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Robust segmented entangling gates with pulse gradient and power optimization
using a hypersurface-tangent method
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To implement a scalable and fault-tolerant programmable quantum computing architecture, the realization of
high-fidelity, robust, and efficient quantum entangling gates in a multiqubit system is an essential requirement.
In this paper, we consider the optimization of the segmented amplitude-modulated entangling gates realized
by applying spin-dependent forces to a chain of ions trapped in a hybrid quadratic and quartic potential. We
propose a geometrical hypersurface-tangent method to optimize the laser power and the pulse gradient, carefully
considering the experimental feasibility in realizing the effective Rabi frequency and its change between adjacent
pulse segments. In addition, our method allows us to optimize the solution for the case of a few segments by
constructing an approximated null space through trading a negligible amount of gate fidelity. Finally, we show
that the present scheme can provide a unified framework to improve the robustness to an arbitrary order against
random static drifts of the motional frequencies, the gate duration errors, the laser detuning drifts, and their
simultaneous drifts.
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I. INTRODUCTION

Quantum computers are expected to solve certain problems
much better than any possible classical computers, such as the
factorization of a large number and the simulation of quan-
tum many-body systems. In recent years, researchers have
made significant progress toward building a practical quan-
tum computer by utilizing various physical platforms such
as trapped ions [1–4], superconducting qubits [5–9], photons
[10], cold atoms [11,12], topological quantum computation
[13], and others [14]. Since it was first proposed in 1995
[15], the trapped-ion system is one of the most promising
platforms for large-scale quantum computing due to many
beneficial characteristics, such as the longest coherence time
of the single qubit [16], the nearly perfect initialization and
detection scheme [17,18], the high-fidelity quantum gates
[19–21], and the wonderful qubit connectivity. Among the
most important issues, entangling quantum gates have re-
cently been the focus of many theoretical and experimental
investigations, which aim at improving the fidelity, the effi-
ciency, and the robustness. For example, fidelities higher than
99.99% for single-qubit gates and 99.9% for two-qubit en-
tangling gates have been reported [19–21]. Meanwhile, some
important quantum algorithms, such as Shor’s algorithm and
the quantum error correction, have been demonstrated on a
small programmable quantum computer [22–24].

*liangyou.peng@pku.edu.cn

However, while state-of-the-art ion traps can confine one-
dimensional chains of more than a hundred ions, scaling up
and, in particular, gate operations in a long chain are challeng-
ing. For a small number of ions, the Mølmer-Sørensen gate
[25–27] utilizes a single phonon mode of the ion crystal which
serves as a data bus for the transmission of quantum informa-
tion to mediate the coupling between two ions’ internal states.
However, the motional modes become progressively dense for
a long chain, which means that gate operations that rely on
using a single phonon mode become slow due to the necessity
to spectrally resolve this mode. Moreover, the crosstalk, i.e.,
unwanted interactions among different modes, can lead to
significant errors in the quantum gates. The problem may be
mitigated by shuttling ions between separate trapping zones,
a scheme named the quantum charge-coupled device [28].
However, it demands an exquisite control of ion positions and
even in that architecture it will be meaningful to increase the
number of qubits per zone.

In this paper, we will follow an alternative approach, where
the spin-dependent driving optical forces can simultaneously
couple to all motional modes to address the scaling problem
[29–31]. The suppression of modes crosstalk provides a high
fidelity without slowing down the gate. The requirements of
disentangling the internal qubit states from all motional modes
can be readily achieved via modulating experimental param-
eters with a high tunability. A number of schemes have been
proposed such as the modulation of the amplitude [29–32],
the frequency [33–35], or the phase [36–38] of the driv-
ing laser fields, as well as their combinations [39–42]. Each
of these methods has been proposed and implemented in a
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discrete or continuous way in a multiqubit system [38,43–45].
Specifically, we adopt the laser amplitude modulation for the
scalable entanglement, which has been theoretically proposed
[29] and experimentally demonstrated in a five-ion system
[43]. The segmented laser amplitudes are carefully designed
to decouple the internal qubit states from all the motional
modes and generate a maximal spin-spin entangling gate.

In previous work, for N trapped ions, segments fewer than
2N + 1 were used to achieve high-fidelity entangling gates by
scanning the experiment parameters (such as the gate duration
and the laser detuning) where 2N + 1 is the number of con-
straints [29–32]. In appropriate experiment parameters, the
fidelity of the quantum gate is very close to an ideal operation.
However, the solution may not be efficient with respect to the
large Rabi frequency or the sharp variation of the pulse shape,
as the laser amplitudes are equally segmented in discrete time
intervals and abrupt changes in laser amplitudes are hard
to be physically realized, especially when one performs the
fast gates. We refer to the amplitude change between any
two adjacent segments of the pulse as the pulse gradient. In
addition, the optical components in trapped-ion experiments
can only withstand limited laser power. More importantly, an
increased laser power can reduce the gate fidelity due to the
spontaneous emission, the ion-ion crosstalk, etc. Therefore, in
addition to pursuing high fidelity, it is important to reduce the
pulse gradient and achieve the least amount of laser power.

In this paper, we will present a comprehensive approach
to the construction of high-fidelity and robust quantum gates
with the optimization of the laser power and the pulse
gradient. For such purposes, we propose a geometrically
hypersurface-tangent method to obtain the optimized com-
bination of vectors of the null space. Considering a few
segments of pulse in which case there does not exist the
null space, based on the tradeoff method with modulating the
amplitude and the frequency simultaneously in a continuous
way for ideal operation (see Ref. [46]), we can construct an
approximated null space (ANS) at the cost of a negligible
amount of the gate fidelity to reduce the laser power or to
achieve a more smooth pulse shape.

Finally, it is also important to construct gates being sta-
bilized against control parameter fluctuations, such as mode
frequency fluctuations, trap anharmonicities, pulse timing er-
rors, and the heating and optical phase noises. Recently,
several gates with an increased robustness against different
errors have been proposed and demonstrated with multiple
ions [33,36,41,42]. We present a linear approach designed to
suppress the dominant source of infidelity, which is related to
the residual entanglement between the motional modes and
the internal qubit states. The stabilization condition can be
linearly expressed with the laser amplitude, which lends itself
naturally to the method of constructing pulses. We demon-
strate that it is possible to design quantum entangling gates
that are robust against the gate duration errors, the random
static drifts of motional frequencies, the laser detuning drifts,
or the mixture of them.

The rest of this paper is organized as follows: In Sec. II,
we give a brief introduction of the phase-insensitive σφsσφs

entangling gates between any pair of ions in a long ion chain.
In Sec. III, we will introduce in detail the optimization scheme
to achieve the efficient quantum gates with a high fidelity

and robustness for different pulse segments, especially the
present geometrically hypersurface-tangent method. And in
Sec. IV, we will discuss the results of quantum gates in a
chain of 20 171Yb+ ions. We present the optimized results
of the laser power and the pulse shape for different pulse
segments. Particularly, we will compare the exact method and
the approximated (extended) null space method to show the
tradeoff advantage. The robustness of the quantum gates under
experimental fluctuations will be then discussed. At the end of
this section, we will discuss the scaling behavior of the gate
construction with the system size. Finally, we will summarize
our main results in Sec. V.

II. THEORETICAL MODEL

For N ions in a linear Paul trap along the axial direction, a
suitable hybrid potential consisting of a quadratic and quartic
term can be applied in the axial direction through external
electrodes to achieve a uniform configuration [31,32,47,48].
The static equilibrium configuration can be determined by
a balance between the axial confining fields and the mu-
tual Coulomb repulsion. For typical experimental parameters,
the micromotion is small and can be usually neglected.
Specifically, one can obtain the motional modes and their
corresponding mode frequencies through the diagonalization
of the symmetric Hessian matrix of the total potential energy
[49,50], whose details can be found in Appendix A.

In this section, we present a brief introduction of the
entangling quantum gates which are mediated by the col-
lective phonon modes of motion through spin-dependent
optical forces. In the present paper, we mainly focus on the
phase-insensitive σ̂φs σ̂φs gate [51,52], where σ̂φs = cos φsσ̂x +
sin φsσ̂y with σ̂x and σ̂y being the Pauli operators. The optical
forces are realized by shining two counterpropagating beams
on the ions, with an equal but opposite detuning μ in the
neighborhood of the motional mode frequencies. The inter-
action Hamiltonian of the system takes a general form [32] as

HI =
N∑

j=1

h̄� j (t ) cos[μt + φ j
m − �kq j (t )]σ̂ j

φ
j
s
, (1)

where � j (t ) denotes the two-photon Rabi frequency of the jth
ion, which is proportional to the intensity of the driving laser,
�k = |k2 − k1| is the difference of two wave vectors, σ̂

j

φ
j
s

is

the Pauli spin-flip operator for the jth ion, and φ
j
s = (�ϕ

j
b +

�ϕ
j
r )/2 and φ

j
m = (�ϕ

j
b − �ϕ

j
r )/2 are called the spin phase

and the motional phase [32].
The transverse displacement q j of the jth ion can be quan-

tized as

q j (t ) =
∑

m

bm
j

√
h̄

2mionωm
(âme−iωmt + â†

meiωmt ), (2)

where â†
m and âm are respectively the creation and the anni-

hilation operator acting on the mth motional mode, bm
j is the

motional mode eigenvector for the jth ion and the mth mode
with ωm being its mode frequency, and mion is the mass of a
single ion. The summation over m is limited to the transverse
modes along the x direction in our calculations.
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By using the rotating wave approximation in the
Lamb-Dicke and resolved-sideband limits, the time evolution
operator of the interaction Hamiltonian can be obtained via
the Magnus expansion

Û (τ ) = exp

{ ∑
j,m

(αm
j (τ )â†

m − αm
j

∗(τ )âm)σ̂ j
φs

+ i
∑
i< j

θi j (τ )σ̂ i
φs

σ̂
j

φs

}
, (3)

where

αm
j (τ ) = −iηm

j

∫ τ

0
� j (t )sin

[
μt + φ j

m(t )
]
eiωmt dt, (4)

θi j (τ ) = 2
∑

m

ηm
i ηm

j

∫ τ

0
dt2

∫ t2

0
dt1�i(t2)� j (t1)

× sin
[
μt1 + φi

m(t1)
]

sin
[
μt2 + φ j

m(t2)
]

× sin[ωm(t1 − t2)], (5)

in which αm
j (τ ) describes the residual decoupling between

the internal qubit state of the jth ion and the mth motional
mode corresponding to the residual spin-dependent displace-
ments in the phase space at the gate duration τ . The coupling
strength θi j (τ ) between the ith and the jth qubit corresponds
to the accumulated phase. The Lamb-Dicke parameter ηm

j =
bm

j �k
√

h̄
2mionωm

couples the jth ion with the mth mode.

For a successful completion of an entangling operation, the
qubit states should be completely decoupled from all motional
modes, which means that the phase-space trajectories of all
motional modes return to their origins. Meanwhile, the qubit
states should undergo a maximal entanglement of π/4 at
the end of the gate duration. Mathematically, the following
conditions should be satisfied:

αm
j (τ ) = 0, ∀ j,∀m, (6)

θi j (τ ) = ±π/4. (7)

Therefore, for an ideal gate, the evolution operator reaches
Ui j = exp(±iπσ̂ i

φs
σ̂

j
φs

/4).
Let us consider a general situation with an N1-qubit en-

tangling quantum gate in an N-ion chain which utilizes N
collective transverse modes. At the end of the gate opera-
tion, for the N1 ions involved and N transverse modes, the
N1 × N displacement values in Eq. (4) should vanish, which
means that all motional modes trajectories should be closed
in the phase space. Thus, there are 2N1 × N constraints be-
cause of the complex properties of Eq. (4). One requires that
θi j = ±π/4 for each desired pair of entangled ions at the
maximal entanglement, and for the others θi j = 0, whose in-
teractions represent the crosstalk. Therefore, a total number of
2N1 × N + N1(N1 − 1)/2 constraints should be satisfied for
implementing N1-qubit high-fidelity parallel entangling gates.

Up to this point, the above analysis is quite gen-
eral: any pulse parameters can be optimized to satisfy the
above constraints and improve the robustness against some
common experimental errors. In previous studies, amplitude-
modulated (AM) gates [29–32], phase-modulated (PM) gates
[36–38], frequency-modulated (FM) gates [33–35], and their

combinations [39–42] have been developed and demonstrated
in a discrete or continuous way. The fidelity of the AM, PM,
and FM gates demonstrated in a chain of five (or more) ions is
around 97–99.9%, when transverse motional modes are used
for the gates [38,43–45].

According to Ref. [32], we can use the average gate fidelity
to measure the gate performance:

F = 1

10
[4 + 2(i +  j ) sin |2θi j | + + + −], (8)

where

i( j) = exp

[
−2

∑
m

∣∣αm
i( j)

∣∣2
coth

(
h̄ωm

2kBT

)]
, (9)

± = exp

[
−2

∑
m

∣∣αm
i ± αm

j

∣∣2
coth

(
h̄ωm

2kBT

)]
. (10)

In the limit of small αm
j (τ ) and αm

i (τ ), which means a high
fidelity, the average infidelity can be approximated as

δF a ≈ 1 − Fa = 4

5

∑
m

(∣∣αm
i

∣∣2 + ∣∣αm
j

∣∣2)
(2n̄m + 1), (11)

which is used in the robustness calculations later with n̄m

being the averaged phonon number of the mth mode.

III. OPTIMIZED ROBUST GATES

In this paper, we focus on the discrete AM gates and pro-
pose a very efficient linear method to design an optimized and
robust entangling gate with a high fidelity for an arbitrary pair
of qubits in the trapped-ion quantum computer. In addition to
the power optimization, which has been previously discussed
in many contexts [41,42], we propose a hypersurface-tangent
method to optimize the pulse gradient, that is, to mini-
mize the intensity change of two adjacent segments of the
pulse. Additionally, we will apply our optimized scheme to the
case of a few pulse segments, whose parameters are readily
feasible in experiments, by the tradeoff method proposed in
Ref. [46]. We show that one can construct an approximated
null space to reduce the laser power or the pulse gradient at
the cost of a negligible loss of the gate fidelity. We will also
demonstrate the improvement of the robustness against vari-
ous types of external parameter drifts to an arbitrary order at
a cost linear with respect to the order. Examples will be given
to gate duration errors, random drifts of motional frequencies,
the laser detuning drifts, and the mixed drifts of them.

A. Equations of main constraints

In this paper, we will focus on a two-qubit quantum gate
in a chain of 20 ions. We assume that the intensities of the
driving fields are equal for the two ions, which can be easily
realized in experiments. Without loss of generality, one can
choose φs = φ

j
m = φi

m = 0. Note that the Rabi frequency can
be allowed to take negative values by adding a phase shift of
π . However, we tend to obtain results in which all the Rabi
frequencies are positive for the pulse gradient optimization.
This yields a total of 2N + 1 constraints for designing appro-
priate discrete pulse sequences �(τ ), i.e., one accumulated
phase condition and 2N spin-motion decoupling conditions.
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To fulfill these constraints and provide an optimal control,
we divide the total gate interval τ into Nseg segments with
an equal time duration of τ/Nseg. Let the Rabi frequency be
a constant in each segment and treat the amplitude in each
segment as an independent variable. Thus, we define a real
column vector � = (�1,�2, . . . , �Nseg )T , corresponding to
the Rabi frequency of each segment.

The 2N spin-motion decoupling constraints in Eq. (6) and
the accumulated phase constraint in Eq. (7) can respectively
be written in a matrix form as follows:

M� = 0, (12)

�T S� = θi j, (13)

where M is the 2N×Nseg coefficient matrix, S is the Nseg×Nseg

matrix, and � is the amplitude vector of length Nseg. Since
θi j is a scalar, we can further construct a symmetric matrix
D = (S + ST )/2 such that θi j = �T S� = �T D�. The ex-
plicit expressions of M and S are given in Appendix B. As
can be seen, the 2N spin-motion decoupling constraints are
linear with respect to the control laser parameters, while the
accumulated phase constraint is quadratic.

B. Additional constraints under the consideration of robustness

In addition to ensuring that all excited modes are decou-
pled under ideal operating conditions, we also require that
the entangling gate operation be robust against various types
of external parameters errors. Here, we demonstrate that our
optimization method is robust against the gate duration errors,
random drifts of motional frequencies, the laser detuning er-
rors, and the mixed drifts of them. According to the definition
of fidelity in Eq. (8), the residual coupling of qubit internal
states to multiple motional modes has a greater impact on
the fidelity of the quantum gate. By suitably scaling �, one
can always achieve θi j = ±π/4. Therefore, we can improve
the robustness of the quantum gate by requiring the residual
coupling αm

j be stationary up to the nth order with respect to
variations in parameters.

In experiments, the motional-mode frequencies ωm can
drift due to some uncontrollable effects, such as stray elec-
tromagnetic fields. Thus, one requires that

∂kαm
j

∂ωk
m

= 0, m = 1, . . . , N, (14)

or, in matrix notation,

K(k)
m � = 0, (15)

where K(k)
m is the 2N×Nseg coefficient matrix including the

stabilization of the mth motional mode and the jth ion against
drifts to an arbitrary stabilization order k = 1, . . . , Kω. Since
the calculation of every motional mode is independent, one
can achieve stabilization against random static fluctuations
(i.e., individual mode drifts) independently.

Similarly, to stabilize against gate duration errors, one re-
quires

∂ lαm
j

∂τ l
= 0, m = 1, . . . , N, (16)

or, equivalently,

Q(l )
m � = 0, (17)

where Q(l )
m is the 2N×Nseg coefficient matrix and the stabiliza-

tion order l = 1, . . . , Kτ .
Given an optimal solution, one finds that the infidelity as

a function of the motional-mode frequencies drift is different
from the laser detuning in some parameter regimes. It results
from the fast oscillatory terms of the spin-motion constraints.
Therefore, it is necessary to stabilize against the laser detuning
errors if one does not use the rotating wave approximation in
spin-motion constraints. Specifically, one requires

∂ pαm
j

∂μp
= 0, m = 1, . . . , N, (18)

or

P(p)
m � = 0, (19)

where P(p)
m is the 2N×Nseg coefficient matrix and the stabiliza-

tion order p = 1, . . . , Kμ.
Since the robust constraints are linear in �, we can ex-

pand the matrix M to include these constraints under the
consideration of robustness. More importantly, we can also
improve robustness against the mixed drifts through including
the corresponding constraints simultaneously. The explicit ex-
pressions of K(k)

m , Q(l )
m , and P(p)

m are given in Appendix B.

C. Optimization schemes

From the discussions in the previous subsections, there are
2N (1 + Kω + Kτ + Kμ) homogeneous linear equations if one
considers robustness against aforementioned parameter drifts
to a desired order. We use the singular value decomposition
to solve these linear equations and the solution space we
are concerned about is the right singular vectors. When Nseg

is larger than the number of linear constraints, there exist
at least N0 = Nseg − 2N (1 + Kω + Kτ + Kμ) nontrivial solu-
tions, also known as the null space of M.

We define the null space as an Nseg×N0 matrix �null, whose
columns �[i]

null form an orthogonal basis of the null space of M,
i.e.,

M�[i]
null = 0, i = 1, . . . , N0. (20)

The arbitrary linear combination vector �′
null in the null space

satisfies the linear constraints and takes a certain value C, i.e.,

�′T
nullD�′

null = C. (21)

We can obtain a valid solution to achieve an ideal operation by

a simple normalization of �′
null →

√
π

4|C|�
′
null. Therefore, we

can perform the two-qubit quantum gate with an ideal fidelity
for any given gate duration τ and detuning μ. However, as
�′

null is arbitrary, this method does not ensure that the solution
is efficient and optimal.

We should remark that for realistic experimental parame-
ters, the effective Rabi frequency cannot be too large, and an
increasing power leads to a reduced gate fidelity. Addition-
ally, since one applies discrete AM pulses that are equally
segmented in time, a large relative change of amplitudes in
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neighboring pulses is hard to be physically implemented, es-
pecially when one performs fast gates. Therefore, by using
the N0 degrees of freedom, we expect one can optimize with
respect to certain experimentally favorable conditions, such
as the laser power or the pulse gradient. For convenience, we
refer to the laser power optimization scheme as scheme I, and
the pulse gradient optimization scheme as scheme II.

The root-mean-square (rms) Rabi frequency power P in
scheme I can be defined as

P2 = 1

Nseg

Nseg∑
n=1

�2
n = 1

Nseg
�T I�, (22)

where I is the Nseg×Nseg identity matrix.
The rms Rabi frequency gradient G of scheme II can be

expressed as

G2 = 1

Nseg + 1

Nseg∑
n=0

(�n+1 − �n)2 = 1

Nseg + 1
�T T�, (23)

where T is the Nseg×Nseg tridiagonal matrix with Ti j = 2 for
i = j and Ti j = −1 for i = j ± 1, and �0 = �Nseg+1 = 0.

Our goal now is to linearly combine the orthonormal null
space vectors �[i]

null with real expansion amplitudes � to find
the optimal solution vector in the null space:

�opt =
N0∑

i=1

�i�
[i]
null. (24)

We wish to minimize the laser amplitude, in other words, the
rms Rabi frequency or the change of discrete pulse shape,
i.e., the rms pulse gradient. By using the null space, the spin-
motion decoupling constraints are satisfied exactly, and we
can achieve the minimization under the accumulated phase
quadratic constraint.

Now, one can formulate the constrained optimization prob-
lem as

f (�) = min(�T H�),

s.t.|�T R�| = π
4 ,

(25)

where

H =
{

�T
nullI�null, scheme I,

�T
nullT�null, scheme II,

(26)

R = �T
nullD�null. (27)

D. Hypersurface-tangent method for optimization

In this paper, we propose the geometrical tangent method
of hypersurfaces to find the minimum of the objective func-
tion under the accumulated phase constraint. The symmetric
matrix R of N0×N0 can be spectrally decomposed as

R =
N0∑

k=1

ak (A(k) )T A(k), (28)

where ak is the kth eigenvalue of R and A(k) is the correspond-
ing eigenvector. Expanding � into the eigenvectors of R, one
can linearly combine the vector of expansion amplitude � by

the set of vectors A(k) according to

� =
N0∑

k=1

νkA(k). (29)

The accumulated phase constraint can be then written as

π

4
= |�T R�| =

∣∣∣∣∣
N0∑

k=1

ν2
k ak

∣∣∣∣∣. (30)

It is important to note that if R is positive or negative
definite, Eq. (30) stands for an N0-dimensional quadratic hy-
persurface with principal axes |ak|−1/2, which we refer to the
hypersurface S1. If R has both positive and negative eigen-
values, the equation describes an N0-dimensional hyperboloid
with principal axes |ak|−1/2, which we refer to as the hyper-
surface S2. For the latter case, the accumulated phase can be
either +π/4 or −π/4.

Similarly, one can also spectrally decompose H
according to

H =
N0∑

k=1

bk (B(k) )T B(k), (31)

where bk is the kth eigenvalue of H and B(k) is the correspond-
ing eigenvector. In a similar way, one can linearly combine
the vector of expansion amplitude � by the set of vectors B(k)

according to

� =
N0∑

k=1

υkB(k), (32)

and then the objective function can be expressed as

f = min(�T H�) = min

(
N0∑

k=1

υ2
k bk

)
. (33)

According to Eqs. (22) and (23), H is a positive-definite
matrix. For scheme I, by substituting Eq. (29) into the
objective function directly, Eq. (33) is an N0-dimensional hy-
persphere and the eigenvector corresponding to the largest |ak|
will be the optimal solution. In other words, the hypersphere
is inscribed in the hypersurface S1 or S2 and just touches the
hypersurface along the principal axis with the smallest length.

For scheme II, Eq. (33) is also an N0-dimensional hypersur-
face with principal axes |bk|−1/2, which is also hypersurface
S1. Thus, geometrically speaking, Eqs. (30) and (33) are
N0-dimensional hypersurfaces with different principal axes
at different coordinates. The point of tangency of the two
hypersurfaces corresponds to the minimum of the objective
function. If Eq. (30) is the hypersurface S1, the inscribed
cone is the minimization of the objective function and the
circumscribed cone is the maximum value. The accumulated
phase is π/4 (−π/4) for positive (negative) definite matrix
R. On the other hand, for the hypersurface S2 of Eq. (30),
due to the property of the indefinite matrix, the accumulated
phase can be ±π/4 and then there exist two inscribed cones.
One can obtain the minimum of the objective function by
comparing the points of tangency of the different accumulated
phase value.
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Computationally, we get the optimal solution �opt and
the minimum of the objective function fmin by solving the
following equations. First, we transform the coordinates of
the vectors Aall to the new coordinates Ball by making use of
the transformation matrix T:

Ball = TAall. (34)

Note that A(k) and B(k) are the kth row vectors of Aall and
Ball respectively. Using the transformation matrix, we can now
obtain

f = min(υT � υ) = min[νT (TT �T) ν], (35)

|νT O ν| = π/4, (36)

where � is a diagonal matrix with element bk , O is a diagonal
matrix with element ak , υ is the column vector with element
υk , and ν is the column vector with element νk .

The point of tangency is obtained by solving the following
equation:

νT � ν = 0, (37)

in which

� = (O′ − TT �′T), (38)

where �′ is a diagonal matrix with element bk/ f , and O′ is a
diagonal matrix with element 4ak/π for the positive-definite
case, −4ak/π for the negative-definite case, or ±4ak/π for an
indefinite matrix.

The minimum objective function fmin, i.e., the point of the
inscribed tangent, corresponds to the maximum eigenvalue
of � = (O′ − TT �′T) equal to zero, and the corresponding
eigenvector of � is the optimized vector. When the eigenval-
ues of � are all negative, it means that there is no point of
intersection of these two hypersurfaces. We can successfully
find the satisfactory gate solution ν by a root finding method.
The choice of initial guess of the root finding method is not
sensitive in search of the solution due to the monotonicity of
the maximum eigenvalue of � with the minimum objective
function fmin. To reduce the number of iterations, we take the
minimum of bk as the initial guess, in which case the principal
axis with the longest length of the hypersurface is intersectant
with the hypersurface S1 or S2.

In this way, our optimization problem is solved:

�opt =
N0∑

k=1

νkA(k), (39)

�opt =
N0∑

i=1

�
[i]
opt�

[i]
null. (40)

We want to point out that, in the discussion above, we
require that the pulse segments be larger than the number of
constraints, in which case the method allows N0 null space
vectors �[i]

null of M with singular values λi = 0, i = 1, . . . , N0.
In this method, we can achieve an ideal fidelity for any τ and
μ without parameters scanning and can efficiently optimize
the laser power or the pulse gradient. Therefore, we refer this
method to the exact AM method.

E. Approximated null space method for a few segments

When the pulse segments are fewer than the number
of linear constraints, there does not exist �null which ex-
actly satisfies Eq. (12). However, in the current experimental
conditions, one can also use a few segments to achieve a
high-fidelity quantum gate by scanning the gate parameters
such as the gate duration [29–32,43,44,53]. The exact method
for a few segments is the highest-fidelity solution. Due to
the fact that most of the motional modes have relatively
low populations and do not need to be perfectly decoupled,
we can construct an approximated null space as the opti-
mized solution space at the cost of a negligible amount of
fidelity.

Through the singular value decomposition of M, we obtain
its singular values λ1, λ2, . . . , λNseg , ordered according to their
absolute values:

0 � |λ1| � |λ2| � · · · � |λNseg |. (41)

We notice that a few singular values are particularly small
in magnitude and the corresponding singular vectors with a
suitable normalization can obviously decrease the laser power
or reduce the pulse gradient. Considering the above obser-
vation, we can therefore effectively relax the spin-motion
decoupling constraints into

M� ≈ 0. (42)

In this way, we can construct an approximated null space
at the cost of a negligible amount of fidelity by including
Lcut singular vectors whose singular values are very close to
zero, which is similar to the treatment in Ref. [46]. We adjust
the value of Lcut according to the fulfillment of δF < δFt ,
where δFt is the threshold of fidelity which is acceptable in
the current experiments. We refer to this method as the ANS
method, which yields pulses with lower laser power or pulse
gradient than the highest-fidelity solution. Please note that this
method is also valid for many pulse segments if one extends
the null space by including singular vectors corresponding to
Lcut nonzero singular values. The dimension of the extended
null space (ENS) is N ′

0 = N0 + Lcut. For the latter case of
many segments, we call it the ENS method.

IV. NUMERICAL RESULTS

In this section, we will present our main results based
on our numerical schemes for optimizing a robust two-qubit
quantum gate in a linear chain of 171Yb+ ions. For realistic
parameters, we consider a chain of 20 ions in a hybrid trap
potential which is specified by γ4 = 0.5333 and choose the
transverse trapping frequency ωx = ωy = 2π×3 MHz and the
axial trapping frequency ωz = 2π×0.05 MHz. As a result, the
20 ions will have a nearly uniform spacing with a relative
standard deviation (RSD) of 5.63%. The temperature is set
to kBT = h̄ωx to give an average phonon number of n̄m ≈ 0.5
for each transverse mode, which can be easily achieved with
the Raman sideband cooling.

To implement a phase-insensitive two-qubit σφsσφs gate,
two counterpropagating laser beams with equal but opposite
detuning are shined on the ions along the ±x directions.
For the 171Yb+ qubit transitions, the laser beams have wave-
lengths around λ = 355 nm. Throughout this paper, we set
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FIG. 1. Comparisons of three different optimization schemes:
scheme I (the blue thin diamonds), scheme II (the orange triangles),
and the random scheme (the green squares). The rms Rabi frequency
in (a) and the rms Rabi frequency gradient of pulse shape in (b) are
shown as a function of the pulse segments Nseg on qubits (9, 11) for
the gate duration τ = 280 µs and the laser detuning μ = 0.978ωx .
The vertical blue dashed line at Nseg = 41 (i.e., the number of con-
straints) is drawn to distinguish the ANS method and the exact
method for different pulse segments.

the infidelity threshold to δFt = 10−4, which is acceptable
in experiments after accounting for intensity fluctuations, the
motional-mode heating, the motional dephasing, the laser de-
phasing, the off-resonant photon scattering, etc. The infidelity
threshold roughly corresponds to the spontaneous scattering
limit.

A. Comparison of the optimization schemes

Considering the experimental feasibility in realizing the
effective Rabi frequency and its requirement in minimiz-
ing the pulse gradient, we have proposed the geometrically
hypersurface-tangent method to obtain the optimized efficient
solution on the basis of high fidelity. Here, we want to check
the effectiveness and performance of our method in finding the
optimal solution for different numbers of pulse segments. For
doing so, we vary the number of segments Nseg from several
up to 300 for τ = 280 µs and μ = 0.978ωx. In Fig. 1, we show
the rms Rabi frequency and the rms Rabi frequency gradient

of optimization schemes. Note that, for a two-qubit nonrobust
quantum gate in a chain of 20 ions, the number of constraints
is 41. When the number of pulse segments is fewer than the
number of constraints, we can apply the ANS method and
set δFt = 10−4 to construct an optimal solution space. For
the number of pulse segments Nseg � 41, we apply the exact
method in which the quantum gate can be regarded as an ideal
operation.

To validate our scheme for the optimal solution, we ran-
domly select the normalized vector as the solution vector and
adjust the Rabi frequency to satisfy the remaining accumu-
lated phase condition. For a fair comparison, we repeat this
process six times and average the results. We call this scheme
the random scheme. As shown in Fig. 1, we compare the
results of the rms Rabi frequency of scheme I (laser power
optimization), scheme II (pulse gradient optimization), and
the random scheme.

One finds that scheme I is obviously efficient for any
pulse segments, especially for pulse segments Nseg � 41 in
Fig. 1(a). Similarly, the rms pulse gradient of scheme II in
Fig. 1(b) is considerably lower than the other two methods,
particularly effective for Nseg � 41. For example, the rms
Rabi frequency gradient of Nseg = 300 has been reduced to
0.85% compared with that of the random scheme and 5.17%
compared with that from scheme I.

In addition, we find that the optimization of scheme II
is more obvious compared with scheme I. One can indeed
reduce the gradient of the pulse effectively by using scheme II,
where only a slight increase of the laser power is needed. This
advantage of the gradient optimization in scheme II is readily
valid in many parameters regions when the laser detuning is
around the range of motional-mode frequencies.

Finally, in order to demonstrate the optimized effective
Rabi frequency �, we choose to show the results for two cases
Nseg = 35 and 120 in Appendix C. From comparisons of all
the three schemes for the specific examples, we conclude that
our optimization schemes for the laser power and the gradient
of the pulse are indeed effective.

B. Approximated and extended null space

In current experiments, the fidelity of a two-qubit AM
gate in the trapped-ion quantum computation is around 98%
[43,44,53], due to various sources of noise. Consequently,
we can trade a negligible amount of gate fidelity for a more
efficient solution, especially for the case of a few segments.
From our discussions in previous sections, this can be accom-
plished by constructing an approximate null space of M for
a few pulse segments Nseg < 2N + 1 and an extended null
space of M for many pulse segments Nseg � 2N + 1. The
solution space includes Lcut singular vectors with nonzero
singular values, as long as δF < δFt , where δF = 1 − F is
the quantum gate infidelity and δFt is the threshold infidelity
of the gate.

As an example, we present results of the ANS method for
Nseg = 35. Again, we keep the gate duration and the detuning
fixed, i.e., τ = 200 µs and μ = 0.978ωx. As a function of Lcut,
we show the infidelity δF versus the rms Rabi frequency and
versus the Rabi frequency gradient in Figs. 2(a) and 2(b),
respectively.
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FIG. 2. Performance of the approximated (extended) null space
method. For the gate duration τ = 200 µs, the detuning μ =
0.978ωx , and the number of pulse segments Nseg = 35, we show
(a) infidelity δF , the corresponding rms, and maximum Rabi fre-
quency as a function of Lcut for scheme I and (b) infidelity δF and the
corresponding rms Rabi frequency gradient as a function of Lcut for
scheme II. In both (a) and (b), a horizontal dashed line at δF = 10−4

(an acceptable infidelity for current experiments) is drawn to guide
the eye. In (c), the rms Rabi frequency gradient of scheme II as a
function of the pulse segments Nseg is compared for the exact method
against the ANS (or ENS) method, where a vertical dashed line
marks the number of constraints 41.

As can be seen, the infidelity increases with the increase of
Lcut, reaching 10−4 at Lcut = 5 in which case the rms Rabi fre-
quency can be dropped by 30% compared with that of Lcut = 0
in Fig. 2(a). Additionally, the maximum Rabi frequency drops
in accordance with the optimized rms Rabi frequency. The
result of saving with Lcut is more obvious for scheme II, as
shown in Fig. 2(b). For Lcut = 8, the rms Rabi frequency
gradient has been reduced to 4% of that for Lcut = 0. This
shows a large number of singular vectors of M may indeed be
used as the variational space to optimize the solution at only a
negligible fidelity cost.

In Fig. 2(c), we compare the rms Rabi frequency gradient
of the exact method with that of the ENS (ANS) method
as a function of the pulse segments Nseg. As can be seen
in Fig. 2(c), the ENS (ANS) method provides a pulse shape
smooth advantage for Nseg > 30. It is noteworthy that the ANS
method has coincided with the exact method for Nseg < 30.
The reason is simple: the infidelity of the pulse for Nseg < 30
is higher than 10−5, and then there exist very few singular
vectors with nonzero singular values to guarantee δF < δFt .

Finally, we wish to compare the laser power as a function
of the gate duration τ in scheme I. In Fig. 3, we present the
laser power of the exact method with the ENS method for
Kω = 0 and 1. Over a large range of gate duration, the ENS
method offers significant power savings at the cost of a neg-
ligible fidelity. The power requirement dramatically increases
as the gate duration is shortened because of the high excitation

FIG. 3. Comparisons of the rms Rabi frequency as a function of
the gate duration τ from the exact method and from the ENS method
in scheme I for Kω = 0 and 1, μ = 0.978ωx , and Nseg = 300, which
are represented by different line styles. Also shown in the inset is the
corresponding maximum Rabi frequency.

FIG. 4. Comparisons of infidelity δF a as a function of the pa-
rameter drift for the two-qubit gate with robust order 1 and the
nonrobust gate. For the pulse segments Nseg = 32 and the detuning
μ = 0.978ωx , results are shown for (a) the laser detuning drift for
δμ = (−2π×1000, 2π×1000) Hz and the gate duration τ = 150 µs,
(b) the gate duration drift for δτ = (−0.2, 0.2) µs and the gate
duration τ = 150 µs, and (c) the motional-mode frequencies random
static drift for δωc = (−2π×1500, 2π×1500) Hz and the gate dura-
tion τ = 280 µs. In the above figures, the red solid line and the dark
blue dashed line represent the infidelity δF a of the two-qubit gate
with robust order 1 and the nonrobust gate.
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FIG. 5. Robust results of the exact method with the laser power optimization for the detuning μ = 0.995ωx and the pulse segments Nseg =
358. (a) The infidelity δF a of stabilized pulses Kω = 0, 1, . . . , 6 as a function of the motional mode frequencies random drifts for the pulse
duration τ = 450 µs. (b) The width of infidelity curves extracted at tolerance ε = 10−4 for different durations of pulse, as a function of the
robust order Kω. (c) The rms power requirement of different durations of pulse, as a function of the robust order Kω. (d) The infidelity δF a

of stabilized pulses Kall = 0, 1, 2 as a function of simultaneous drifts with different signs of all parameters with the gate duration drift range
δτ = (−0.112, 0.112) µs, the detuning drift range δμ = (2π×430, −2π×430) Hz, and the random motional-mode frequencies drift range
δωc = (−2π×550, 2π×550) Hz, in which the horizontal axis δ f represents the percentage change of the above parameters.

of the motional modes, as shown in Fig. 3. Of course, the
power requirement of the robust quantum gate Kω = 1 is
higher than that of the nonrobust gate because of increased
constraints. To clearly verify that the rms optimization is ef-
fective to the maximum Rabi frequency, we plot the maximum
Rabi frequency as the function of gate duration τ in the inset
of Fig. 3. As can be seen, the average power minimization is
essentially as good as that of the maximum Rabi frequency of
the pulse.

C. Robust gates

Aforementioned, in the present paper, we present a unified
linear framework to suppress the dominant sources of the
infidelity of entangling gates, which is related to the spin-
motion residual coupling. In Fig. 4, we compare the results
for robust order 1 with the nonrobust pulse against possible
errors, including motional frequencies, the detuning, and the
gate duration. In this case, we use the approximate infidelity
δF a which is given by Eq. (11). We present the laser power
optimization results of a few segments for Nseg = 32 and
μ = 0.978ωx. As we can see in Fig. 4(a), the robust pulse can
tolerate detuning errors dramatically more than the nonrobust
case. The infidelity curve of Kμ = 1 is still lower than 10−4

when δμ = 2π×1000 Hz.
For the robustness against motional frequencies drift, we

investigate the case of the random static drifts, which is closer
to the experimental drifts. We choose N random numbers g

from a Gaussian distribution with zero mean and standard
deviation σ = 1. Thus, all modes frequencies drift randomly
according to ω to ω + δωcg, where δωc is the scaling factor
and ω is all motional-mode frequencies. Again, we repeat the
random process six times and average for the infidelity. As
shown in Fig. 4(c), the result for the motional frequencies
robustness is as good as those in Figs. 4(a) and 4(b). For a
few segments, our results show that the robust method signif-
icantly improves fidelity even for robust order 1.

In order to investigate the effect of the high-order robust-
ness, we choose another trap potential with γ4 = 5, in which
case the high-order parameters drift has great influence on the
fidelity, and discuss the situation of many pulse segments. In
Fig. 5(a), the infidelity of robust pulses Kω = 0, 1, . . . , 6 is
shown as a function of the extent of the mode frequencies
random drifts. We have defined the drift width of the infidelity
curves, extracted at error tolerance ε = 10−4 to describe the
robustness. Intuitively, the width δωc increases from 2π×15
to 2π×4605 Hz as Kω is increased from 0 to 6 in Figs. 5(a)
and 5(b).

In Fig. 5(b), we find that the width δωc increases with
the order Kω and the faster gate has a significantly better
performance. The effect of the robustness increases inversely
with the gate duration. The power requirement of the stabi-
lized pulses for each Kω of different gate duration is shown
in Fig. 5(c). Obviously, when more constraint conditions are
added, the size of the null space contracts and leads to an
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increase in the laser power. In Fig. 5(d), we present the ro-
bustness of the simultaneous drifts with the gate duration,
the motional-mode frequencies, and the laser detuning with
different signs of the drift direction. As observed, these re-
sults confirm that the robust method can improve the fidelity
significantly even for simultaneous experimental drifts.

D. Scaling to a larger number of ions

Scalability is one of the challenging issues in the trapped-
ion quantum computation. One promising proposal is to use
an architecture called the quantum charge-coupled device
where the entanglement is first generated in individual zones
and then distributed to other regions by the classical ion
shuttling technique. However, the fidelity of multiqubit gates
is significantly degraded for higher-temperature ion chains
because of the ions’ transport and this technique demands
extremely exquisite control of ion positions. Another method
to distribute quantum information between modules utilizes
photons to entangle ions located in separate regions. This
method is often referred to as remote entanglement photonic
interconnects and is limited by the photon collection effi-
ciency.

Therefore, it is essential and meaningful to perform high-
fidelity, high-speed robust operations in a long linear chain.
In this subsection, to test the scalability of our optimization
schemes, we generalize our ANS method to a longer ion
chain in a hybrid potential and investigate the effectiveness
of the optimization. To verify its effectiveness, we compare
the exact method and the ANS method of scheme I with
τ = 200 µs, μ = 0.5(ωmax + ωmin), and the pulse segments
Nseg = 2N . The results are presented in Fig. 6. As we can see,
the ANS method is still always effective with the increase of
the number of ions while the rms Rabi frequency of the exact
method increases greatly with the number of ions. In fact, the
ANS method of scheme II (the gradient optimization) works

FIG. 6. rms Rabi frequency from the exact method (the green
diamonds) and the ANS method (the purple circles) as a function
of the number of ions with the gate duration τ = 200 µs, the pulse
segments Nseg = 2N , and the detuning μ = 0.5(ωmax + ωmin ), where
ωmax and ωmin are the maximum and the minimum of the motional
frequencies, respectively.

equally well with the increase of the ion number, whose re-
sults are not shown but similar to the laser power optimization.

V. CONCLUSIONS

In this paper, we focus on the segmented amplitude mod-
ulation technique and propose a geometrically hypersurface-
tangent method to perform robust, high-fidelity quantum gates
with the least amount of laser power and the best smooth
pulse shape favorable for experiments. For a few segments
pulse, we have shown that one can apply the tradeoff method
by constructing an approximated null space to improve the
performance of gates. In addition, we improve the robustness
of quantum gates against random drifts of motional frequen-
cies, the gate duration drifts, the laser detuning drifts, and
their combinations. Our numerical method is linear and ex-
tensible, which can provide scaling benefits in large systems.
Our method demonstrates decisive advantages in improving
the optimization of the stability, and will thus be useful for
near-term quantum computation.
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APPENDIX A: EQUILIBRIUM POSITIONS
AND MOTIONAL MODES

In this part, we present a brief introduction of the
static equilibrium and motional mode spectrum of a one-
dimensional (1D) ion chain in a Paul trap. In a typical linear
Paul trap, the tight radial confinement is realized by using
a combination of dc and rf fields, whereas the weak axial
confinement is achieved by dc electrodes [49]. If the radial
potential is sufficiently strong compared to the axial poten-
tial, the equilibrium configuration of ions must be along the
axial direction. The equilibrium positions are determined by
a balance between the axial confining fields and the mutual
Coulomb repulsion. A uniform configuration can prevent the
ions in the center coming too close, thus reducing the possible
crosstalk in the ion state detection and enabling a high-fidelity
manipulation with focused laser beams. To achieve a uni-
form configuration of a long linear chain, ion distributions
in different axial potentials have been studied previously
[31,47,48].

The authors of Ref. [47] showed that a purely quartic po-
tential leads to a much more uniform ion chain compared to a
quadratic potential at the center, but the distribution of the ions
changes quickly at both edges. Additionally, the combination
of the quadratic and quartic potentials has been proposed as
the trapping potential [48]. Such a combination of poten-
tial can accommodate more ions uniformly distributed than
the quadratic potential or the quartic potential only, avoiding
zigzag transitions at the center of the chain.

We briefly present the results for a linear ion chain in
a hybrid potential, consisting of a quadratic and a quartic
potential with a dimensionless ratio. The formulation also
holds for a quadratic or a quartic potential alone. For typ-
ical experimental parameters, the micromotion is small and
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can be neglected for a 1D ion chain in a linear Paul trap.
We calculate the equilibrium configuration as well as the
collective motional modes by effectively treating the trap po-
tential as a static pseudopotential, following the derivation in
Refs. [48–50].

The potential energy of the ion chain in a hybrid axial
potential is given by the following expression:

U =
N∑

i=1

(
−1

2
α2z2

i + 1

4
α4z4

i

)
+

∑
i< j

(
q2

4πε0|zi − z j |
)

,

(A1)

where q is the charge of an ion, zi is the axial position of the
ith ion, N is the number of ions, ε0 is the permittivity of free
space, and α2 and α4 are the coefficients of the quadratic term
and quartic term (α2, α4 > 0). For convenience, we rescale the
positions zi using a length scale l0

3 = q2/4πε0α2 and then
ui = zi/l0. Thus, the rescaled axial potential energy can be
rewritten as

V =
N∑

i=1

(
− 1

2
u2

i + 1

4
γ4u4

i

)
+

∑
i< j

1

|ui − u j | , (A2)

where γ4 = α4l2
0 /α2 is a dimensionless ratio to characterize

the strength of the quadratic potential relative to the quartic
potential, which determines the equilibrium configuration.

For the hybrid potential, in order to homogenize the distri-
bution of the ions, we introduce the RSD:

RSD = 1

�zi

√√√√ N∑
i=2

(�zi − �z)2/(N − 1), (A3)

where �zi is the distance between the two adjacent (i − 1)th
and ith ions in the chain and �zi denotes its average. So
one can optimize the dimensionless ratio γ4 to minimize the
relative standard deviation.

We can get the equilibrium position ui of the ions by
solving the set of equations, ∂V

∂ui
= 0, i.e., the minimization

of the axial potential energy. For a given number of ions N
and γ4, we can minimize the potential energy by using the
Newton conjugate gradient algorithm or find the zero point
of the gradient of the potential energy using a root-finding
algorithm. The gradient and Hessian matrix elements of the
axial potential energy can be respectively shown to be

∂V

∂ui
= −ui + γ4u3

i −
∑
i �= j

ui − u j

|ui − u j |3 (A4)

and

∂2V

∂u2
i

= −1 + 3γ4u2
i +

∑
i �= j

2

|ui − u j |3 ,

∂2V

∂ui∂u j
= 2

|ui − u j |3 , i �= j. (A5)

For the case of 20 ions considered in the main text, we
compare the equilibrium positions for different types of po-
tentials. As can be seen from Fig. 7, the ions in the hybrid
potential are indeed much more evenly distributed across the
chain compared to the quadratic or quartic potential only. In
particular, γ4 = 0.5333 is found to give a minimal RSD of

FIG. 7. Equilibrium configuration of 20 ions in different poten-
tials: (a) a quadratic potential, (b) a quartic potential, and (c) a hybrid
potential with γ4 = 0.5333. Note that the ions in the hybrid potential
are more uniform.

only 5.63% in the hybrid potential; in comparison, a quadratic
potential gives rise to a RSD of 18.58% and a quartic potential
gives rise to a RSD of 7.22%.

After finding the equilibrium positions z(0)
i along the axial

direction, the complete expression of the potential energy can
be written as

Uall =
N∑

i=1

(
−1

2
α2z2

i + 1

4
α4z4

i + 1

2
mionω

2
x x2

i + 1

2
mionω

2
y y2

i

)

+
∑
i< j

q2

4πε0|ri − r j | , (A6)

where x(0)
i = y(0)

i = 0, z(0)
i = l0u(0)

i , mion is the mass of the
ion, and ωx and ωy are the radial trap frequencies. We can
approximate the potential with its Taylor expansion around the
equilibrium positions up to the second order. The dynamics of
the system are described by the Lagrangian

L = 1

2
m

N∑
i=1

(q̇i )
2 − 1

2
m

N∑
i, j=1

Ai jqiq j, (A7)

where qi is the displacement of the ith ion from the equilib-
rium position. The motional modes and their corresponding
mode frequencies can be obtained through diagonalization of
the symmetric Hessian matrix Ai j of the potential energy.

Using Eq. (A6), one can obtain the analytical expression
A(x)

i j for the transverse motion

∂2U

∂x2
i

∣∣∣∣
r=r(0)

= w2
x −

∑
i �= j

α2

m|ui j |3 , (A8)

∂2U

∂xi∂x j

∣∣∣∣
r=r(0)

= α2

m|ui j |3 , i �= j (A9)
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FIG. 8. The amplitude-modulated pulse sequences � of the driving field for an AM entangling gate for the ion pair (9, 11) in a 20-ion
chain. (a)–(c) Comparisons of 35-segment pulses with infidelity δFt = 10−4 among the random scheme, scheme I, and scheme II using the
approximated null space. (d)–(f) Comparisons of 120-segment pulses with infidelity δF = 0 among the random scheme, scheme I, and scheme
II using the exact null space.

and A(z)
i j for the axial motion

∂2U

∂z2
i

∣∣∣∣
r=r(0)

= α2

m

(
− 1 + 3γ4 + 2

∑
i �= j

1

|ui j |3
)

, (A10)

∂2U

∂zi∂z j

∣∣∣∣
r=r(0)

= −2
α2

m|ui j |3 , i �= j, (A11)

where ui j = ui − u j . The eigenvectors bm
j are defined by∑N

i=1 Ai jbm
i = ω2

mbm
j , where ωm is the transverse motional

mode frequency with m = 1, . . . , N being the motional mode
index. Each motional mode represents an individual har-
monic oscillator that can be quantized to give the phonon
Hamiltonian.

APPENDIX B: MATRIX EXPRESSIONS

In this part, we give the explicit expressions for different
matrices defined in Sec. III B. First, the elements of matrix M
for the jth qubit are given by

M(m, n) = ηm
j

∫ nτ/Nseg

(n−1)τ/Nseg

sin(μt )sin (ωmt )dt,

M(m + N, n) = ηm
j

∫ nτ/Nseg

(n−1)τ/Nseg

sin(μt )cos (ωmt )dt, (B1)

where j is the label of the ion, and M(m, n) and M(m + N, n)
are respectively the real and the imaginary part of the residual
decoupling of the mth motional mode.

The entanglement matrix S is a real Nseg×Nseg matrix
whose (p, q) component is given by

S(p, q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
∑

m ηm
i ηm

j

∫ pτ
Nseg

(p−1)τ
Nseg

dt1
∫ qτ

Nseg
(q−1)τ

Nseg

dt2

× sin(μt1) sin(μt2) sin[ωm(t1 − t2)], (p > q),

2
∑

m ηm
i ηm

j

∫ pτ
Nseg

(p−1)τ
Nseg

dt1
∫ t1

(p−1)τ
Nseg

dt2

× sin(μt1) sin(μt2) sin[ωm(t1 − t2)], (p = q),

0, (p < q).

(B2)

The robustness against random drifts of motional-mode
frequencies K(k)

m is the 2N×Nseg coefficient matrix, which
represents the stabilization of the mth motional mode of the
jth ion against mode frequency drifts to arbitrary order k. The
real part K (k)

m (m, n) and the imaginary part K (k)
m (m + N, n) of

the residual decoupling of the mth motional mode are given by

K (k)
m (m, n) = ηm

j

∫ nτ/Nseg

(n−1)τ/Nseg

(t )ksin(μt )sin (ωmt )dt,

K (k)
m (m + N, n) = ηm

j

∫ nτ/Nseg

(n−1)τ/Nseg

(t )ksin(μt )cos (ωmt )dt, (B3)

respectively, where k = 1, . . . , Kω is the order of stabilization.
Similarly, the robustness against the gate duration Q(l )

m is a
2N×Nseg coefficient matrix, which is given by

Q(k)
m = η jm

2i

[i(μ + ωm)t]l ei(μ+ωm )t |
(n−1)τ
Nseg
nτ

Nseg

i(μ + ωm)

−
[i(ωm − μ)t]l ei(ωm−μ)t |

(n−1)τ
Nseg
nτ

Nseg

i(ωm − μ)
, (B4)
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where l = 1, . . . , Kτ is the order of stabilization. Q(k)
m (m, n)

is the real part of Eq. (B4) and Q(k)
m (m + N, n) is its

imaginary part.
Finally, the robustness against the laser detuning P(p)

m is
also a 2N×Nseg matrix, which is represented as

P(p)
m =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ηm
j (−1)

p
2

∫ nτ/Nseg

(n−1)τ/Nseg

t psin(μt )exp (iωmt )dt,

p = 2, 4, 6, . . . ,

ηm
j (−1)

p−1
2

∫ nτ/Nseg

(n−1)τ/Nseg

t psin(μt )exp (iωmt )dt,

p = 1, 3, 5, . . .,

(B5)

where p = 1, . . . , Kμ is the order of stabilization. P(p)
m (m, n)

is the real part of Eq. (B5) and P(p)
m (m + N, n) is its imaginary

part. The integral is similar to the robust calculation of the
motional frequencies.

APPENDIX C: OPTIMIZED PULSE

In this part, we present the optimized effective Rabi fre-
quency solutions �, which are plotted in Fig. 8. Here, we
show the optimal results of two different pulse segments
Nseg = 35 and 120. We find that the change between the ad-
jacent pulse segments becomes very smooth in Figs. 8(c) and
8(f) which is favorable for experiments. It is remarkable that
the maximal Rabi frequency of scheme I is considerably low
along with the decrease of rms Rabi frequency compared with
the random scheme, as shown in Figs. 8(d) and 8(e).
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