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Variational quantum simulation of the critical Ising model with symmetry averaging
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Here we investigate the use of deep multiscale entanglement renormalization ansatz (DMERA) circuits as a
variational ansatz. We use the exactly solvable one-dimensional critical transverse-field Ising model as a test bed.
Numerically exact simulation of the quantum circuit ansatz can in this case be carried out to hundreds of qubits
by exploiting efficient classical algorithms for simulating matchgate circuits. We find that, for this system, the
DMERA strongly outperforms a standard quantum approximate optimization algorithm (QAOA)–style ansatz,
and that a major source of systematic error in correlation functions approximated using the DMERA is the
breaking of the translational and Kramers-Wannier symmetries of the transverse-field Ising model. We are able
to reduce this error by up to four orders of magnitude by symmetry averaging, without incurring additional cost
in qubits or circuit depth. We propose that this technique for mitigating systematic error could be applied to noisy
intermediate-scale quantum (NISQ) simulations of physical systems with other symmetries.
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I. INTRODUCTION

The multiscale entanglement renormalization ansatz
(MERA) tensor networks represent quantum states on a
d-dimensional lattice using a (d + 1)-dimensional represen-
tation. The extra dimension can be interpreted as scale,
with slices of the network along this dimension correspond-
ing to successively coarse-grained states. In one dimension,
the treelike MERA tensor network can represent ground
states of critical systems, reproducing polynomially decaying
correlation functions and logarithmic scaling of subsystem
entanglement entropy [1–3]. In the case where the local ten-
sors are fermionic Gaussian unitaries, the networks can be
viewed as a wavelet transform on fermion operators and can
be rigorously shown to support good approximations of local
free-fermion ground states [4–6].

The local unitary structure of a MERA tensor network may
be interpreted as a quantum circuit which introduces further
UV degrees of freedom scale by scale to entangle qubits of
the target ground state. However, on a quantum computer it
is more natural to allow increased circuit depth rather than
local bond dimension as a means of increasing expressivity
of an ansatz, giving rise to a class of quantum circuits known
as a deep MERA (DMERA) [7], which could be used as a
variational circuit for ground-state preparation. Of particular
interest for near-term application is that local observables and
correlation functions of ground states prepared by DMERA
circuits feature an inherent resilience to local noise stem-
ming from circuit topology [7]. It is also possible to prepare
subregions of DMERA states on quantum computers much
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smaller than the total system size, which may help to leverage
the capabilities of small quantum devices [8]. This has been
demonstrated on an ion-trap quantum computer, where the
critical ground-state subregion can be prepared as a robust
fixed-point state of a local quantum channel derived from a
DMERA quantum circuit [9].

Multiscale entanglement renormalization ansatz tensor net-
works can be contracted in polynomial time classically.
However, the polynomial scaling with bond dimension is quite
severe, e.g., O(χ8) for one dimension and O(χ16) for two
dimensions using the schemes proposed in [2]. Thus direct
execution of the MERA on quantum computers can yield
large polynomial speedups and can additionally serve as a
method for preparing initial states in the context of a quantum
algorithm for simulating quantum dynamics.

This work investigates the feasibility of multiscale circuits
for variational ground-state preparation on quantum comput-
ers in the fashion of a variational quantum eigensolver [10,11]
or more generally an ansatz circuit for some variational
quantum algorithm [12], where some family of parametrized
circuits is minimized according to some Hamiltonian energy
in hopes that a good approximation of the ground state can
be found. Another MERA-inspired quantum circuit ansatz for
variational ground-state preparation was studied in Ref. [13];
however, the circuit ansatz studied in the present work more
directly follows the constructions of Refs. [4,5,7].

Conformal field theories and the use of renormalization are
of central importance to the study of quantum field theories,
which may generally be viewed as deformations from critical
fixed points of a renormalization-group flow. The prospect to
simulate conformal field theories with critical lattice models
and including the use of renormalization theory is seen as
an important step in the ability to handle the more general
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study of field theory simulations on quantum computers [14].
Ground states of critical systems feature large correlation
lengths which are challenging to reproduce using a more
locally entangled ansatz such as matrix product states or short-
depth quantum circuits. Scale invariance, however, makes
these states somewhat simpler to describe using a multiscale
ansatz which may incorporate this symmetry directly into the
circuit parametrization. Gapped states may be better able to
be represented by an ansatz with local correlations, but may
also be prepared using a multiscale circuit with parameters
that differ between scales and using fewer scales overall due
to the lack of long-range correlations.

We benchmark the viability of the DMERA for variational
state preparation by numerically optimizing for approximate
ground states of the critical Ising spin chain in one dimension.
We are able to find high-fidelity ground-state approximations
using the relatively low circuit depth D of each scaling trans-
formation. The ansatz states and local energy density converge
to their exact values exponentially with D, with relative error
in the energy density below 10−8 for D = 6. Key features
of critical ground states in one dimension such as polyno-
mially decaying correlation functions and logarithmic scaling
subsystem entanglement entropy are found on average.
(See Fig. 1 for a representation of the multiscale variational
circuit with D = 4.)

Symmetry averaging is also used to improve the system-
atic error of local observable expectation values. This can be
implemented in hybrid variational schemes by using classical
postprocessing to average observables which are related by
symmetries which are explicitly broken in the circuit ansatz.
In the case of the critical Ising model, spatial translation
and Kramers-Wannier symmetry are used, although we also
note that these symmetries are still approximately reproduced
in the ansatz states themselves, with smaller variance over
these symmetry groups for increasing D. Similar ideas have
been studied in the context of Refs. [15,16], where symmetry
projection is used in postprocessing to improve broken sym-
metries of ansatz states.

II. CIRCUIT CONSTRUCTION

We consider states which double the number of qubits with
each scaling transformation, interleaving new qubits in the
zero state between qubits from each of the previous layers.
After � scaling circuits we have a state on L = 2� qubits. Our
goal is to prepare an approximation to the ground state of a
corresponding critical Ising Hamiltonian. Each transformation
is a quantum circuit U (θ )� of depth D, parametrized in terms
of angles θ ,

|ψ�+1〉 = U�(θ )(|ψ�〉 ⊗ |0〉⊗2�

). (1)

Approximate translation and scale invariance of the state are
imposed by having each scale transformation be a periodic
brickwork circuit invariant under translation by two sites and
constraining each scaling transformation circuit at different
layers to be made up of the same gates, albeit acting on
different numbers of qubits. The approximate translation sym-
metry reduces the total number of variational parameters from
scaling with the total number of gates O(DL) to only with total
circuit depth O(D log L). The approximate scale symmetry

(a)

(b)

FIG. 1. (a) State preparation by successive application of D = 4
scale transformation circuits U�(θ ) with new qubits initialized in the
state |0〉. Colors show the identity of local gate parameters imposed
to replicate approximate translation and scaling symmetry. (b) Rel-
ative error in average entanglement entropy of N-qubit sybsystems
for an L = 256 qubit state, which is exponentially small in D. The
subsystem entropy scales logarithmically with N for critical ground
states in one dimension, with DMERA circuits featuring an excess
of entropy for D < 3 and a small entropy deficit for D > 3.

further reduces the number of circuit parameters down to
only O(D), the depth of a single scaling transformation circuit
(see Fig. 1).

These symmetries cannot be imposed exactly due to the
discrete nature of the gates and scaling transformations, so the
exact symmetries are broken by the ansatz state yet retained
as approximate symmetries. Deviations in local observables
are exponentially small in D but constitute a major source
of error for experimentally realistic values of D, e.g., D =
1, 2, . . . , 6 as studied here. However, as shown in Fig. 4, the
error in two-point correlation functions related by Kramers-
Wannier symmetry are nearly out of phase with each other.
Consequently, this source of error can be reduced by aver-
aging expectation values over these known symmetries. This
symmetry averaging lowers error in the correlation functions
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by approximately two orders of magnitude, yielding relative
error below 10−7 for correlation functions using the D = 6
state. This improvement is consistent across both of the exam-
ple Hamiltonians considered in this work [Eqs. (3) and (6)], as
shown in Figs. 4 and 5.

In [4–6], wavelet transformations on fermionic modes
are used to construct approximations to free-fermion ground
states. These constructions use knowledge of the underly-
ing physics to analytically construct the desired wavelet and
achieve accuracy exponential in the order of the wavelet
(corresponding to circuit depth D). In this work we instead
determine the variational parameters in our DMERA by nu-
merical optimization. Inspired by the free-fermion MERA
constructions of [4], we take

u(x, y) =

⎡
⎢⎢⎢⎢⎣

cos(x) 0 0 sin(x)

0 cos(y) sin(y) 0

0 − sin(y) cos(y) 0

− sin(x) 0 0 cos(x)

⎤
⎥⎥⎥⎥⎦ (2)

as the local gates in our circuit, where the two variational
parameters specify the rotation on the odd- and even-parity
subspaces of the pair of qubits. Because we use real-valued
parity-conserving gates, the ansatz states will always be even-
parity states with time-reflection symmetry. Similarly to [5],
we find that variationally optimized parameters achieve sub-
stantially more accurate energy densities than analytically
constructed parameters, even though the latter become exact
in the limit of the DMERA of infinite depth or the MERA of
infinite bond dimension.

III. MODEL AND VARIATIONAL OPTIMIZATION

We focus on the transverse-field Ising model at criticality,
namely,

HI = −
L∑

j=1

XjXj+1 + Zj . (3)

This spin chain is known to be well described by a conformal
field theory with c = 1

2 at low energies, but is also integrable
due to the Jordan-Wigner duality relating it to the free-fermion
model

H = i
2L∑
j=1

γ jγ j+1, (4)

where γ j are Majorana operators. In this convention there are
2L Majorana operators for L spatial sites, with operators γ2 j

and γ2 j−1 together comprising the fermion at spatial site j. At
the critical point the coupling between Majorana operators at
the same spatial site and that at neighboring sites are equal,
which is sometimes referred to as the half-shift symmetry,
which allows for the simple description of the Hamiltonian
in Eq. (4). For the spin Hamiltonian on an even number of
sites with periodic boundary conditions, the ground state has
even parity and is equivalent to the ground state of the Ma-
jorana Hamiltonian with antiperiodic boundary conditions, so
γ2L+1 = −γ1.

To achieve efficient numerical simulations, we exploit
two properties. First, the gates of Eq. (2) are matchgates,
which allows us to simulate their action on Gaussian fermion
states efficiently as linear transformations on Majorana op-
erators [17,18]. By constraining to matchgate tensors, tensor
networks may be used to represent Gaussian fermion opera-
tions and states [19,20]. We use these techniques to compute
two-point correlation functions out to large distances such as
512 lattice spacings. Second, the expectation values of local
operators in MERA and DMERA states can be accelerated by
exploiting the constant-width causal cones imposed by these
circuits. Local reduced density matrices of the global pure
state defined by the ansatz can be obtained as output from
iterated quantum channels on a constant number of qubits.
These local density matrices are all that is needed to compute
the energy of the variational state under a local Hamiltonian.
As the number of layers in the MERA is increased, the density
matrix converges exponentially to the fixed point of this chan-
nel, which can be easily computed, as described in [9]. We
tune variational parameters by minimizing the energy density
of this fixed-point state.

For sufficiently shallow circuits, we find well-optimized
variational parameters using gradient descent and the limited-
memory Broyden-Fletcher-Goldfarb-Shanno algorithm with
restarts. For higher depth circuits we obtain variational pa-
rameters by starting from an optimized circuit for a given
value of D with an additional row of gates inserted at the
end of the circuit with parameters initialized near the identity
and then reoptimizing to obtain a solution for D + 1. Sim-
ilarly, we may alternatively insert two rows of near-identity
gates anywhere within the scaling circuit to obtain a solution
for D + 2. For the larger-depth circuits, the optimization by
adding additional parameters to a smaller solution is better at
finding good minima. Random initialization of all parameters
is less likely to find an energy minimum any lower than found
previously with shorter-depth circuits. We therefore rely on
this technique of bootstrapping a better D + 1 minimum from
a depth D minimum in order to find circuits which continue
to show exponentially small error in the energy with circuit
depth.

By using the total energy to estimate the average energy
density, we are implicitly averaging over symmetries of the
Hamiltonian, since the full symmetry group we consider for
the critical Ising model relates each local term in the Hamil-
tonian to every other. By not preparing the whole state and
only measuring some terms of the Hamiltonian, we run the
risk of minimizing the energy in a nonvariational way, i.e.,
minimizing an estimate of the global energy below what is
possible for the ground state, while inadvertently raising the
energy for terms not measured because the global energy still
cannot be below that of the ground state. While this could
happen in principle, the spatial distribution of expectation
values does not have a large variance due to the approximate
translation symmetry still found in the circuit ansatz and so
this likely would not happen in a catastrophic way in practice.

Imposing SWAP symmetry on the local gates would con-
strain the odd-parity rotation angle y = 0. For the isometry
gates only the output legs are swapped, so instead this angle
would be set to y = −π/4, resulting in an ansatz state which
is symmetric with respect to spatial reflections. This choice of
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(a)

(b)

FIG. 2. (a) Relative error of variational fixed-point ground-state
energy for channels of depth D, using the infinite volume energy
density of −4/π . Trend lines show the exponential scaling of energy
density error for our ansatz (solid line) as well as those from the
analytic wavelet construction of [5] (dashed line) and the numerically
optimized non-Gaussian MERA in [3] (dotted line). (b) Normal-
ized state infidelity 1 − F1/L of states prepared by depth D scaling
transformation for ground states of various system sizes L. Both
quantities appear to decay exponentially with D with a coefficient
of approximately −4.89.

parameters is optimal for the D = 1 case. However, for D > 1
we find that by relaxing this constraint, reflection-symmetry-
broken states can be prepared using the same circuit depth
which has lower energy and higher fidelity. By transform-
ing the parameters y → −y for nonisometry gates and y →
π/2 − y, a reflected ansatz state with the same energy density
and fidelity is prepared.

The circuit parameters we use throughout this paper for
D � 6 can be found in the Appendix. The corresponding error
in energy density appears to be exponentially small in D with
a scaling coefficient of −4.89, seen in Fig. 2. We compare this
fit line to two similar multiscale ground-state representations
for the Ising model, the wavelet-based construction found in
Ref. [5], which uses a very similar circuit ansatz but constructs
the ideal parameters analytically rather than through energy
minimization, and the more traditional MERA tensor network

states in Ref. [2] found through numerical optimization of
the energy. In order to compare these different methods, we
note that local gates of the circuit-based methods can be
grouped together to form a MERA tensor network of bond
dimension χ = 2D−1. So while the MERA from [2] does not
have a circuit depth D, we will use this equivalence in order
to compare ansatz states of similar complexity. Nevertheless,
the circuit-based constructions of this work and [5] are much
more constrained ansatz states compared to a generic MERA
of bond dimension χ = 2D−1, due to the local circuit struc-
ture.

We find that while maintaining much of the simplicity of
the wavelet construction of [5], our numerically optimized
states are able to outperform those constructions at equal
circuit depth and appear to scale with a larger scaling coef-
ficient. Our ansatz states even outperform the general MERA
states of [2] for short-depth circuits, but are beaten at larger
bond dimensions, which should be expected due circuits being
much more constrained than a MERA state of equivalent bond
dimension.

IV. NUMERICAL BENCHMARKING

Having minimized the energy density for circuits with
D � 6, we can compare our ansatz states with the true ground
state for a variety of other measures. We compare the state
fidelity and subsystem fidelities for different (sub)system sizes
and circuit depths as well as logarithmic scaling of subsystem
entropy. Finally, we look at the two-point correlation functions
and show how averaging local observables over symmetry
groups broken by the circuit ansatz can greatly improve the
estimation accuracy of these observables.

We prepare finite-size ground states using the fixed-point
optimized circuit parameters and applying some number of
scaling transformation layers L to prepare the state on L = 2L

qubits. Interestingly, the infidelity of our ansatz states seem to
be exponentially small in D, with the same scaling coefficient
of −4.89 as the energy density (see Fig. 2). We compare
different-size systems by normalizing the state infidelity as
1 − F1/L, which we find clusters together ansatz states of the
same D but different system sizes L.

In Fig. 3 we compare the infidelity of N-qubit subsystems
of an L = 256 qubit system, normalized by subsystem size.
This behaves similarly to that of global state fidelity with
identical exponential scaling in D and clustering of subsystem
infidelity from the normalization. The smallest subsystems,
however, have an even smaller normalized infidelity than that
of the global state and so local observables should be even
more accurate than global state properties.

The relative error in average subsystem entropy is shown in
Fig. 1, showing exponential accuracy with D. Critical ground
states in one dimension feature more long-range entanglement
than area-law states, which would have constant entropy in
one dimension. Instead, subsystem entropy scales logarith-
mically with the subsystem size, which becomes a major
challenge of strictly local circuits which can only entangle
qubits within a finite range. Multiscale circuits introduce en-
tanglement at all scales and therefore can prepare states with
this scaling of subsystem entropy. In fact, the ansatz states
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FIG. 3. Normalized infidelity of N-qubit subsystems of an
L = 256 qubit state, averaged over different subsystem locations.

for D � 3 have on average an excess of entropy rather than a
deficit.

V. AVERAGING BROKEN SYMMETRIES

Although we impose a quasitranslation invariance in the
local gates of our ansatz, the actual circuit breaks this trans-
lation invariance within the circuit layer, preparing a state
which is only exactly invariant under translations by L/2 sites.
Despite this, an approximate symmetry is still maintained, so
local observables related by translations have a small variance
which decreases exponentially with D.

In the Majorana representation there are two operators
γ2i−1 and γ2i at site i, so a translation by n sites amounts to
shifting the index of all Majorana operators by 2n, i.e., γ j →
γ j+2n. At criticality, the Ising model possesses an additional
symmetry which constrains the expectation value of local Z
and XX operators to be identical [21]. The Kramers-Wannier
transformation maps between these sets of operators as

Zi → XiXi+1, XiXi+1 → Zi+1, (5)

which is a symmetry of the Hamiltonian. This symmetry be-
comes more apparent in the Majorana representation, since the
Jordan-Wigner transformation maps Zi to γ2i−1γ2i and XiXi+1

to γ2iγ2i+1, so the Kramers-Wannier transformation amounts
to shifting the Majorana index by one and is sometimes known
as a half-shift symmetry of the Majorana operators since two
of these transformations amount to a spatial translation by
one site. This transformation is clearly a symmetry of the
Hamiltonian in Eq. (4), but is broken away from criticality
when the Z and XX operators have different coefficients.

In Fig. 4(a) we look at the relative error in the expecta-
tion values of the two sets of quadratic Majorana operators
γ2i−1γ2 j and γ2iγ2 j+1. Translation symmetry dictates that the
ground-state expectation values are the same for equal i − j,
so we can average over the group of symmetries, the cyclic
group on L elements, and we plot the relative error after trans-
lation averaging in Fig. 4(a). These two sets of observables
decay inverse polynomially in the distance between the two
Majorana operators as |i − j|−1 and are related to each other
by the Kramers-Wannier transformation.

(a)

(b)

FIG. 4. (a) Relative error in the translation-averaged expectation
value of the quadratic Majorana operators γ2i−1γ2 j (solid lines) and
γ2iγ2 j+1(dashed lines) at fixed distance |i − j|. These two cases are
related by a Kramers-Wannier transformation and have systematic
errors which appear oscillatory on a logarithmic scale and nearly out
of phase with each other. (b) Further averaging over the Kramers-
Wannier symmetry cancels much of the error of quadratic Majorana
observables, reducing the error in the expectation value estimate by
orders of magnitude.

Interestingly, the relative errors in these two sets of
correlation functions appear oscillatory when plotted on a log-
arithmic scale in the distance |i − j|, which we attribute to the
breaking of continuous scaling symmetry down to an approx-
imate symmetry due to the discrete scaling transformations.
The amplitudes of these deviations decay with D, but also ap-
pear to be nearly out of phase with each other for the two sets
of operators related by the Kramers-Wannier transformation.
Averaging over this additional Z2 symmetry, we can cancel
much of this remaining systematic error due to the respective
deviations being nearly out of phase, resulting in a much more
accurate estimation of the observables after averaging of the
Kramers-Wannier symmetry, seen in Fig. 4(b).

We can assess how well this cancellation by Kramers-
Wannier symmetry works by comparing the average amount
of error of correlators at a fixed distance, denoted by
|δ〈Oi j〉|, with the amount of error in the symmetry-averaged
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FIG. 5. Improvement in accuracy from symmetry averaging also
increases with D. The ratio is plotted between the error magnitude
in the symmetry-averaged correlation function, denoted by |δ〈Oi j〉|,
and the average error in particular expectation values with fixed
|i − j|, denoted by |δ〈Oi j〉|. Also included are the ratios for approx-
imate ground states of the modified Ising model HI ′ , which show
similar improvement from symmetry averaging.

expectation value, denoted by |δ〈Oi j〉|. In Fig. 5 we see
that this cancellation works remarkably well, with the
symmetry-averaged mean showing accuracy multiple orders
of magnitude better than the typical local observable. This
shows that states of larger circuit depth feature both a lower
amount of variance in their oscillatory expectation values and
a higher degree of error cancellation, which compound to
produce highly accurate estimators of local observables after
symmetry averaging.

In Fig. 5 we also include values from circuits approximat-
ing the ground state of an alternate Ising model

HI ′ =
L∑

i=1

−XiXi+1 + Xi−1ZiXi+1. (6)

This Hamiltonian is related to the Ising model by a constant
depth unitary

∏
j

1√
2
(−I + iXjXj+1), which smears the single

Pauli Z term into a three-body operator, but is still equivalent
to a quadratic fermion model by Jordan-Wigner duality. This
other set of parameters for the HI ′ ground state feature similar
degrees of error cancellation.

While these two Hamiltonians share much of the same
physics due to their equivalence up to a short-depth local
transformation, the variational circuits we find to approxi-
mate their respective ground states are not made equivalent
by any short-depth local transformation. Both sets of circuits
preparing ground-state approximations to HI or HI ′ are scale-
invariant variational circuits with different sets of parameters.
It would be possible to prepare approximate ground states
for HI by using the circuits for HI ′ and then applying the
short-depth transformation that relates the two Hamiltonians,
or vice versa, but the resulting circuits are not scale invariant
due to the final circuit layer differing from all the previous
ones.

This breaking of scale symmetry is explicitly used in some
applications of the MERA, where an initial and a final layer

of tensors, which differ from the scale-invariant layers, are
used and can be referred to as transition layers. These may be
beneficial to include explicitly because the finite volume and
lattice spacing of the model already break scale invariance at
the largest and smallest scales and so a circuit with complete
scale symmetry may not be the most ideal representation of
the ground state. We restrict our attention to circuits with
identical variational parameters for all scaling transformations
within the quantum circuit in this work and to this extent we
consider the circuits found for ground states of HI and HI ′ to
give independent confirmation to the efficacy of these circuits.

Subsystem entropy also varies with location due to the lack
of exact translation invariance. However, entropy is a much
more coarse-grained property of a state and does not display
a great degree of error canceling from translation averaging.
That is, the subsystem entropies are typically biased in a
particular direction for all subsystems, so the average entropy
is not much more accurate than that of a typical subsystem.

Here we specifically consider the translational invariance
and Kramers-Wannier symmetries of two-point functions on
a one-dimensional N-site translationally invariant lattice with
periodic boundary conditions. This symmetry averaging pro-
cedure can be directly generalized to arbitrary groups of
symmetries, e.g., Sn symmetries on permutation-symmetric
systems, the translation and rotation symmetries in a fixed
number of spatial dimensions, or internal global or gauge
symmetries, which could be either discrete or continuous.

Averaging over translations by a symmetry group G when
measuring an observable comes at no cost in qubit count
or circuit depth. Rather, the requirement is for repeated
executions of the circuit and measurement. Such repeated
measurements are already necessary, as 1/ε2 measurements
are needed to measure an observable with statistical error
of order ε. Instead of repeating 1/ε2 measurements on an
individual choice of G translation of a given observable, one
can instead choose a uniformly random G translation of the
observable for each measurement. In the absence of any a
priori information to suggest some particular G translation as
preferable, this G averaging will in the worst case yield equiv-
alent accuracy to a randomly chosen but fixed G translation
and in the best case can result in greatly improved accuracy
due to cancellation of errors of opposite sign. The latter situ-
ation is observed in the two examples HI and HI ′ considered
here. It remains for future work to investigate which models
exhibit such a strong benefit from cancellation and which do
not.

The only cost for symmetry averaging is potentially hav-
ing to sample multiple circuits in order to prepare different
subregions for measuring the collection of observables to
be averaged. This makes it a viable tool for implementation
on noisy intermediate-scale quantum (NISQ) hardware and
less resource intensive than doing a full projection onto the
trivial representation of the symmetry group as in Ref. [15].
Since Pauli strings only have eigenvalues ±1, their variance
is 1 − 〈O〉2 for an observable O. The symmetry-averaged
expectation value will still only have measurement outcomes
±1, so aggregating the measurements from different observ-
ables will result in a sample with variance 1 − 〈O〉2.

This technique is complementary to the widely used
Richardson extrapolation and randomized resampling meth-
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ods introduced in [22], as it mitigates systematic error induced
by the ansatz rather than random error introduced by the
hardware. These observations also suggest that imposing strict
symmetries could be overly restrictive for a circuit ansatz. In-
stead, it could be more advantageous to consider ansatz states
which can break these symmetries while retaining accurate
symmetry-averaged expectation values. With more quantum
resources available, one could consider a coherent analog of
this error mitigation scheme in which states with approximate
symmetries are projected onto the proper symmetric subspace
after preparation to achieve higher fidelity states. Specifically,
one can project onto the G-invariant subspace preparing a
control register in the uniform superposition, executing a con-
trolled G translation on the target state, and then measuring
the control register in the Hadamard basis.

VI. COMPARISON TO a QUANTUM ALTERNATING
OPERATOR ANSATZ

Another natural approach to variational state preparation is
using a strictly local circuit by evolving commuting terms in
the Hamiltonian in sequence to form a quantum alternating
operator ansatz [23,24]. Using a short-depth ansatz makes
it feasible for NISQ devices and these circuits may be con-
strained to conserve symmetries of the Hamiltonian, such as
preparing only translation invariant states. In this case, they
do not benefit from symmetry averaging, unlike the DMERA.
This approach was used to find exact variational circuits for
ground states of the critical Ising model on 2p spins using
p rounds of a quantum approximate optimization algorithm
(QAOA) ansatz [25] and has been implemented experimen-
tally on an ion-trap device [26].

Exact variational circuits are not possible with fewer than
L/2 rounds, as this is the minimum circuit depth needed for
the ansatz to “see the whole graph” [27]. That is, the past
causal cone of some subregion of a local circuit ansatz con-
tains the entire initial state only when the circuit depth is L or
greater, making global entanglement possible. Before a local
circuit can see the whole system it also is unaware of system
size. So, even though the ground state of a finite-size Ising
chain with periodic boundary conditions has energy density
lower than the infinite volume value of −4/π , a local circuit
with depth less than L could not prepare a state with energy
below this threshold. This also means the energy density for a
local circuit ansatz will be identical for all system sizes greater
than the circuit depth.

The energy density and normalized ground-state infidelity
for a local QAOA circuit ansatz are shown in Fig. 6. The
circuits are initialized using parameters provided in [25] for
preparing exact ground states for system sizes L = 2p and
then the energy is optimized for systems with L > 2p so that
the circuit does not see the whole system and therefore cannot
prepare the exact ground state. The resulting states give us
an idea of how short-depth local circuits can perform when
preparing approximate ground states. Both errors in energy
density and state fidelity appear consistent with polynomial
decay in the circuit depth. This contrasts with the DMERA,
which achieves exponentially improving accuracy with in-
creasing D.

(a)

(b)

FIG. 6. (a) Error of variational energy density from the infinite
volume value of −4/π against total circuit depth or number of rounds
p for systems L > 2p. (b) Normalized pure state infidelity versus
number of rounds p for various system sizes L > 2p. Errors in both
the energy density and normalized infidelity for short depth ansatz
states appear consistent with polynomial decay in p for large system
sizes.

VII. DISCUSSION

The critical free-fermion model is special in many ways,
but we expect similar circuit architectures to be successful
more broadly for states of local Hamiltonians. In these sit-
uations, locality and separation of length scales have been
invaluable tools in physical analysis, which can also be
leveraged in designing good quantum circuits for preparing
physically relevant states. Adapting to systems which are non-
integrable could be done by allowing a more general set of
local gates which goes beyond Gaussian fermion operations
(i.e., universal rather than matchgate circuits). Additionally,
states with finite correlation length ξ could be prepared us-
ing O(log ξ ) scaling layers optimized independently, which
may be interpreted as a nontrivial renormalization-group flow
which disentangles the state at scales beyond the correla-
tion length. The variational ansatz states we find are able
to outperform similar analytic constructions while maintain-
ing much of their simplicity compared to a more general
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variational ansatz such as a large bond dimension MERA
state. Finding a way to more precisely formalize variational
multiscale circuits as genuine scaling transformations beyond
state preparation may also find use in algorithms for sim-
ulating conformal field theories and quantum field theories
using closely ideas related from renormalization and wavelet
theory [14,28–31]. For NISQ applications, mitigation of error
under tight hardware constraints is a key consideration. The
symmetry averaging methods described here for mitigating
ansatz-induced error complement prior work showing that
the DMERA’s renormalization structure provides intrinsic re-
silience against hardware-induced error [7,9].

ACKNOWLEDGMENTS

The authors thank Brian Swingle and Christopher White
for useful discussions. N.B. was funded by the Spin Chain
Bootstrap for Quantum Computation project from the DOE
Office of Science, Basic Energy Sciences, Project No. PM602.
T.J.S. is grateful for support from the Department of Energy
under Award No. DESC0019139.

APPENDIX: FREE FERMIONS

Some basics of the representation of Gaussian fermionic
states and operations are outlined here following [32]. See also
the Grassmann representation in [18].

A Gaussian fermion state ρ can be fully characterized by
the covariance matrix

� j,k = i

2
tr(ρ[γ j, γk]). (A1)

For n local fermionic modes ai we can define 2n Majorana
modes

γ2i−1 = ai + a†
i

2
, (A2)

γ2i = ai − a†
i

2
. (A3)

These operators are Hermitian and obey the usual fermionic
anticommutation relations γi, γ j = 2I , but also γ 2

i = I
2 .

A Gaussian fermion state satisfies �2 � −I , with equality
holding for pure states. The expectation value of quadratic
fermion observables can be directly read from the covariance
matrix, while Wick’s theorem allows higher-order observables
to be calculated in terms of the quadratic expectation values.

Subsystems of a Gaussian state are defined by restricting
the covariance matrix to a subset of the Majorana operators,
eliminating the rows and columns associated with the dis-
carded operators. Any mixed Gaussian state can be considered
a subsystem of some pure Gaussian state. The covariance
matrix for a mixed state can be purified by adding additional
Majorana modes, introducing the new rows and columns with
entries so that the new covariance matrix satisfies �2 = −I .

Although we can relate the fermionic system to a system
of qubits using a Jordan-Wigner duality, this operation of
taking fermionic subsystems is a different restriction of the
Hilbert space from the tracing out of qubit degrees of freedom.
However, all even-parity operators on the reduced fermionic

and qubit subsystems will agree. Odd-parity operators have
zero expectation value in Gaussian states.

A Gaussian unitary transformation always exists which
transforms a Gaussian state into a collection of independent
fermion modes, each with excitation probability p j , so ev-
ery Gaussian state has a product spectrum. Gaussian unitary
operations are equivalent to linear transformations on the
fermion modes, which act on the covariance matrix via an
orthogonal transformation �′ = O�OT . The Gaussian uni-
tary transformation that decouples the Gaussian fermion state
block diagonalizes the covariance matrix into 2×2 blocks
with off-diagonal entries ±iλ j .

Because all Gaussian states have a product spectrum, the
entropy of any mixed Gaussian state is the sum of entropies
S j from the states eigenmodes, each of which can be written
in terms of the respective eigenvalue of the covariance matrix

S j = −1 + λ j

2
ln

1 + λ j

2
− 1 − λ j

2
ln

1 − λ j

2

= ln 2 − ln
√

1 − λ2
j − λ j ln

√
1 + λ j

1 − λ j
. (A4)

The fidelity between two mixed Gaussian states can also
be computed in terms of their covariance matrices [33],

Fρ,σ = 2−n/2det(I − �ρ�σ )1/4det
(
I −

√
I + �2

ρ,σ

)1/4
, (A5)

with �ρ,σ = �ρ+�σ

I−�ρ�σ
. If at least one of these states is pure

then the simpler expression can be used, Fρ,σ = | det[(�ρ +
�σ )/2]|1/4.

The quadratic fermionic Hamiltonian we work with, which
is dual to the critical transverse-field Ising model, is

H = i
2L∑
j=1

γ jγ j+1. (A6)

For a finite-size spin chain with periodic boundary condi-
tions, the dual quadratic fermion Hamiltonian must have
antiperiodic boundary conditions for the even-parity states
and periodic boundary conditions for odd-parity states. Thus,
with periodic boundary conditions, the full Ising Hamiltonian
is not strictly dual to a single quadratic fermion Hamiltonian,
but all of its eigenstates are dual to a Gaussian fermion states.

To avoid these issues we will focus just on the Majorana
fermion model with antiperiodic boundary conditions for our
numerics and in this case our circuits may be interpreted as
local operations on fermionic degrees of freedom. In fact, be-
cause we are working with a free-fermion model, we will also
restrict our gates to be unitary Gaussian fermion operations,
equivalent to Bogoliubov transformations.

Because local matchgate circuits are equivalent to lin-
ear transformations on the fermionic modes, this subgroup
of quantum states and operations and can be simulated by
classical polynomial time algorithms [17] and may imple-
mented numerically using covariance matrix methods or via
fermionic linear optics [18]. Under Jordan-Wigner duality,
local two-qubit gates become orthogonal transformations on
four consecutive Majorana operators. These techniques can
be extended to tensor networks as matchgate tensor net-
works [19,20].
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The two-qubit gates u(x, y) can be written implemented
as an orthogonal transformations ũ(x′, y′) on four Majorana
operators, using the parameters x′ = x + y and y′ = x − y, as
follows:

ũ(x′, y′) ≡

⎡
⎢⎢⎢⎢⎣

cos(x′) 0 − sin(x′) 0

0 cos(y′) 0 sin(y′)

sin(x′) 0 cos(x′) 0

0 − sin(y′) 0 cos(y′)

⎤
⎥⎥⎥⎥⎦.

(A7)

The variational parameters found and used in this paper are
reported as θD for a depth D ansatz with 2D parameters [see
Eq. (A8)]. Here the (2i − 1)th parameter is the x′ parameter
for the ith layer of gates within the scaling transformation and
the (2i − 1)th parameter is the y′ parameter for the same layer
of gates. We also found alternate sets of parameters for the
modified Ising model in Eq. (6), listed in (A9). These circuits
have similar features and the symmetry-averaging improve-
ment is displayed in Fig. 5 along with those of the original
Ising model states:

θ1 = [0.431 88,−1.138 91],

θ2 = [0.1379,−0.563 74,−0.534 56, 0.180 71],

θ3 = [−1.797 16,−1.518 91, 0.644 86, 2.0904, 0.109 94,−0.314 94],

θ4 = [−1.665 28,−1.551 01, 1.051 14, 1.829 04, 0.434 26,−0.749 51, 0.073 49,−0.207 64],

θ5 = [−1.610 46,−1.563 58, 1.291 07, 1.694 99, 0.801 32,−1.066 96, 0.308 63,−0.545 39, 0.051 58,−0.146 51],

θ6 = [−1.586 82,−1.568 31, 1.426 66, 1.6278, 1.084 03,−1.281 63, 0.620 53,−0.854 36, 0.2323,

− 0.4140, 0.038 62,−0.110 17]; (A8)

θ̃1 = [−0.221 07 − 1.791 87],

θ̃2 = [0.379 21,−1.586 72,−0.235 88,−0.8906],

θ̃3 = [0.097 44,−1.623 52,−0.862 47,−0.294 72,−0.186 93, 0.512 59],

θ̃4 = [−0.0058,−0.210 63, 1.6268, 0.783 19,−1.087 15, 0.1295, 2.778 86,−0.087 55],

θ̃5 = [−0.083 57,−1.736 96,−0.092 69,−0.140 14, 0.141 62, 1.328 26,−1.058 85, 0.113 38,−0.421 56,−0.406 56],

θ̃6 = [0.036 14,−1.562 55,−1.114 74,−0.281 92, 0.554 76, 2.599 16,−0.088 26, 0.103 61,

− 1.058 98,−1.746 65,−0.050 94, 0.254 21]. (A9)
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