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Using a quantum processor to embed and process classical data enables the generation of correlations between
variables that are inefficient to represent through classical computation. A fundamental question is whether these
correlations could be harnessed to enhance learning performances on real data sets. Here we report the use of
a neutral atom quantum processor comprising up to 32 qubits to implement machine learning tasks on graph-
structured data. To that end, we introduce a quantum feature map to encode the information about graphs in the
parameters of a tunable Hamiltonian acting on an array of qubits. Using this tool, we first show that interactions
in the quantum system can be used to distinguish nonisomorphic graphs that are locally equivalent. We then
realize a toxicity screening experiment, consisting of a binary classification protocol on a biochemistry data set
comprising 286 molecules of sizes ranging from 2 to 32 nodes, and obtain results which are comparable to the
implementation of the best classical kernels on the same data set. Using techniques to compare the geometry
of the feature spaces associated with kernel methods, we then show evidence that the quantum feature map
perceives data in an original way, which is hard to replicate using classical kernels.
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I. INTRODUCTION

Representing data in the form of graphs is ubiquitous
in many domains of sciences. They naturally describe rela-
tionships in social networks [1], characterize interactions of
proteins and genes [2], and can represent the structure of
sentences in linguistics [3]. Many impactful applications arise
from efficient graph-based methods, such as predicting poten-
tial edges in recommendation systems [4], detecting frauds in
communication networks [5], or for protein function predic-
tion [6].

While graphs offer a rich structure for manipulating com-
plex data, the level of freedom they afford can lead to
resource-consuming data analyses. It is therefore essential to
create efficient machine learning (ML) models that correctly
and effectively learn and extract information from graph struc-
tures. One thus often resorts to graph embedding techniques
[7], which refer to finding a representation of a graph or of its
individual nodes in a vector space. By finding node represen-
tatives which preserve different types of relational information
from the graph, node embedding can be used for prediction
tasks at the node level, such as node classification [8] or link
prediction [9]. Embeddings can also be done at the graph level
to distinguish graphs of different nature. Notions of distances
and similarities between the representative vectors can then
be used to find the best boundary between data points with
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different labels in the context of supervised machine learning.
This is the main idea behind the notion of a graph kernel,
which represents a measure of similarity between input graphs
in the form of a scalar product between their representative
vectors.

Using the exponentially large Hilbert space accessible to a
quantum computer in order to generate graph embeddings is
an appealing idea, with many proposals and theoretical studies
over the past few years [10–13]. With the recent advances
in geometric quantum machine learning, works have shown
how graph-structured data could be encoded into quantum
states and manipulated for classification, clustering, or regres-
sion tasks. These efforts started with quantum convolutional
neural networks [14,15], and attempts were made to trans-
late classical graph neural network (GNN) architectures to
quantum neural networks [16]. Some of the authors of the
present work introduced the quantum evolution kernel (QEK)
approach in [17], which is based on evolving a quantum reg-
ister over alternating layers of (graph-encoding) Hamiltonians
and training for classification tasks. Follow-up work from
the community offered generalizations of this paradigm [18].
Theoretical studies of geometrical quantum machine learning
and their invariant properties include [19,20], the latter study-
ing applications to weighted graphs. More recently, in-depth
theoretical studies of equivariant and geometric quantum
machine learning aspects were presented [21–23]. Here we
specifically focus on a QEK-type quantum feature map [17]
for graph-structured data that we experimentally investigate
for various learning tasks on a 32-qubit neutral atom quantum
processing unit (QPU).

2469-9926/2023/107(4)/042615(16) 042615-1 ©2023 American Physical Society

https://orcid.org/0000-0003-0733-2676
https://orcid.org/0000-0003-2856-0125
https://orcid.org/0000-0002-6749-221X
https://orcid.org/0000-0003-0416-5518
https://orcid.org/0000-0001-7822-9444
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.042615&domain=pdf&date_stamp=2023-04-19
https://doi.org/10.1103/PhysRevA.107.042615


BORIS ALBRECHT et al. PHYSICAL REVIEW A 107, 042615 (2023)

(a)

(b)

FIG. 1. (a) We seek a binary classifier enabling the separation of the two data classes by a hyperplane (purple). After a transformation
φ(x, y) = (x, y, x2 + y2) mapping the data point from R2 to R3, the transformed data points become linearly separable. (b) Illustration of
the hardware-implemented quantum feature map U (G; t ) and subsequent measurements for graph-structured data. A parametrized quantum
unitary U is applied to atomic registers arranged under the form of UD graphs. Experimentally measured observable distributions are then
used for learning tasks.

The structure of the paper is as follows. We first introduce
the concept of a graph quantum feature map using neutral
atom technology in Sec. II. We then assess in Sec. III its ex-
pressive power by showing that it enables us to distinguish two
graphs that are locally equivalent but nonisomorphic [24]. In
Sec. IV we experimentally realize QEK on a real-world clas-
sification task to predict toxicity for a data set of molecules
[predictive toxicity challenge on female mice (PTCFM)] [25].
Importantly, we benchmark our approach by comparing its
performance with several classical kernels in Sec. IV C. Fi-
nally, we evaluate the potential advantage of our method in
Sec. IV D by means of a novel metric that is sensitive to the
similarity between the geometry of the feature spaces of two
kernels [26]. This is a strong indication of the potential of
the method and of its capacity to capture new features that
classical kernels would miss.

II. QUANTUM FEATURE MAP
FOR GRAPH-STRUCTURED DATA

In many classical machine learning methods, one seeks
to map input data into a different space called the feature
space using a transform called the feature map, making it
easier to work with. An example is shown in Fig. 1(a), where
we illustrate how to easily solve a binary classification task
for data points in a two-dimensional plane by embedding
them into three-dimensional space. After a transformation φ

taking data points from R2 to R3, the resulting vectors can
be easily separated by an horizontal plane. The class of any
new data point can then be directly deduced from its location
relative to this plane. In quantum machine learning [10,11],
the embedding is usually done on a quantum feature space
which is a Hilbert space associated with a set of qubits.
Such an embedding is usually built from the dynamics of a

quantum system depending on the input data as well as exter-
nal variational parameters.

In this paper we use a neutral atom–based QPU made
of single 87Rb atoms trapped in arrays of optical tweez-
ers [27–31]. The qubits are encoded in the ground state
|0〉 = |5S1/2, F = 2, mF = 2〉 and a Rydberg state |1〉 =
|60S1/2, mJ = 1/2〉. This effective two-level system is ad-
dressed with a two-photon laser excitation through an
intermediate state 6P3/2. The first (second) photon excitation
is generated by a 420-nm (1013-nm) laser beam. Both of them
are far detuned from their addressed transitions so as to ensure
a negligible effect of the intermediate state. At the end of the
laser sequence, the state of the atomic qubits is read out by
fluorescence imaging (see Appendix A).

When promoted to Rydberg states, the atoms behave as
large electric dipoles and thus experience dipole-dipole in-
teractions, which, for the chosen Rydberg level, essentially
include van der Waals terms only. The dynamics of a set
of N qubits at positions {ri}i=1,...,N is thus governed by the
Hamiltonian

Ĥ = h̄
N∑

i=1

(
�

2
σ̂ x

i − δn̂i

)
+

∑
i< j

C6

|ri − r j |6 n̂in̂ j, (1)

where σ̂ α
i are Pauli matrices, n̂i = (1 + σ̂ z

i )/2, |ri − r j | is the
distance between qubits i and j, and C6/h � 138 GHz µm6

for the Rydberg state considered [32,33]. Controlling both in-
tensities and frequencies of each laser field, we can effectively
drive the qubit register uniformly with time-dependent tunable
Rabi frequency � and detuning δ.

Key to our study is the programmability of the qubit reg-
ister’s geometry. In neutral atom processors, one can modify
the spatial arrangement of qubits [27,34] and reproduce the
geometrical shape of various graphs with atoms in tweezers.
We will restrict ourselves to a set of graphs called unit disk
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(UD) graphs, for which two nodes in the plane are connected
by an edge if the distance between them is smaller than a
given threshold. Unit disk graphs are intimately related to
Rydberg physics through the mechanism of Rydberg blockade
[29,35,36], where an atom excited to a Rydberg state prevents
other neighboring atoms from being excited within a certain
blockade radius. For an atomic register reproducing a UD
graph G, the 1/r6 power law of the van der Waals interactions
effectively restricts, in a good approximation, the summation
in the third term of Eq. (1) to pairs of indices (i, j) sharing
an edge in G. The topology of the interaction term in Eq. (1)
then becomes the one of the graph under consideration, giving
rise to a graph-dependent Hamiltonian ĤG . This property
has notably been harnessed for solving combinatorial graph
optimization problems [37–45].

Starting from a UD graph G reproduced in the array
of tweezers with qubits all starting in |0〉, we apply a
parametrized laser pulse onto the atoms in order to generate
a wave function |ψG〉 of the form

|ψG〉 = U (G; t )|0〉⊗|G|, (2)

where we define the time-evolution operator U (G; t ) =
T {exp[−i/h̄

∫ t
s=0 ĤG (s)ds} to be our quantum feature map

unitary for graph-structured data. Throughout this paper, we
will restrict ourselves to laser pulses with constant detuning δ

and Rabi frequency �, with an adjustable duration t . Depend-
ing on the task at hand, we consider various observables Ô to
evaluate on |ψG〉. Measurements of a site-dependent (global)
observable give rise to a probability distribution P which is
node (graph) specific and can be used for various machine
learning tasks at the node (graph) level. In the following, we
show theoretically and experimentally that the graph quantum
feature map already shows interesting properties when asso-
ciated with local or global observables built from single-body
expectation values 〈Ô j=1,...,|G|〉.

III. EXPRESSIVE POWER OF THE GRAPH
QUANTUM FEATURE MAP

The graph quantum feature map already shows interest-
ing properties when associated with single-body observables
〈Ô j=1,...,|G|〉. The measured values are affected not only by
local graph properties such as node degrees, but also by more
global ones such as the presence of cycles. This enrichment
provided by the quantum dynamics contrasts with the local-
ity of node representations in many classical graph machine
learning. This key feature comes from the fact that the quan-
tum dynamics of a given spin model (e.g., an Ising model) will
be significantly influenced, beyond short times (given by the
Lieb-Robinson bound [46,47]), by the complete structure of
the graph.

We illustrate experimentally this behavior for two graphs
G1 and G2 that are nonisomorphic but locally identical. In
these graphs, nodes can be separated into two equivalence
classes according to their neighborhood: Border nodes B have
one degree-3 neighbor and one degree-2 neighbor, while cen-
ter nodes C have two degree-2 neighbors and one degree-3
neighbor [see Fig. 2(a)]. We will see that the presence of
interactions will enable us to discriminate between G1 and G2

by comparing the dynamics of local observables on border and
center nodes.

We first map the graphs in a tweezers array with a nearest-
neighbor (NN) distance of rNN = 5.3 µm and apply a constant
pulse with �/2π = 1.0 MHz and δ/2π = 0.7 MHz. We then
measure the local mean Rydberg excitation 〈nj〉 j∈B,C for vary-
ing pulse duration t ∈ [0, 2.5] µs. As illustrated in Fig. 2(b),
a qualitative difference in the dynamics of both graph appears
after t ∼ 0.25 µs. Precisely, the excitation of the border nodes
[see Fig. 2(bi)] is initially increasing with indistinguishable
behavior between the two graphs. Then a distinction ap-
pears between the two graph instances. The mean density for
the border qubits of G1 exhibits damped oscillations around
〈nB〉 ∼ 0.15 with period of the order of 0.5 µs, while for
G2 it exhibits flatter oscillations centered around 0.25 with
period around 1 µs. We can observe a comparable distinction
between the two graphs for the center qubits [see Fig. 2(bii)].
The experimental measurements are consistent with the the-
oretical predictions and with the expected level of noise (see
Appendix B for more details).

When restricted to the mean-field approximation (or sim-
ilarly in the classical limit), the qubits’ dynamics on either
graph are far more similar, as illustrated in the insets of
Fig. 2(b). We still observe distinct dynamics between the two
graphs, which is due to next-nearest-neighbor (NNN) interac-
tions (more pronounced for the center nodes). If we neglect
those NNN interactions, the mean-field equations governing
the dynamics of each qubit would only depend on its direct
neighborhood, i.e., the local structure of the graph. In that
case, the qubits dynamics for G1 and G2 obey the exact same
equations [see the black dashed line in the insets of Fig. 2(b)].
We therefore conclude that the presence of interactions in
the system enables us to discriminate between the two non-
isomorphic graphs G1 and G2 by evaluating node-level local
observables 〈nB〉 or 〈nC〉.

By looking at Ô = ∑6
i=1 n̂i, we can more quantitatively

quantify the difference in the dynamics between the two
graphs. To this end, we first compute the histogram Pi of
the number of excitations observed in each shot on graph Gi.
The difference between those graphs is then estimated via the
Jensen-Shannon divergence DJS of their respective histograms
[48], a commonly used distance measure between probability
distributions, which is defined as

DJS(P1,P2) = H

(P1 + P2

2

)
− H (P1) + H (P2)

2
. (3)

Here H (P ) = −∑
k pk ln pk is the Shannon entropy of P =

(p1, . . . , p|G|). The Jensen-Shannon divergence is minimal
DJS(P,P ) = 0 if P1 = P2 = P and it is maximal if P1 and
P2 have disjoint supports, with DJS(P1,P2) = ln 2. This is
illustrated in Fig. 2(c), where the largest difference DJSmax ≈
0.28 is achieved (roughly 40% of the maximal value) at a time
t ∼ 0.57 µs. At this duration, the distribution for G1 is sharply
peaked at n = 0, while that of G2 is wider and peaks around
n = 2, as illustrated in the inset of Fig. 2(c). We note that the
local observables 〈n j〉 j∈B,C exhibit maximal deviation at this
same duration t , indicating direct correspondence between
measurements at the node and graph levels.

The dependence of local observables evaluated after the
application of the quantum feature map on global graph
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(i) (ii)

FIG. 2. (a) Here G1 (red) and G2 (blue) are two different graphs with identical local structures. Based on their neighborhood, the nodes
belong to either the border B (circle) or the center C (square). (b) Evolution of the mean occupation 〈ni〉 of the two regions (i) B and (ii) C
for both graphs G1 (red) and G2 (blue). The symbols represent the experimental results while the solid curves show noisy simulation results.
Horizontal error bars account for the sequence-trigger uncertainty (approximately equal to 40 ns), while the vertical ones account for the
sampling noise. The insets show the corresponding mean-field dynamics (dashed lines) with only NN (black) or full (colored) interactions.
(c) Evolution of the Jensen-Shannon divergence obtained experimentally (symbols) compared to the noisy simulation (solid line). At each
point in time, DJS(P1,P2) is computed using the excitation distributions P1/2 = {Pn(G1/2)}n=0,...,6 obtained either numerically (bars) or
experimentally (circles). The inset depicts P1/2 obtained at t ≈ 0.57 µs, which yields the maximum value DJSmax ≈ 0.28 reached.

structures has interesting consequences regarding quantum-
enhanced versions of GNNs [18,49,50]. In standard GNN
architectures, information is only propagated along the graphs
edges (see Appendix C for details). Incorporating a propaga-
tion rule built from the quantum feature map above would
enable us to go beyond this well-known limitation of GNN
architectures.

IV. BINARY CLASSIFICATION TASK

We now use the graph distance metric introduced in Eq. (3)
to tackle a binary classification task on a data set of chemical
compounds called PTCFM [25,51]. The objective is to accu-
rately predict the reactivity of chemical compounds (toxic and
positive or nontoxic and negative) based on their structural
properties. Indeed, in many cases poisonous proteins act as en-
zyme inhibitors, where the geometry of the protein fits to the
binding site of an enzyme and perturbs its usual functioning
[52,53]. We will estimate the quality of the classification by
using the F1 score F1 = tp

tp+( fp+ fn )/2 . Here tp, fp, and fn are the
numbers of true positives, false positives, and false negatives
of the predicted distribution, respectively. Correctly predicting

the toxicity of a compound (increasing tp) leads to a better
F1 score. On the other hand, classifying a toxic compound
as harmless (increasing fn) or a harmless compound as toxic
(increasing fp) results in a lower score.

To realize the classification task on this data set, we need
to turn the quantum graph embedding introduced in Sec. II
into a kernel K , the quantum evolution kernel. We follow
the approach originally proposed in Ref. [17] to define this
measure of similarity. We compute the distributions P of the
total number of Rydberg excitations

∑
j n̂ j measured in the

final state on graph G and we use again the Jensen-Shannon
divergence from Eq. (3) to build a kernel out of those distri-
butions:

K (G,G ′) = exp[−DJS(P,P ′)]. (4)

This kernel is well defined, i.e., the kernel matrix is always
positive definite [48].

We feed this kernel to a support vector machine (SVM)
algorithm in order to discriminate between graphs of the data
set pertaining to one or the other class. A SVM is a supervised
machine learning algorithm which, given the kernel K , aims at
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(a)

(b)

FIG. 3. (a) Data set of graphs G first mapped onto atomic registers r(G) implementable on the QPU and separated between a training set
Gtraining and a test set Gtest. We use the training set to determine numerically the optimal pulse sequence to be applied on the hardware using
a grid search algorithm for optimizing F1(t ) [see (b)]. This training phase outputs the optimal parameter T used to design the laser-pulse
sequence applied experimentally on each register of the test set. The resulting dynamics performed on the QPU generates U (G; T ), driving the
system from |0〉⊗G to |ψG〉. Then F1 is derived from the measured probability distributions {P (G)}G∈Gtest . (b) Optimization of the score function
F1 during the training includes several steps. The input t , taken from the parameter space [tmin, tmax] defines a laser sequence with � and δ

fixed parameters followed by a measurement. The dynamics of the system is emulated and enables us to compute the probability distributions
associated with this particular value of t for the whole training part of the data set. Finally, F1(t ) is obtained by fitting the SVM with the kernel
constructed from those probability distributions.

finding a hyperplane in feature space that distinctly classifies
the data points (see Appendix D for details).

A. Data set and mapping on hardware

In the original PTCFM data set, the 349 molecules are
represented under the form of graphs where each node is
labeled by atomic type and each edge is labeled according to
its bond type. We first truncate the data set to small graph sizes
in order to be able to train the kernel in a reasonable time and
discard larger molecules. For the M = 286 remaining graphs
of this data set, we take into account the adjacency matrix of
the graphs representing the compounds and discard the nodes
and edges labels. Note that the results of our implementation
are therefore not directly comparable to kernel results in the
literature which take into account edge and node labels (see,
for example, Ref. [54]).

Each node of a graph will be represented by a qubit in
the QPU. We first need to determine the positions of these
qubits in order to implement an interaction term in Eq. (1)
that effectively reflects the graph topology. To this end we
design a local optimizer detailed in Appendix E to estimate
in free space a preliminary two-dimensional (2D) layout for
each graph. Starting from a Fruchterman-Reingold layout
[55], our optimizer minimizes the average distance between
two connected nodes while maximizing the distances between

unconnected nodes. Then taking advantage of our ability to
tailor the spatial disposition of the tweezers generated by a
spatial light modulator (SLM) to fit the optimized layout, we
can replicate the graph in the hardware. Following a batching
method also detailed in Appendix E, we group similar graphs
and superimpose them on the same SLM pattern, effectively
mapping the whole data set on only six different SLM patterns
over a triangular grid. We therefore reduce the time needed to
implement the whole data set on the QPU.

B. Model training

To test the performance of our implementation, we perform
a standard procedure called cross validation. Cross validation
consists of dividing the data set into five equal parts called
splits and using each split for testing while the rest of the data
set is used for training. During the training phase, we construct
for each pulse duration t the corresponding kernel and train
a SVM model with it. We then evaluate the F1 score on the
part of the data set that was left as a test set. We repeat the
splitting ten times, and the cross-validation score is defined as
the average of the F1 scores of each split (50 splits in total).
We perform a grid search on the penalty hyperparameter C of
the SVM on the range [10−3, 103] such that the final score of a
given pulse is the best cross-validation score among the tested
values of C (see Appendix D for details).
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TABLE I. The F1 score reached experimentally on the PTCFM
data set by QEK (plus or minus the standard deviation on the splits)
and the scores reached numerically by the SVM ϑ , size, graphlet
sampling, random walk, and shortest-path classical kernels. The val-
ues reported are the average over a fivefold cross validation repeated
ten times.

Kernel F1 score (%)

QEK 60.4 ± 5.1
QEK (size compensated) 45.1 ± 3.7
SVM ϑ 58.2 ± 5.5
size 56.7 ± 5.6
graphlet sampling 56.9 ± 5.0
random walk 55.1 ± 6.9
shortest path 49.8 ± 6.0

Including graphs with sizes |G| � 20, we numerically com-
pute the score for a nearest-neighbor distance of rNN = 5.6 µm
and a resonant constant pulse with fixed �/2π = 1 MHz and
we vary its duration between tmin = 0.1 µs and tmax = 2.5
µs. We select the optimal duration T = 0.66 µs that exhibits
the maximum F1 score. We then implement this pulse on the
QPU. The whole process is illustrated in Fig. 3.

C. Classification results

After a training of our model, we experimentally obtain
an F1 score of 60.4 ± 5.1%. For comparison purposes, we
examine the performances of other kernels on this data set:
the graphlet sampling (GS), random walk (RW), shortest path
(SP), and SVM ϑ kernels, all these kernels being described in
detail in Appendix F. The F1 scores reached by the various
kernels are collected in Table I. The obtained scores range
from 49.8 ± 6.0% up to 58.2 ± 5.5%. These results show that
the quantum evolution kernel is competitive with standard
classical kernels on this data set. The SVM ϑ kernel is found
to be, among the classical kernels tested, the one with the best
performance. As described in Appendix F 1, it is defined up
to a choice of base kernel between real numbers, which gives
it a certain degree of flexibility.

FIG. 5. The PTCFM data set exhibits a strong size imbalance.
For a small number of nodes (less than approximately ten) more
graphs are labeled as harmless (blue), while it is the opposite for
larger graphs, more prone to be labeled as toxic (red).

We show in Fig. 4(a) the kernel matrix associated with
QEK, with indices sorted by increasing size of the graphs.
Using the same noise model as in the preceding section, we
find adequate agreement between the numerically Pnum and
experimentally Pexp obtained data. Quantitatively, we make
use of the Jensen-Shannon divergence to estimate this agree-
ment for any Gi and observe that 〈DJS(Pnum

i ,Pexp
i )〉i ≈ 0.03 ±

0.01 is one order of magnitude below 〈DJS(Pexp
i ,Pexp

j )〉i 
= j ≈
0.33 ± 0.01. An interesting feature of both QEK and SVM
ϑ [Fig. 4(b)] kernel matrices is the emergence of size-related
diagonal blocks, signaling that the models identify the size of
the graphs as an important feature for classification. Examin-
ing more closely the data set, we indeed remark that the subset
of PTCFM that we used is significantly size imbalanced, as
illustrated in Fig. 5. Since the graph size seems to be a relevant
feature for this particular data set, we define a size kernel as a
Gaussian in the size difference, which reaches an F1 score of
56.7 ± 5.6%. The corresponding kernel matrix is displayed in
Fig. 4(c) and exhibits a block-diagonal shape with a Gaussian
tail.

It is interesting to note that the quantum model was able to
identify size as a relevant parameter for this data set, leading
to classification results which are on par with the best classical
kernels.

Going forward, we modify the QEK procedure in order to
make the kernel insensitive to size. To that end, we compare
the measurement distributions obtained for different graph

(a) (b) (c) (d)
Sim. Sim.

Expt. Expt.

FIG. 4. Each kernel is represented by an M×M matrix where Ki, j = K (Gi,G j ) as defined in Eq. (4). The graph indices are sorted by
increasing size. A separation (black line) is drawn between numerically simulated (top right) and experimentally measured (bottom left) QEK
matrices. (a) QEK kernel obtained using directly the raw distributions Pi and P j . (b) Kernel obtained via the SVM ϑ method. (c) Size kernel
obtained for K size(Gi,G j ) = exp[−γ (|Gi| − |G j |)2] with γ = 0.1. (d) QEK kernel obtained using modified distributions P̃i and P j , where
graphs of smaller sizes are convoluted with binomial distributions when compared to larger graphs.
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sizes using a convolution operation. Let us consider two
graphs Gi and G j of Ni and Nj = Ni + �N > Ni nodes, respec-
tively, and note their respective observable distributions Pi

and P j . From Pi we construct P̃i = Pi � b(i/ j)
�N , the convolution

of Pi and a binomial distribution

b(p)
�N (n) =

(
�N

n

)
pn(1 − p)�N−n. (5)

Here P̃i corresponds to the distribution one would get by
adding to the graph �N noninteracting qubits, submitted to
the same laser pulse as the other. Each of these isolated
qubits undergoes Rabi oscillations, induced by the applied
pulse sequence. They are therefore measured either in |0〉
with probability p or in |1〉 with probability 1 − p, where
p = sin2(π�T ) (approximately equal to 0.768 here). We
finally define the modified graph kernel as

Kconv(Gi,G j ) = exp[−DJS(P̃i,P j )]. (6)

Using this procedure on the data obtained experimentally, we
obtain the kernel matrix shown in Fig. 4(d), with a correspond-
ing F1 score of 45.1 ± 3.7%. If this size-compensated version
of QEK had been implemented without interaction between
atoms, its score would be 42%, which is the lowest score
reachable by any kernel. We therefore see that this version
of QEK cannot capture useful features beyond the graph size,
meaning that the presence of interactions by itself is not suf-
ficient to produce an interesting kernel for the task at hand.
While the size-compensated QEK does not give results that
are comparable to classical kernels, we study in the follow-
ing section its expressive power and show that the geometry
induced by this method is hardly reproducible by a classical
kernel.

D. Geometric test with respect to classical kernels

In order to obtain an advantage over classical approaches it
is not sufficient to implement a quantum feature map based
on quantum dynamics that are hard to simulate classically.
As shown in [26], classical ML algorithms can in certain
instances learn efficiently from intractable quantum evolu-
tions if they are allowed to be trained on data. The authors
consequently proposed another metric between kernels in the
form of an asymmetric metric function called the geometric
difference g12. It compares two kernels K1 and K2 as

g12 =
√

‖√K2(K1)−1
√

K2‖∞, (7)

where ‖ · ‖∞ is the spectral norm. Intuitively, g12 measures
the difference between how kernels K1 and K2 perceive the
relation between data. Precisely, it characterizes the dispar-
ity regarding how each of them maps data points to their
respective feature spaces. In our case, we take K1 to be the
size-compensated QEK Kconv and K2 is selected from a set of
classical kernels. If the geometric difference is small, it means
that there exists no underlying function mapping the data to
the targets for which Kconv outperforms the classical kernel.
On the other hand, a large geometric difference between a
quantum and a classical kernel guarantees that there exists
such a function for which the quantum model outperforms the
classical one. Estimating the geometric difference is therefore

TABLE II. Order of magnitude of the geometric difference be-
tween QEK and various classical kernels.

Kernel Order of magnitude

SVM ϑ 103

size 105

graphlet sampling 104

random walk 105

shortest path 105

a sanity check to stating that the encoding of data to the
feature space through the quantum evolution kernel could not
be closely replicated by a classical model.

We compute the geometric difference between QEK and
various classical kernels over the PTCFM data set and report
the results in Table II. The threshold for a large geometric
difference is typically taken to be

√
M, where M is the size

of the data set. Here the obtained g12 is always far beyond√
M ∼ 101, indicating that the embedding of data through

our quantum-enhanced kernel is not trivial and cannot be
replicated by a classical machine learning algorithm.

To summarize, while the F1 score on PTCFM is rather
similar using quantum or classical models, we see nonetheless
that the geometry created by our quantum model is nontrivial.
A possible interpretation of the nonsuperiority of quantum
approaches on PTCFM would be that the relationship be-
tween the data and the targets is not better captured by our
quantum model, although its feature space is not reproducible
by classical means. To further confirm this understanding, we
find a function that increases and even maximizes the utility
of our rich quantum feature space. We build such a function
by artificially relabeling the targets according to a procedure
presented in [26] and outlined in Appendix G. We observe that
QEK, without retraining, retains an F1 score of around 99%
on the relabeled data set, while the closest classical kernel
reaches a score of at most 82% even after retraining it on the
new labels. The results are summarized in Table III, where the
difference in F1 score between QEK and the various classical
kernels is shown.

In light of the geometric difference assessment and the
observed gap of F1 score between QEK and classical ker-
nels on an artificial function, it remains an open question to
generally characterize which types of data set naturally offer
a structure that better exploits the geometry offered by our
quantum model, without requiring artificial tweaking of the
labels. In the following section, we present a synthetic data

TABLE III. Gap in F1 score between QEK and various classical
kernels after relabeling the data set.

Kernel Gap

SVM ϑ 17.2 ± 4.5
size 17.8 ± 4.2
graphlet sampling 20.1 ± 4.5
random walk 17.3 ± 4.3
shortest path 18.2 ± 4.4
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FIG. 6. Graphs in class A contain honeycomb sites (blue) with
inclusions of nonhoneycomb sites (red) with probability p. Graphs in
Class B contain kagome sites (blue) with inclusions of nonkagome
sites (red) with probability p. We show examples of graphs generated
with the aforementioned process.

set on which QEK is able to outperform classical methods
without any relabeling.

E. Synthetic data set

This binary classification data set is created by sampling
weighted random walks on a triangular lattice. In class A,
sites belonging to a honeycomb-type sublattice are favored.
They are explored with a weight p0 = 1, while the rest of the
triangular lattice sites are explored with a weight p < 1. Class
B is constructed in a similar fashion, but taking a kagome
instead of a honeycomb sublattice. The construction of this
artificial data set is illustrated in Fig. 6. In the case where
p = 0, the differences in their local structure make the two
classes easily distinguishable. However, with increasing p,
their local structure becomes more and more similar, as addi-
tional triangular lattice sites are incorporated. When p is large
enough, many triangular local substructures are shared by the
two classes, rendering them potentially hard to distinguish by
classical methods. At p = 1, the underlying triangular lattice
is explored uniformly, rendering the data sets indistinguish-
able.

Building on our ability to distinguish between graphs with
similar local structure but globally distinct, we apply QEK on
this synthetic data set. We expect our method to be hardly
affected by the presence of sparse defects and therefore be
able to outperform classical approaches. We investigate nu-
merically this assumption, for several values of p. In each
case, we create 200 graphs of 20 nodes each, 100 in each
class. The graphs are mapped to a triangular lattice with 5-
µm spacing. Here we consider two alternative schemes of
pulse sequences. The first one remains almost the same as
the experimentally implemented one, i.e., a unique resonant
pulse of �/2π = 2 MHz with parametrized duration up to
8 µs. The second one is an alternate layer scheme with four
parameters as described in [17], where we evaluate 500 ran-
dom values of the parameters and select the best one. The
procedure is designed such that it would be directly imple-
mentable on the hardware, as we did for the PTCFM data
set. We then compare the F1 score reached by QEK to those

FIG. 7. The F1 score (%) reached on the synthetic data set for
different probabilities p of including nonsublattice sites, by the quan-
tum evolution kernel (the alternate scheme is labeled the QEK layer)
as well as by the best SVM ϑ , GS, RW, and SP kernels. The values
reported are the average over a fivefold cross validation repeated ten
times. Each kernel reaches an F1 score of 100% when p = 0.

reached by other classical kernels, namely, SVM ϑ , GS, RW,
and SP. The results are summarized in Fig. 7. With decreasing
proportion of defects, all methods perform increasingly better,
as expected. Overall, regarding the mean F1 score reached, the
two QEK schemes outperform the four other classical kernels
tested for all p � 0.5. Noticeably, at p = 0.1 (p = 0.2), the
mean gap in F1 score between the QEK scheme and the best
classical scheme is 4.5% (7.1%), while the mean gap obtained
with the alternate QEK scheme is even larger with 13.7%
(21%), thus showing that QEK can significantly surpass clas-
sical approaches on certain types of data sets. When adding
too many defects, i.e., p = 0.5, our quantum evolution kernel
exhibits similar performance to the SVM ϑ .

V. CONCLUSION

In this paper we reported the implementation of a quan-
tum feature map for graph-structured data on a neutral atom
quantum processor with up to 32 qubits. We experimentally
showed that this embedding not only was sensitive to lo-
cal graph properties but also was able to probe more global
structures such as cycles. This property offers a promising
way to expand the capabilities of standard GNN architectures,
which have been shown to have the same expressiveness as the
Weisfeiler-Lehman (WL) isomorphism test in terms of distin-
guishing nonisomorphic graphs [56,57]. For example, a stan-
dard GNN architecture will treat G1 and G2 shown in Fig. 2(a)
in the same way, as they have the same local structure. Some
properties of quantum-enhanced version of GNNs have been
explored in [50] by some of the authors of this paper.

We then used the quantum graph feature map for a tox-
icity screening procedure on a standard biochemistry data
set comprising 286 graphs of sizes ranging from 2 to 32
nodes. This procedure achieved an F1 score of 60.4 ± 5.1%,
on par with the best classical kernels. We intentionally did not
include GNNs in the benchmark, as they belong to another
distinct family of models. Beyond this pure performance as-
sessment, we showcased the potential advantage of using a
quantum feature map through the computation of geometric
differences with respect to said classical kernels, which are
metrics evaluating the degree of similarity between the ker-
nels’ feature spaces. We showed that the quantum evolution
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kernel captured features that are invisible to the classical ker-
nels we considered. An artificial relabeling of the data enabled
us to create a synthetic data set for which the performances
of the quantum evolution kernel could not be matched. We
also identified another data set made of bipartite 2D lattices,
for which the quantum procedure exhibited superior perfor-
mances.

This proof of concept illustrates the potential of quantum-
enhanced methods for graph machine learning tasks. Our
study paves the way for the incorporation of quantum-
enhanced algorithms with standard ML solutions, aiming at
constructing better tools for graph data analysis and predic-
tion. Further work on more diverse data sets will be required
to assess the viability of the approach compared to powerful
state-of-the-art GNN architectures [58–61]. Additionally, our
results showcase the power and versatility of neutral atom
QPUs, with their ability to change the register geometry from
run to run. Going forward, the implementation of similar
methods on nonlocal graphs could be envisaged by embed-
ding them into three-dimensional registers [45] or moving the
qubits throughout the course of the computation [62].
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APPENDIX A: EXPERIMENTAL SETUP

The experimental setup is shown schematically in Fig. 8.
It features a magneto-optical trap (MOT), able to cool down
and confine a cloud of 87Rb atoms in order to load an array
of optical tweezers. They are created by shining a 849-nm
laser beam on a spatial light modulator (SLM) and then fo-
cusing the beam to a small waist of approximately 1 µm with
a high-numerical-aperture optical system inside the vacuum
chamber. The loading of the optical tweezers is stochastic
with a probability η ≈ 0.55 of obtaining one atom per trap.
Hence, at each repetition cycle of the experiment, we use a
dynamical optical tweezer to move the atoms one by one in
order to generate the targeted graph.

The atoms are embedded into a 10 G magnetic field that
sets the quantization axis. The qubits are encoded into the
ground state |0〉 = |5S1/2, F = 2, mF = 2〉 and a Rydberg
state |1〉 = |60S1/2, mJ = 1/2〉 of the atoms. They are ini-
tialized in the ground state by optical pumping. The qubit
transition is then addressed by a two-photon laser excitation,
via an intermediate state 6P3/2. The first (second) photon
excitation is generated by a 420-nm (1013-nm) σ+-polarized
(σ−-polarized) laser beam with a 1/e2 waist radius of 260 µm
(180 µm). The two lasers being far detuned from the interme-
diate state by 700 MHz, we avoid spurious populating of this
state and the three-level system can be faithfully approximated
by an effective two-level system. The qubits state is read out
in a single step by fluorescence imaging close to resonance at
780 nm, using an electron multiplying charge-coupled device
(EMCCD) camera with an integration time of 20 ms.

FIG. 8. Microtraps for capturing single atoms are generated us-
ing a SLM. A calculated phase pattern is printed on the 849-nm laser
beam and then focused by the first of two high numerical aperture
lenses on the middle of a MOT. The atomic fluorescence at 780 nm
is reflected by a dichroic mirror (DM) and detected with an EMCCD
camera. A second aspheric lens (identical to the first) collects the
849-nm light for three kind of images: layout loading (tweezers
loading quality), register validation (rearrangement successfulness),
and register readout (Rydberg excitation discrimination results). The
transmitted beam is used for trap diagnostics via a CCD camera or
a Shack-Hartmann wavefront sensor (SH). (Figure has been repro-
duced from [28].)

A set of eight electrodes in an octupole configuration pro-
vides active control of the electric-field environment around
the Rydberg atoms. The durations and shapes of the Rydberg
pulses are defined using acousto- and electro-optic modula-
tors, in order to ensure the correct pulse length used on the
measurements.

APPENDIX B: NOISE MODEL

Despite the precise calibration of the control devices which
enable us to monitor quantities such as the SLM pattern
spacing or the pulse shapes, several experimental imperfec-
tions may alter the data measured on the experiment. All
experimental data obtained during this study, including those
presented in Figs. 2 and 4, are uncorrected and thus need to
be benchmarked with respect to their simulated counterpart,
taking into account the following main sources of noise.

First and foremost, due to the nature of the quantum state
and the limited budget of shots, measurements are subject
to sampling noise. For instance, on average, each of the 25
experimental points in Fig. 2 is obtained using 600 shots and
the uncertainty related to this effect (vertical error bars) can
be estimated using the jackknife resampling method [63].

The finite sampling is also inherently flawed by several
physical processes such as atom thermal motion, background-
gas collisions, or Rydberg state finite lifetime, whose effects
can all be encompassed as a first approximation into two
detection error terms ε and ε′. The ε (ε′) yield the probability
to get a false positive (negative), i.e., measure an atom in
|0〉 (|1〉) as being in |0〉 (|1〉). The ε can be measured with
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FIG. 9. In message passing neural networks, node feature vectors
hl

i are iteratively updated, from one layer l to the next l + 1, using
only neighboring nodes, similarly to what is done in the WL test.

a regular release-and-recapture experiment and ε′ with a more
advanced method [64] involving π and pushout pulses. To
replicate the probabilistic effect of detection errors, the simu-
lated distributions of bit strings are altered using the following
rule to compute the probability of measuring j instead of i:

Pj|i =
∏

k

(1 − |i − j|k ) − (−1)|i− j|k [(1 − ik )ε + ikε
′]. (B1)

Here i, j ∈ BN and ik = 0 (1) if atom k is in |0〉 (|1〉). On our
device, we measure ε ≈ 3% and ε′ ≈ 8%; thus, as an exam-
ple, we can compute P1001|0101 = εε′(1 − ε)(1 − ε′) ≈ 0.2%.
Those detection errors can deeply modify the measured exci-
tation distributions, with a noticeable effect shown in Fig. 2(b)
at t = 0 where the simulated 〈n j〉 does not start at 0 despite
|ψ (t = 0)〉 = |0 · · · 0〉.

Additional errors can also lead to decoherence in the
system [65], affecting the atom dynamics in ways costly
to emulate. For instance, since the Rydberg transition used
is addressed by a two-photon process, misalignments and
power fluctuations of the two lasers are twice as likely to
occur. Atoms are subject to positional disorder between each
shot and their finite velocities make them sensitive to the
Doppler effect. Since taking all those effects into considera-
tion becomes quickly intractable, they were only individually
simulated in order to assess their limited action on the
implemented protocols. However, in order to replicate the
experimental data presented in Fig. 2, we resort to an effective
decoherence model in the form of solving the master equa-
tion with a relaxation rate of 2π×0.06 MHz [32]. This value
was obtained by fitting with the above model damped Rabi
oscillations measured on the same device. Thus, reaching sim-
ilar behavior within error bars between numerically simulated
and experimentally obtained DJS(P1,P2) was achieved with
no free parameter.

APPENDIX C: MESSAGE PASSING NEURAL NETWORKS

Message passing neural networks [58] are widely used
families of graph neural networks. They were one of the first
networks to be developed for graph-structured data and are
still one of the most successful [66]. They consist of GNNs
where the update is made only by aggregating the features
of nearest neighbors. In this scheme, the nodes features are
multiplied by a trainable weight matrix at each layer and each
node aggregates as a message of the features of its neighbors,
as illustrated in Fig. 9.

Message passing neural networks are closely related to
Weisfeiler-Lehman algorithms. In particular, they have been
proven to be at most as powerful in distinguishing graph

structures [57]. In their standard form, they are then also
limited to capture only local features of graphs.

APPENDIX D: SUPPORT VECTOR
MACHINE ALGORITHM

The SVM algorithm aims at splitting a data set into two
classes by finding the best hyperplane that separates the data
points in the feature space, in which the coordinates of each
data point (here each graph) are determined according to the
kernel K .

For a training graph data set {Gi}i=1,...,M and a set of labels
y = {yi}i=1,...,M (where yi = ±1 depending on which class the
graph Gi belongs to), the dual formulation of the SVM prob-
lem consists in finding α̃ ∈ AC (y) = {α ∈ [0,C]M | αT y = 0}
such that

1
2 α̃T Qα̃ − eT α̃ = min

α∈AC (y)

{
1
2αT Qα − eT α

}
, (D1)

where e is the vector of all ones, Q is a M×M matrix such
that Qi j = yiy jK (Gi,G j ), and C > 0 is the penalty hyperpa-
rameter, to be adjusted. Setting C to a large value increases
the range of possible values of α and therefore the flexibility
of the model; however, it also increases the training time and
the risk of overfitting.

The data points for which α̃i > 0 are called support vectors
(SVs). Once the αi are trained, the class of a new graph G is
predicted by the decision function, given by

y(G) = sgn{〈φ(G)|φ0〉} (D2)

= sgn

{∑
i∈SV

yiα̃iK (G,Gi )

}
, (D3)

with

φ0 =
∑
i∈SV

yiα̃iφ(Gi ). (D4)

In this case, the training of the kernel amounts to finding the
optimal feature vector φ0. It is worth noting that in many
cases, Eq. (D3) is evaluated directly, without explicitly com-
puting φ0.

APPENDIX E: MAPPING AND BATCHING

We present in detail our method to embed the graphs of
the PTCFM data set. Let G = (V, E ) be a graph of the data
set for which we have a layout of the nodes. Embedding the
graph amounts to replacing its nodes with atoms, the latter
interacting between themselves with the 1/R6 dependence.
Moving two atoms slightly apart can therefore drastically
reduce their interaction strength, but it remains nonzero. In
order for the Hamiltonian to reflect the topology of G, this
1/R6 dependence needs to be approximated by the Heaviside
function defined as

h(r) =
{∞ for r � rb

0 otherwise. (E1)

For the Heaviside approximation to be correct, we have
to ensure that the largest distance between a pair sharing an
edge in the graph is always far less than the shortest distance
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(a) (b)

FIG. 10. Histograms of normalized pairwise distances between atoms in the 286 graphs of the truncated data set when performing the
embedding (a) with only a Fruchterman-Reingold layout or (b) when adding a local optimization step afterward. For a given graph (inset), two
atoms forming a pair in E (blue) can be close enough to form a bond via interaction (solid line) or too far, creating a missing bond (dotted
line). Likewise, two atoms forming a pair not in E can be placed too close and form a fake edge (thick line).

between a pair not sharing an edge. In other words, in theory,
min{Ui j, (i, j) ∈ E}/max{Ui j, (i, j) /∈ E} � 1.

We use a local optimizer to maximize this ratio and find
good solutions in polynomial time. The method optimizes the
position of each node in turn, depending on the previously
mapped nodes and the presence of cycles in the graph. For the
data set used in this study, we achieve a significant increase of
the mean ratio up to 16.8, starting from 5.9 with the classical
Fruchterman-Reingold layout. We report that more than half
the data set exhibits a ratio higher than 10 and less than 5%
of the data set is embedded with some defects, i.e., a ratio
smaller than 1. We also assess the benefit of this approach in
Fig. 10 by comparing the distributions of distance of pairs in
E and pairs not in E before [Fig. 10(a)] and after [Fig. 10(b)]
the optimization. While some defects, such as fake or missing
bonds, frequently appear in the preoptimization embedding,
the optimized positions are constrained such that a clear-
cut is visible between the two distributions, easing the
approximation.

In order to further characterize the effect of these defects,
we analyze their effect on the measurement histograms. For
each graph, we first compute the histogram that would have
been obtained with a perfect embedding. We then compute
the Jensen-Shannon divergence between this histogram and
the one measured in the QPU (see Fig. 11). From these, we
can also estimate that if one were to perform the SVM using
histograms resulting from ideal embedding, one would expect
a slightly worst F1 score of 58.8 ± 4.0.

In principle, we can program a different SLM pattern for
the layout of each graph from the data set. In practice, how-
ever, the SLM calibration step can be quite time consuming,
i.e., of the order of 1 min. We can compare it to the dura-
tion of hundreds of shot, each of which consist of applying
a sequence and measuring a quantum state, performed at a
frequency of 1 Hz. Then for each graph, calibrating the SLM
and obtaining the probability distribution take approximately
the same order of time.

We therefore seek to regroup many graphs onto the same
SLM pattern, to be able to reduce the number of calibrations

needed for the whole data set. We do so by clustering the
graphs according to similarities in their structures. Because
the data set consists in representations of organic molecules,
many of the graphs share common structures. We thus focus
on retrieving the presence and multiplicity of pentagons and
hexagons. We then build a similarity measure between the
graphs. For the pentagons, for example, the similarity can be
written in the form

s(G1,G2) = 1 − exp
(−α

∣∣NP
1 − NP

2

∣∣), (E2)

where NP represents the number of pentagons in G and α is
a hyperparameter. We then use a linear combination of simi-
larity measures in order to build a similarity matrix between
all graphs of the data set. We then apply a k-means clustering
algorithm [67] using the similarity matrix in order to separate
the graphs into different batches. Furthermore, since the laser
power is distributed over all the traps, we want to reduce
the total number of traps in order to maximize the intensity
provided to each trap. This ensures that the traps are deep

FIG. 11. Distribution of Jensen-Shannon divergences between
measured and expected histograms for a pulse of duration of
T = 0.66 µs. The implementation was done in a regime where this
difference can be large for some graphs.
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Algorithm 1. Creating a triangular SLM pattern by batching M
graphs.

Require: Graphs {G1, . . . ,GM} in sorted sizes and
optimized positions {x1, . . . , xM}

Ensure: Single SLM pattern that embeds M graphs
with optimal positions on a triangular lattice

1: traps = { }
2: for i in range 1, . . . , M:
3: find rGi = {r1, . . . , r|Gi |} triangular grid points that

best conserve the pairwise distances between points
in xi and maximizes overlap with existing traps.

4: traps ← traps + rGi traps
5: if |traps| < 2|GM |, add additional random triangular

grid points to guarantee the filling property for
rearrangement.

enough to obtain a satisfying filling efficiency (approximately
55%) over the whole pattern. For each batch, we thus apply
the following mapping algorithm.

We successfully map the entire data set of 286 graphs into
only six SLM patterns. For example, we batch 66 graphs
together onto the 71-trap SLM pattern presented in Fig. 12.
On average, the six SLM patterns use 70 traps each to encode
48 graphs each.

FIG. 12. Family of 66 graphs, ranging in sizes from 4 to 19
nodes, mapped and batched to the same SLM pattern (white circles)
over a triangular grid with a spacing of 5.6 µm. The traps used when
implementing G1 (G2) are colored in red (blue). The bicolored traps
are those used for both graphs.

APPENDIX F: CLASSICAL GRAPH KERNELS

A variety of classical kernels that do not require node
or edge attributes are used in the main text to compare the
performance of QEK on the PTCFM data set. In the following,
a brief description of each is given.

1. SVM ϑ kernel

The SVM ϑ kernel was proposed as an alternative to the
more computationally intensive Lovász ϑ kernel. Both ϑ

kernels leverage the so-called orthogonal representation of a
graph. Given a graph G = (V, E ), the orthogonal representa-
tion is an assignment of unit vectors {ui} to each node of the
graph, subject to the constraint that unit vectors associated
with vertices that are not joined by an edge are orthogonal:
〈ui, u j〉 = 0 if {i, j} /∈ E .

Orthogonal representations are not unique, but there is a
particular representation associated with the ϑ number [68]
of a graph. Given a graph G = (V, E ) with n vertices, denote
by UG an orthogonal representation of G and by C the space
of unit vectors in Rn. The ϑ number is defined as

ϑ (G) := min
c∈C

min
UG

max
ui∈UG

1

〈c, ui〉2
. (F1)

From now on, we will always be referring to the particular
orthogonal representation UG that minimizes (F1).

Now consider a subset of vertices B ⊂ V and call UG|B the
orthogonal representation obtained from UG by removing the
vectors that are not in B:

UG|B := {ui ∈ UG : i ∈ B}. (F2)

Note that UG|B preserves the global properties encoded in
UG through the orthogonal constraint and that UG|B is not in
general the orthogonal representation of the subgraph of G
containing only the vertices in B. Define the ϑB number

ϑB(G) := min
c∈C

max
ui∈UG|B

1

〈c, ui〉2
. (F3)

We are ready now to give the definition of the Lovász ϑ kernel.
Given two graphs G1 = (V1, E1) and G2 = (V2, E2), define

KLo(G1,G2) :=
∑

B1⊂V1

∑
B2⊂V2

δ|B1|,|B2|
1

Z
k
(
ϑB1 , ϑB2

)
, (F4)

where Z = (|V1|
|B1|

)(|V2|
|B2|

)
, δ is the Kronecker delta, and k is a

freely specifiable kernel (called the base kernel) from R×R
to R.

The SVM ϑ kernel is defined as (F4), but it uses an ap-
proximation for the ϑ numbers. Consider a graph G with n
vertices and adjacency matrix A and let ρ � −λ, where λ is
the minimum eigenvalue of A. The matrix

κ := 1

ρ
A + I (F5)

is positive semidefinite. Define the maximization problem

max
αi�0

2
n∑

i=1

αi −
n∑

i, j=1

αiα jκi j . (F6)

If {α∗
i } are the maximizers of (F6), then it can be proven that

on certain families of graphs the quantity
∑

i α
∗
i is with high
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probability a constant factor approximation to ϑ (G),

ϑ (G) �
n∑

i=1

α∗
i � γϑ (G), (F7)

for some γ . The SVM ϑ kernel then replaces the ϑB numbers
on subgraphs with

ϑB(G) →
∑
j∈B

α∗
j . (F8)

The SVM ϑ kernel requires a choice of base kernel k :
R×R → R. We choose a translationally invariant universal
kernel [69] k(x, y) = (β + ‖x − y‖2)−α , where α and β are
two trainable hyperparameters.

2. Size kernel

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the size
kernel is defined as

Ksize(G1,G2) := e−γ (|V1|−|V2|)2
(F9)

with a choice of hyperparameter γ > 0.

3. Graphlet sampling kernel

Let G = (V, E ) and H = (VH , EH ) be two graphs. We say
that H is a subgraph of G if there exists an injective map
α : VH → V such that (u, v) ∈ EH ⇐⇒ (α(u), α(v)) ∈ E .
In general, it might be possible to map H into G in several
different ways, i.e., the mapping α, if it exists, is not necessar-
ily unique.

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the
idea behind the graphlet kernel is to pick an integer k <

min{|V1|, |V2|}, enumerate all possible graphs of size k, and
find the number of ways they can be mapped to G1 and G2.
Denote by f (k)

Gi
the vector where each entry counts the way

a specific graph of size k can be mapped as a subgraph of
Gi. A kernel can then be defined as the dot product f (k)

G1
· f (k)

G2

between the two vectors.
The complexity of computing such a kernel scales as

O(nk ), as there are
(n

k

)
size-k subgraphs in a graph of size

n. For this reason it is preferable to resort to sampling rather
than complete enumeration [70]. Given a choice of integer
N , graphs g1, . . . , gN of size between 3 and k are randomly
sampled. The number of ways each gi can be mapped as a
subgraph of G j is computed and stored in a vector fG j , and the
graphlet sampling kernel is defined as the dot product

KGS(G1,G2) := fG1 · fG2 . (F10)

To account for the different size of G1 and G2, each vector can
be normalized by the total number of its subgraphs.

4. Random walk kernel

The random walk kernel is one of the oldest and most
studied graph kernels [71]. Given two graphs G1 = (V1, E1)
and G2 = (V2, E2), the idea is to measure the probability of
simultaneous random walks of a certain length between two
vertices in G1 and G2.

Simultaneous random walks can be conveniently encoded
in powers of the adjacency matrix on the product graph. The
product graph G1×G2 = G× = (V×, E×) is defined as follows:

V× := {(ui, ur ) | ui ∈ V1, ur ∈ V2}, (F11)

E× := {((ui, ur ), (v j, vs)) | (ui, v j ) ∈ E1, (ur, vs) ∈ E2}.
(F12)

In other words, an edge in the product graph indicates that an
edge exists between the end points in both G1 and G2. If A× is
the adjacency matrix of the product graph, then the entries of
Ak

× indicate the probability of a simultaneous random walk of
length k between two vertices ui, v j ∈ V1 and ur, vs ∈ V2.

If p, q ∈ R|V×| are vectors representing the probability dis-
tribution of respectively starting or stopping the walk at a
certain node of V×, the first idea for a kernel would be to
compute the sum

∑
k qTAk

× p, which however may fail to con-
verge. A simple modification to make the sum convergent is
to choose an appropriate length-dependent weight μ(k):

K (G1,G2) :=
∞∑

k=0

μ(k)qTAk
× p. (F13)

The geometric random walk kernel is obtained by choosing
the weights to be the coefficients of a geometric series μ(k) =
λk and p and q to be uniform. If λ is tuned in such a way as to
make the series convergent, the kernel reads

KRW(G1,G2) :=
∞∑

k=0

λkeTAk
×e = eT(I − λA×)−1e, (F14)

where e denote vectors with all the entries equal to 1.
The cost of matrix inversion scales as the cube of the matrix

size. If |V1| = |V2| = n, then the cost of the algorithm scales
as O(n6), as it involves the inversion of an adjacency matrix of
size n2×n2. Several methods were proposed in [72] to make
the computation faster. The spectral decomposition method in
particular allows one to reduce the complexity for unlabeled
graphs to O(n3). Essentially, one exploits the fact that the
adjacency matrix of the product graph can be decomposed in
the tensor product of the individual adjacency matrices

A× = A1 ⊗ A2, (F15)

which allows one to diagonalize each n×n adjacency matrix
in O(n3) time and perform the inversion only on the diagonal
components.

5. Shortest path kernel

Given a graph G = (V, E ), an edge path between two ver-
tices u, v ∈ V is a sequence of edges (e1, . . . , en) such that
u ∈ e1, v ∈ en, ei and ei+1 are contiguous (i.e., they have
one of the end points in common), and ei 
= e j for i 
= j.
Computing the shortest edge path between any two nodes of
a graph can be done in polynomial time with the Dijkstra [73]
or Floyd-Warshall [74] algorithms, which makes it a viable
feature to be probed by a graph kernel.

The first step of the shortest path kernel is to transform the
graphs into shortest path graphs. Given a graph G = (V, E ),
the shortest path graph GS = (VS, ES ) associated with G is
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defined as

VS = V, (F16)

ES = {(u, v) | ∃ an edge path (e1, . . . , en)

between u and v in G}. (F17)

In addition, to each edge e ∈ ES a label l (e) is assigned given
by the length of the shortest path in G between its end points.
The shortest path kernel is then defined as

KSP(G1,G2) :=
∑
e∈ES

1

∑
p∈ES

2

k(e, p), (F18)

with k a kernel between edge paths such as the Brownian
bridge kernel

k(e, p) := max{0, c − |l (e) − l (p)|} (F19)

for a choice of c.

APPENDIX G: GEOMETRIC DIFFERENCE
AND MAXIMUM QUANTUM-CLASSICAL

SEPARATION

Given two kernel functions K1 and K2, the geometric dif-
ference g(K1||K2) = g12 described in [26] is an asymmetric
distance function that quantifies whether or not the kernel K2

has the potential to resolve data better than K1 on some data
set. In its simplest form, the geometric difference is defined as

g12 =
√

‖√K2(K1)−1
√

K2‖∞, (G1)

where ‖ · ‖∞ denotes the spectral norm.
The geometric difference becomes an especially useful

metric when K1 = KC is a classical kernel and K2 = KQ is a
quantum kernel. If N is the size of the data set, a value of

gCQ of order
√

N or greater indicates that the geometry of the
feature space induced by the quantum kernel is rich enough
to be hard to learn classically, and the quantum kernel can
potentially perform better than classical kernels. In that case,
it is possible to artificially relabel the data set in order to max-
imally separate the kernels’ performance. Such a relabeling
process is a constructive proof of the existence of a certain
data set on which one kernel performs much better than the
other. If v is the eigenvector of

√
K2(K1)−1

√
K2 corresponding

to the eigenvalue g2
12, the vector of new labels is given by

ynew = √
K2v.

When dealing with a finite amount of training data, Eq. (34)
should be regularized in order to stabilize the inversion of K1.
The regularized expression reads

g12(λ) =
√

‖√K2
√

K1(K1 + λI )−2
√

K1
√

K2‖∞, (G2)

where λ is the regularization parameter. The geometric differ-
ence g12(λ) has a plateau for small λ, when the regularization
parameter becomes smaller than the smallest eigenvalue of K1

and decreases for increasing λ. The effect of λ is to introduce
a certain amount of training error. The training error can be
upper bounded by a quantity proportional to

gtra(λ)2 = λ2‖√K2(K1 + λI )−2√K2‖∞. (G3)

Practically, one should look at the regime where g12 has not
plateaued but the training error is still small enough.

A regularization should be introduced also in the relabel-
ing procedure. The new labels are taken to be ynew = √

KQv,
where v is the eigenvector of the regularized matrix√

KQ
√

KC (KC + λI )−2√KC

√
KQ

corresponding to the eigenvalue g12(λ)2.
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