by Mitroy and Ivanov
[24] that the model exchange interaction used in Ref. [73] was
of “dubious validity,” and the fact that the value of 1Zeff(0)
in Ref. [73] is in excellent agreement with experiment [35]
is a coincidence. In fact, this static-exchange calculation is
in poor agreement with the other static-exchange calculations
[69,70]), and one of the authors of Ref. [72] later stated that an
assumption made therein (that the direct potential is negligible
compared with the exchange potential) was not quantitatively
correct [75].

Unlike the experimental data, which show an increase in
1Zeff along the noble-gas-atom sequence, our frozen-target
value of 1Zeff(0) increases between He and Ne, but decrease
from Ne through to Xe. The frozen-target stochastic varia-
tional calculations of Mitroy and coworkers [24,25] are within
a few percent of our data, and also increase from He to Ne, and
then steadily decrease. These trends indicate that distortion of
the target atom and short-range electron-positron correlations
are much more important for explaining the observed 1Zeff in
heavier target atoms. Compared with the experimental data
[35,74], the frozen-target values of 1Zeff(0) are an order of
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TABLE III. Pickoff annihilation parameters 1Zeff(0) and 1Z ′
eff for

Ps collisions with noble-gas atoms. The abbreviation VE means “ver-
tex enhancement.” We quote results for the many-body theory with
energy denominators calculated with E = 0 and the more physical
E = −0.375 a.u. (denoted “E < 0” below), with the latter (in bold)
representing our best results (see discussion on energy E dependence
of diagrams in Sec. IV C and Table IV below).

Method 1Zeff(0) 1Z ′
eff

Ps-He collisions
Present, frozen target 0.0273 0.0101
Present, many-body theory without VE, E = 0 0.0411 0.00281
Present, many-body theory with VE, E = 0 0.131 0.00809
Present, many-body theory with VE, E < 0 0.124
Static exchange (not converged) [49] 0.0177
Static exchange [69] 0.033
Static exchange [70] 0.0347
Static exchange with van der Waals [71] 0.0445
Kohn variational, static exchange [72] 0.042
T matrix, model static exchange [73] ≈0.11 ≈1.4
Stochastic variational, frozen target [24] 0.0287 0.0044
Stochastic variational, van der Waals [24] 0.0378 −0.0152
Stochastic variational, with stabilization [31] 0.1157
Confined variational [32] 0.1197
Experiment [35] 0.125

Ps-Ne collisions
Present, frozen target 0.0512 0.0170
Present, many-body theory without VE, E = 0 0.0932 −0.00482
Present, many-body theory with VE, E = 0 0.255 −0.0315
Present, many-body theory with VE, E < 0 0.231
Stochastic variational, frozen target [24] 0.0533 0.0100
Stochastic variational, van der Waals [24] 0.0922 −0.0717
Experiment [35] 0.235

Ps-Ar collisions
Present, frozen target 0.0316 0.0253
Present, many-body theory without VE, E = 0 0.103 −0.0836
Present, many-body theory with VE, E = 0 0.516 −0.448
Present, many-body theory with VE, E < 0 0.375
Stochastic variational, frozen target [24] 0.0340 0.0084
Stochastic variational, van der Waals [24] 0.0964 −0.168
Experiment [35] 0.314

Ps-Kr collisions
Present, frozen target 0.0304 0.00687
Present, many-body theory without VE, E = 0 0.109 −0.111
Present, many-body theory with VE, E = 0 0.678 −0.731
Present, many-body theory with VE, E < 0 0.446
Stochastic variational, frozen target [25] 0.0300 0.0247
Stochastic variational, van der Waals [25] 0.0913 −0.211
Experiment [74] 0.36

Ps-Xe collisions
Present, frozen target 0.0261 0.00693
Present, many-body theory without VE, E = 0 0.114 −0.151
Present, many-body theory with VE, E = 0 0.939 −1.24
Present, many-body theory with VE, E < 0 0.530
Stochastic variational, frozen target [25] 0.0223 0.0165
Stochastic variational, van der Waals [25] 0.0891 −0.318
Experiment [74] 0.48

magnitude too small, which is not surprising, given the neglect
of the correlation effects.

Our many-body-theory calculations of 1Zeff(0), without
account of annihilation vertex enhancement, are larger than
the frozen-target values by a factor that ranges from 1.5 (for
He) to 4.4 (for Xe). These increased values of 1Zeff(0) are
within ≈20% of the stochastic variational results of Mitroy
and coworkers [24,25] with a model-potential inclusion of the
van der Waals interaction. However, they still underestimate
the experimental data [35,74] by a factor of 2–4 as a result of
the missing short-range electron-positron correlation effects.

Including the vertex enhancement factors in Eq. (22) re-
sults in an order-of-magnitude increase in 1Zeff(0) from the
frozen-target value for all of the atoms. For He and Ne, there is
now close agreement with experiment [35], at the level of 5%
and 9%, respectively. In both cases, our calculation slightly
overestimates the experiment. The result for He is also within
≈10% of the results of the confined stochastic variational cal-
culations [31,32], which include electron-positron correlation
effects in the explicitly correlated Gaussian wave function.

For Ar, Kr, and Xe, our many-body calculations of 1Zeff(0)
overestimate the experiment [35,74] by factors of 1.6, 1.9,
and 2.0, respectively. The value of 1Z ′

eff has changed sign
from positive (in the frozen-target approximation) to negative
for Ne, Ar, Kr, and Xe. For Ar, Kr and Xe, these values
also become noticeably larger in magnitude, compared with
the frozen-core results, indicating a stronger momentum de-
pendence of 1Zeff. Note that these changes occur when the
many-body-theory Ps wave function is used to calculate 1Zeff,
even when the enhancement of the annihilation vertex is ne-
glected (see Table III). This suggests that this effect is due
to the correlated (van der Waals-type) Ps-atom interaction,
which becomes particularly strong for the heavier noble-gas
atoms. A possible explanation for this phenomenon is as
follows: In the frozen-target approximation, the overall Ps-
atom interaction is repulsive. With increasing energy, the Ps
overcomes this repulsion to some extent and penetrates the
target atom more, making pickoff annihilation more likely;
hence 1Z ′

eff > 0. When the Dyson-orbital states and screening
corrections are used to construct the Ps wave function, the
dispersion interaction affects the Ps mostly at low energy;
hence 1Zeff(0) increases significantly. At higher energy the ef-
fect of electron- and positron-atom correlations decreases, and
values of 1Zeff get closer to what they were in the frozen-target
approximation; hence 1Z ′

eff reduces (and happens to become
negative for Ne, Ar, and Kr).

Our vertex-enhanced many-body-theory values of 1Zeff(0)
increase monotonically with the atomic number, as observed
in experiment [35,74]. However, our theoretical approach ap-
pears to systematically overestimate the measured 1Zeff, and
the discrepancy increases for heavier, more polarizable tar-
gets. Possible explanations for this behavior are as follows:

(1) The Ps may be too strongly attracted to the target atom,
i.e., the correlation potential for the electron and/or positron
may be too attractive. There is a possibility that the electron
and positron self-energy and the screening correction should
all be smaller due to the fact that the energy E that appears
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FIG. 9. Elastic scattering cross sections for Ps scattering on He, Ne, Ar, Kr, and Xe, with the electron and positron self-energy diagrams
and screening diagrams being calculated at various energies E . Solid purple lines, E = 0; dashed green lines, E = −0.25 a.u.; dotted blue
lines, E = −0.375 a.u. The red circles are the experimental measurements by Brawley et al. [28].

in the denominators of the corresponding diagrams should be
negative, rather than zero. This is investigated in Sec. IV C.

(2) We may have overestimated the effect of short-
range electron-positron correlations, i.e., the enhancement
factors in Table I could be too large. This could be partly
due to using enhancement factors calculated using Hartree-
Fock states rather than Dyson states. However, using the
Dyson enhancement factors instead would still give val-
ues of 1Zeff significantly larger than experiment for Ar, Kr,
and Xe. For example, for Xe, the enhancement factor that
most significantly reduces in switching from Hartree-Fock
to Dyson states is for an s-wave positron annihilating on
the 5p orbital; its value changes from 9.26 to ≈6 [34].
Crudely scaling our current value of 1Zeff(0) by a fac-
tor of 6/9.26 ≈ 0.65 gives 1Zeff(0) ≈ 0.61, still 30% larger

than the experimental value of 0.48 [74]. And if we were
to correctly change the enhancement factors for each or-
bital and partial wave to their Dyson values separately, we
would obtain a value even larger, as the enhancement fac-
tors for higher partial waves and/or core orbitals change less
significantly.

(3) The enhancement factors that were used were calcu-
lated for zero energy of the positron. However, when the
positron is “packaged” within Ps, the positron states in the
expansion (18) of the Ps wave function cover a range of
energies. It is possible that the contributions of higher-energy
positron states should not be enhanced to the same degree as
those of the lower-energy states. However, it is not clear why
this effect would be more important for the heavier noble-gas
atoms.
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C. Dependence of results on energy used in energy
denominators of diagrams

As we noted in Sec. II E, the self-energy of the electron
or positron in the field of the atom and the screening cor-
rections to the electron-positron Coulomb interaction within
Ps, depend on the energy E , which appears in the energy
denominators of the Goldstone diagrams. Up to this point, the
self-energy and screening diagrams were calculated consis-
tently using E = 0. We now briefly investigate how changing
the value of E affects the scattering cross section and value of
1Zeff(0) for each atom.

The true value of E in the energy denominators should
be E = K2/4 − 1/4 − �E , where K is the Ps center-of-mass
momentum, − 1

4 a.u. is the internal energy of ground-state
Ps, and �E estimates the typical excitation energy of the
electron or positron within Ps. Thus, for low-energy collisions
(K ≈ 0), the electron and positron self-energy diagrams and
the screening corrections should be calculated for a negative
energy of −0.25 a.u., or lower. One can compute the mean
value of �E for either the electron or positron in a particular
Ps eigenstate in the cavity by

〈�E〉 =
{∑

μ,ν |Cμν |2εμ (electron)∑
μ,ν |Cμν |2εν (positron),

(33)

where the Cμν are the expansion coefficients in Eq. (18), and
εμ (εν) is the energy of electron (positron) state ψμ (ψν).
We calculated 〈�E〉 for the electron and positron for the
lowest-energy Ps eigenstates for He, Ar, and Xe (obtained
with E = 0), and found values in the range 0.125–0.15 a.u.
This value could be expected for ground-state Ps. Indeed,
for a sufficiently large cavity, the Ps is quasifree, and the
potential energy for the electron or positron is mostly due to
the Coulomb interaction with the other particle. The expected
values of the Ps kinetic energy T and potential energy V
satisfy the virial theorem, 2〈T 〉 = −〈V 〉, so the total energy of
the electron-positron pair is 〈T 〉 + 〈V 〉 = 〈V 〉/2. This shows
that for Ps with a small center-of-mass momentum K ≈ 0,
the expected value of the potential energy should be −0.5
a.u. (since the total Ps energy is just the internal energy,
−0.25 a.u.). Assuming that the electron and positron have
approximately the same mean excitation energy 〈�E〉, we find
2〈�E〉 − 0.5 ≈ −0.25, which gives 〈�E〉 ≈ 0.125 a.u.

Taking into account the above considerations, we investi-
gate the sensitivity of the scattering cross sections and 1Zeff on
the value of E , by calculating the self-energy and screening
diagrams at E = −0.25 a.u. and E = −0.375 a.u., in addition
to the value of E = 0 used previously.

Figure 9 shows the elastic cross sections for Ps scattering
on He, Ne, Ar, Kr, and Xe for E = 0, −0.25, and −0.375 a.u.
It is clear that for each atom, making the value of E more
negative results in a larger cross section (although for Xe,
in the momentum range K ≈ 0.6–0.85 a.u., the E = −0.25
a.u. cross section is smaller than the E = 0 cross section,
due to the delicate interplay of the S- and P-wave contribu-
tions). This occurs because making the energy denominators
in the Goldstone diagrams more negative reduces their overall
magnitude. This weakens the van der Waals-type attraction
between Ps and the target atom, resulting in more negative
phase shifts and a larger scattering length. The change in the

TABLE IV. Values of 1Zeff(0), calculated using many-body the-
ory with vertex enhancement, using various energies E in the
calculation of the self-energy and screening diagrams. Also shown
are the experimental values. Our recommended values are shown in
bold.

E (a.u.)

Atom 0 −0.25 −0.375 Expt. [35,74]

He 0.131 0.127 0.124 0.125
Ne 0.255 0.239 0.231 0.235
Ar 0.516 0.409 0.375 0.314
Kr 0.678 0.497 0.446 0.36
Xe 0.939 0.607 0.530 0.48

cross section due to varying the value of E is more pronounced
at low Ps momenta K and for heavier target atoms. For He,
changing the value of E from 0 to −0.375 a.u. increases the
cross section at K = 0 by only 6%, while the corresponding
increase for Xe is 40%. This difference is due to characteristic
atomic excitations energies [e.g., εμ − εn in Eq. (7)] being
smaller in the heavier noble-gas atoms that have smaller ion-
ization potentials, making the expressions for the diagrams
more sensitive to the choice of E . Despite the visible change
for all atoms, the basic shape of the cross section remains the
same for all values of E , and agreement with the experimental
data [28] is not improved.

Table IV shows the vertex-enhanced values of 1Zeff(0) for
He, Ne, Ar, Kr, and Xe for E = 0, −0.25, and −0.375 a.u.
As expected, making E more negative reduces the values of
1Zeff(0), since it results in a more repulsive Ps-atom interac-
tion. As with the cross sections, this effect is stronger in the
heavier noble-gas atoms. The values of 1Zeff(0) calculated for
He and Ne with E = −0.375 a.u. are in near-perfect agree-
ment with experiment [35]. For Ar, Kr, and Xe, the calculated
values still overestimate the experimental data [35,74] by
factors of 1.2, 1.2, and 1.1, respectively, but represent a very
significant improvement on the values calculated with E = 0.

V. CONCLUSIONS

We have developed a many-body-theory approach to study-
ing low-energy Ps interactions with noble-gas atoms. The
entire Ps-atom system was enclosed in a hard-wall spherical
cavity. The Dyson equation was solved separately for the
electron and positron moving in the field of the target atom,
and the resulting states were used to construct the two-particle
Ps wave function. Construction of the Ps wave function in this
manner ensured that distortion of both the target atom and
the Ps were accurately accounted for. The two-particle Dyson
equation was solved, and the energies and wave functions
of the Ps eigenstates in the cavity were used to determine
the scattering phase shifts (and hence the cross sections) and
pickoff annihilation parameter 1Zeff.

Our calculations of the scattering cross section do not agree
with the experimental data for Ar and Xe of Brawley et al. [28]
that show a drop of the cross sections towards low Ps energies.
In fact, we see that the general shape of each cross section is
similar to that predicted by simpler calculations that mimicked
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distortion of the target atom using a long-range model van
der Waals potential [20]. The many-body-theory and van der
Waals calculations generally come into good agreement for Ps
momenta greater than 0.5 a.u. (At lower momenta, the van der
Waals cross sections are quite sensitive to the choice of cutoff
radius used in the model potential [20].) Agreement with
measurements of the momentum-transfer cross sections (at
thermal, room-temperature energies and other data below
≈2 eV) is also found to be mixed, and the measurements by
different experimental groups are not always consistent. For
the lightest target, He, our results are close to those of the
coupled-state [30] and stochastic variational [31,32] calcula-
tions.

Calculations of 1Zeff in the frozen-target approximation
(performed by constructing the Ps wave function from
Hartree-Fock electron and positron states in the field of the
target atom) gave values an order of magnitude below the
experimental value, due to the neglect of the target-atom
distortion and short-range electron-positron correlations. Ac-
counting for target-atom distortion by using the electron and
positron Dyson states (i.e., including their self-energy) and
the screening correction to their Coulomb interaction, and
accounting for the short-range electron positron correlations
by scaling the atomic-orbital—and positron-partial-wave–
specific contributions to 1Zeff by the annihilation vertex
enhancement factors from Ref. [34], gives values of 1Zeff in
very close agreement with experiment for He and Ne, and
within a factor of two for Ar, Kr, and Xe.

Finally, we investigated the effect of changing the energy
E at which the electron and positron self-energy diagrams
and screening corrections to the electron-positron Coulomb
interaction were calculated. In addition to the data obtained
for E = 0, the calculations were repeated for E = −0.25
and −0.375 a.u. Making E more negative results in a more
repulsive Ps-atom interaction, and leads to somewhat larger
scattering cross sections and smaller 1Zeff values. Going from
E = 0 to E = −0.375 a.u. increases the zero-energy cross
section, from 6% for He to 40% for Xe. However, the basic
shape of the cross sections is unchanged, and the discrepancy
with the experimental data for Ar and Xe [28] persists. For
the pickoff annihilation parameter 1Zeff, going from E = 0 to
E = −0.375 a.u., leads to a decrease in 1Zeff(0), from 5% for
He to 45% for Xe. This brings the values of 1Zeff for He and Ne
into near-exact agreement with experiment [35] and within a
factor of 1.2 of experiment [35,74] for Ar, Kr, and Xe. For He
our result is within 4% of the stochastic variational calculation
[32]. For Ne, Ar, Kr and Xe, our calculations of 1Zeff are the
only ones available that account for the Ps-atom dispersion
forces and short-range electron-positron correlation effects,
and thus serve as current benchmarks.

The work presented here represents a major step towards
understanding low-energy Ps-atom interactions: virtual target-
atom excitations have now been included in Ps scattering by
many-electron atoms, and short-range electron-positron cor-
relations have been accounted for in 1Zeff. However, there are
many ways in which the calculations could be improved and
extended. In the self-energy expansion for the electron-atom
interaction, only diagrams up to second order in the electron-
electron Coulomb interaction were included; similarly, only
second-order diagrams were included in the screening correc-

tion to the electron-positron Coulomb interaction within Ps.
Although technically cumbersome, it is possible to include
higher-order corrections (e.g., dressing the single- and two-
particle propagators with infinite ladder series of screened
interactions as done in Ref. [76], and/or calculating the an-
nihilation vertex corrections ab initio, accounting for the
positron being “packaged” within Ps) and check whether these
significantly affect the Ps-atom scattering cross section and
pickoff annihilation rate. Also, the many-body theory used
in the calculations is nonrelativistic: all of the Goldstone
diagrams were calculated using single-particle Hartree-Fock
electron and positron orbitals. Although we expect relativistic
corrections to be small for the Ps-atom problem, in principle,
Dirac-Fock orbitals could be used to account for these effects.
Furthermore, we have only considered elastic scattering of Ps
by noble-gas atoms. By investigating the nature of higher-
energy states of Ps in the field of the target atom within
the cavity, it may be possible to obtain information about
inelastic-scattering processes, e.g., excitation and/or ioniza-
tion of the Ps and/or target atom. Lastly, accounting for the
relativistic spin-orbit interaction should enable calculations of
the cross section of spin-orbit quenching, a spin-changing col-
lision that transforms long-lived ortho-Ps (with mean lifetime
142 ns) into short-lived para-Ps (with mean lifetime 0.125 ns).
Such collisions have a significant effect on the fraction of Ps
atoms that survive to thermalization in gases of heavier atoms
[74,77].

The persisting discord between calculated low-energy Ps-
atom scattering cross sections and experimental data is a cause
for concern. From the point of view of theory, observing a
Ramsauer-Townsend minimum in the cross section, as pre-
dicted for Ar and Xe in Ref. [28], would require the overall
Ps-atom interaction at low energy to be attractive (indicated by
a positive S-wave phase shift and a negative scattering length),
becoming repulsive at intermediate energies (indicated by the
S-wave phase shift becoming negative). However, the level of
agreement we obtained with experiment for 1Zeff leads us to
believe that our many-body-theory approach broadly captures
the essential physics of the Ps-atom system correctly. We hope
that ongoing theoretical and experimental investigations will
resolve the discrepancies for the cross sections in the near
future.
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APPENDIX A: ANALYTICAL EXPRESSIONS
FOR GOLDSTONE DIAGRAMS AND QUANTITIES

DERIVED FROM Ps WAVE FUNCTION

In calculating the various diagrams in 〈ε′|�E |ε〉 and
〈ε′|δVE |ε〉, integration over the angular variables is performed
analytically [78]. The Coulomb matrix element ±〈ν ′μ′|V |μν〉
for two particles coupled to an angular momentum J [see
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Eq. (8)] is given by

= ±〈ν ′μ′|V (J )|μν〉 = ±
∞∑

l=0

(−1)J+l

{
J lμ′ lν ′

l lν lμ

}
〈ν ′μ′‖Vl‖μν〉, (A1)

where we choose the positive (negative) sign for a repulsive (attractive) Coulomb interaction, the quantity in braces is a 6 j
symbol, the sum over l is actually finite (with the allowed values determined by the selection rules of the 6 j symbol),

〈ν ′μ′‖Vl‖μν〉 = √
[lν ′][lμ′][lμ][lν]

(
lν ′ l lν
0 0 0

)(
lμ′ l lμ
0 0 0

) ∫ Rc

0

∫ Rc

0
Pεν′ lν′ (r

′)Pεμ′ lμ′ (r)
rl
<

rl+1
>

Pεμlμ (r)Pεν lν (r′)drdr′, (A2)

is the reduced Coulomb matrix element, [l] ≡ 2l + 1, r< = min(r, r′), r> = max(r, r′), and the quantities in parentheses are 3 j
symbols.

We now give expressions for the various Goldstone diagrams. Note that sums over magnetic quantum numbers and spins
have already been carried out, so that sums over intermediate states only pertain to the radial and orbital quantum numbers, e.g.,∑

μ ≡ ∑
εμ,lμ

. For convenience, we define the following quantities which occur regularly:

〈ν ′μ′‖V (l )‖μν〉 =
∞∑

l ′=0

(−1)l+l ′
{

l lμ′ lν ′

l ′ lν lμ

}
〈ν ′μ′‖Vl ′ ‖μν〉, (A3)

〈ν ′μ′‖Ṽ (l )‖μν〉 =
∞∑

l ′=0

(−1)l+l ′
{

l lμ′ lν
l ′ lν ′ lμ

}
〈ν ′μ′‖Vl ′ ‖μν〉, (A4)

〈ν ′μ′‖�(l )
E ‖μν〉 = −〈ν ′μ′‖V (l )‖μν〉 −

∑
μ′′,ν ′′

〈ν ′μ′‖V (l )‖μ′′ν ′′〉〈ν ′′μ′′‖�(l )
E ‖μν〉

E − εμ′′ − εν ′′ + iδ
. (A5)

Note the different positions of lν and lν ′ in the 6 j symbols in Eqs. (A3) and (A4). Equation (A5) is a linear matrix equation that
can be solved to find the reduced ladder matrix elements 〈ν ′μ′‖�(l )

E ‖μν〉. The expressions for the self-energy and screening
diagrams are as follows:

=
∑

μ,ν>F
n�F

∑
l

2

[l][lε]

〈ε′n‖Vl‖μν〉〈νμ‖Vl‖nε〉
E + εn − εμ − εν + iδ

, (A6)

= −
∑

μ,ν>F
n�F

∑
l

1

[lε]

〈nε′‖Ṽ (l )‖μν〉〈νμ‖Vl‖nε〉
E + εn − εμ − εν + iδ

, (A7)

= −
∑
μ>F

m,n�F

∑
l

2

[l][lε]

〈ε′μ‖Vl‖nm〉〈mn‖Vl‖με〉
−E + εm + εn − εμ + iδ

, (A8)
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=
∑
μ>F

m,n�F

∑
l

1

[lε]

〈με′‖Ṽ (l )‖nm〉〈mn‖Vl‖με〉
−E + εm + εn − εμ + iδ

, (A9)

=
∑

μ1,μ2>F
n�F

∑
ν1,ν2

∑
l

2[l]

[lε]

〈ε′n‖V (l )‖μ2ν2〉〈ν2μ2‖�(l )
E+εn

‖μ1ν1〉〈ν1μ1‖V (l )‖nε〉
(E + εn − εμ1 − εν1 )(E + εn − εμ2 − εν2 )

, (A10)

= −
∑
α>F
n�F

∑
l

1

[l]

〈nμ′‖Vl‖μα〉〈αν ′‖Vl‖νn〉
E + εn − εα + iδ

, (A11)

=
∑
α>F
n�F

∑
l

〈μ′n‖Ṽ (l )‖μα〉〈αν ′‖Vl‖νn〉
E + εn − εα + iδ

, (A12)

=
∑
α>F
n�F

∑
l

〈μ′α‖Ṽ (l )‖μn〉〈nν ′‖Vl‖να〉
E + εn − εα + iδ

, (A13)

= −
∑
n�F

∑
α

∑
l,l ′,l ′′

(−1)lα+ln [l]

{
lμ′ l lμ
l ′ lα l ′′

}{
lν ′ l lν
l ′′ ln l ′

} 〈ν ′n‖Vl ′ ‖μα〉〈αμ′‖Vl ′′ ‖nν〉
E + εn − εα + iδ

. (A14)

The two-particle Ps wave function (18) is written explicitly in terms of the single-particle electron and positron basis states as

�J (re, rp) = 1

rerp

∑
εμ,lμ
εν ,lν

C(J)
εμlμεν lν

Pεμlμ (re)Pεν lν (rp)
∑

mμ,mν

CJM
lμmμlνmν

Ylμmμ
(r̂e)Ylνmν

(r̂p), (A15)

where C(J )
εμlμεν lν

is an expansion coefficient and CJM
lμmμlνmν

is a Clebsch-Gordan coefficient.5 Besides the selection rules due to the

Clebsch-Gordan coefficient, the summation is restricted by parity, (−1)lμ+lν = , where  = 1 (−1) for the even (odd) states.

5Comparing Eq. (A15) with Eq. (18), Cμν ≡ C (J )
εμlμεν lν

CJM
lμmμlν mν

.
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TABLE V. Parameters for the effective-range fits (B2), (B3), and (B4) for the S-, P-, and D-wave phase shifts δL .

Atom

L Parameter He Ne Ar Kr Xe

0 α0 −0.588 −0.568 −0.506 −0.485 −0.470
α1 0.312 0.323 0.772 0.921 1.22

1 α0 −1.90 −2.31 −2.16 −2.35 −2.38
α1 3.41 2.86 0.439 0.167 −0.607
α2 2.92 0.138 0.940 1.04 1.61

2 α0 1.01 1.18 3.46 5.15 9.65
α1 −1.73 −2.25 −5.78 −8.52 −15.5
α2 22.4 8.19 11.7 14.4 29.8

We now consider the calculation of 1Zeff. The density of the atomic electrons is

ρ(r) =
∑
n�F

|ψn(r)|2 = 2
∑
εn,ln

[ln]

4π

Pεnln (r)2

r2
, (A16)

where the factor of two accounts for summation over the spins. Assuming that the electron and positron in Ps are coupled to an
angular momentum of J = 0, substituting Eq. (A16) into Eq. (22), and carrying out the angular integrals analytically, we obtain

1Zeff =
∑
εn,ln

[ln]

8π

∑
εμ,εν ,εν′ ,l

γnlC
(0+ )
εμlεν lC

(0+ )
εμlεν′ l

∫ Rc

0
Pεnln (r)2Pεν l (r)Pεν′ l (r)

dr

r2
. (A17)

The method of calculating the Ps center-of-mass density ρcm(r), Eq. (29), depends on whether r = 0 or r �= 0. For r = 0, the
δ function can be expanded as

δ

(
re + rp

2
− 0

)
= 8

δ(re − rp)

r2
e

∞∑
l=0

(−1)l
l∑

m=−l

Y ∗
lm(r̂e)Ylm(r̂p), (A18)

giving

ρcm(0) =
∑
εμ,lμ
εν ,lν

∑
εμ′ ,lμ′
εν′ ,lν′

C(J)
εμlμεν lν

C(J)
εμ′ lμ′ εν′ lν′

∑
l

(−1)J

{
J lμ′ lν ′

l lν lμ

}
2[l]

π

√
[lν ′]

[
lμ′

][
lμ

]
[lν]

(
lν ′ l lν
0 0 0

)(
lμ′ l lμ
0 0 0

)

×
∫ Rc

0
Pεν′ lν′ (r)Pεμ′ lμ′ (r)Pεμlμ (r)Pεν lν (r)

dr

r2
. (A19)

For r �= 0, the δ function expands as

δ

(
re + rp

2
− r

)
= δ(|re + rp)|/2 − r)

r2

∞∑
l=0

[l]

4π
Pl (cos ω), (A20)

where Pl is the Legendre polynomial and ω is the angle be-
tween re + rp and r. A difficulty arises in that the δ function
on the RHS of Eq. (A20) also needs to be expanded. For
simplicity, we only consider the case where J = 0. Then only
the l = 0 term on the RHS of Eq. (A20) is nonzero:

δ

(
re + rp

2
− r

)
= δ(|re + rp|/2 − r)

r2

1

4π

= 1

2πr2
δ(|re + rp| − 2r). (A21)

We now expand δ(|re + rp| − 2r) as

δ(|re + rp| − 2r) =
∞∑

l=0

[l]

4π
gl (re, rp)Pl (cos ω), (A22)

where the expansion coefficients gl are to be determined.
Multiplying both sides of Eq. (A22) by Pl ′ (cos ω) sin ω, in-
tegrating over ω from 0 to π , changing variables to x ≡ cos ω,
and relabelling l ′ as l , we obtain

gl (re, rp) = 2π

∫ 1

−1
δ
(√

r2
e + r2

p + 2rerpx − 2r
)
Pl (x)dx.

(A23)

We recall that a general property of the δ function is

δ[ f (x)] =
∑

i

δ(x − xi )

| f ′(xi )| , (A24)
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where the xi are the roots of f (x). In this case we obtain

gl (re, rp) = 4πr

rerp

∫ 1

−1
δ

(
x − 4r2 − r2

e − r2
p

2rerp

)
Pl (x)dx,

(A25)

which gives

gl (re, rp) = 4πr

rerp
Pl

(
4r2 − r2

e − r2
p

2rerp

)
(A26)

if |re − rp| < 2r < re + rp, and gl (re, rp) = 0 otherwise.
Combining Eqs. (29), (A21), (A22), and (A26), and noting
that for J = 0 we require lμ = lν and lμ′ = lν ′ , we obtain

ρcm(r) =
∑
εμ,εν
εμ′ ,εν′

∑
lμ,lμ′

C(0+ )
εμlμεν lμ

C(0+ )
εμ′ lμ′ εν′ lμ′ (−1)lμ+lμ′

√
[lμ][lμ′]

×
∑

l

[l]

(
lμ′ l lμ
0 0 0

)2 1

2πr

×
∫ Rc

0

∫ min(2r+rp,Rc )

|2r−rp|
Pεν′ lμ′

(
rp

)
Pεμ′ lμ′ (re)

× Pl

(
4r2 − r2

e − r2
p

2rerp

)
Pεμlμ (re)Pεν lμ (rp)

dre

re

drp

rp
.

(A27)

APPENDIX B: EFFECTIVE-RANGE THEORY FITS
FOR SCATTERING PHASE SHIFTS

The Ps scattering phase shifts are determined from the
Ps energy eigenvalues using the boundary condition on the
Ps center-of-mass motion at the cavity wall, as described in
Ref. [20]. Calculations were performed using cavity radii of
10, 12, 14, and 16 a.u. Effective-range-type fits were used

to interpolate the S, P, and D phase shifts calculated at the
discrete values of the Ps center-of-mass momentum K . These
fits were used to determine the scattering length and the par-
tial contributions to the elastic and momentum-transfer cross
sections. Here we detail the fits for the phase shifts.

At low momenta K , the S-wave phase shift δ0 behaves
according to

K cot δ0 � − 1

A
+ 1

2
r0K2, (B1)

where A is the scattering length and r0 is the effective range
[79]. This can be rearranged to give

δ0(K ) = tan−1 K

α0 + α1K2
(mod π ), (B2)

where α0 = −1/A and α1 = r0/2. The P- and D-wave phase
shifts behave according to

δ1 = αK3 + βK4 + γ K5 + εK7 ln K + O
(
K7

)
,

δ2 = ζK4 + ηK5 + λK7 + μK9 ln K + O(K9),

respectively, where α, β, γ , ε, ζ , η, λ, and μ are constants
[79]. We found that simple polynomial fits obtained by trun-
cating these expansions tend to grow too large as K → 1 a.u.,
so we used the following Padé-type fits instead:

δ1(K ) = α0K3

1 + α1K2 + α2K4
, (B3)

δ2(K ) = α0K4 + α1K5

1 + α2K6
. (B4)

These fits have the correct leading-order behavior as K → 0
and vary relatively slowly at large K , as observed in the calcu-
lated phase shifts. Table V shows the values of the parameters
of the fits for δL (L = 0, 1, 2) for He, Ne, Ar, Kr, and Xe.
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